ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets

Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology Jg. 8; H. 1; S. 1415 - 19
Hauptverfasser: Shen, Yafei, Zhang, Tao, Liu, Zhiwei, Kostelidou, Kalliopi, Xu, Ying, Yang, Ling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 02.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2399-3642, 2399-3642
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems.
AbstractList Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.
Abstract Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.
Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems.
Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems.
Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.
ArticleNumber 1415
Author Xu, Ying
Liu, Zhiwei
Kostelidou, Kalliopi
Shen, Yafei
Yang, Ling
Zhang, Tao
Author_xml – sequence: 1
  givenname: Yafei
  surname: Shen
  fullname: Shen, Yafei
  organization: School of Mathematical Sciences, Soochow University, Center for Systems Biology, Soochow University
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Jiangsu Province Engineering Research Center of Development and Translation of Key Technologies for Chronic Disease Prevention and Control, Suzhou Vocational Health College
– sequence: 3
  givenname: Zhiwei
  surname: Liu
  fullname: Liu, Zhiwei
  organization: Cambridge-Suda Genomic Research Center, Suzhou Medical College of Soochow University
– sequence: 4
  givenname: Kalliopi
  surname: Kostelidou
  fullname: Kostelidou, Kalliopi
  organization: KTL Research Acceleration LTD
– sequence: 5
  givenname: Ying
  orcidid: 0000-0002-6689-7768
  surname: Xu
  fullname: Xu, Ying
  email: yingxu@suda.edu.cn
  organization: Cambridge-Suda Genomic Research Center, Suzhou Medical College of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou Medical College of Soochow University
– sequence: 6
  givenname: Ling
  orcidid: 0000-0002-4045-7457
  surname: Yang
  fullname: Yang, Ling
  email: lyang@suda.edu.cn
  organization: School of Mathematical Sciences, Soochow University, Center for Systems Biology, Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41039035$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhSNURB_0D7BAkdiwCfgROza7UlqoVKkbWFuOPc71VWIHO1dq_j1uUwpiwWpGo--cGc05rY5CDFBVbzD6gBEVH3NLEKINIqxBQuCuWV9UJ4RK2VDekqO_-uPqPOc9QghLKTltX1XHbbGQiLKTyt19-Xxx9anW9c4Pu2aG5GKadDBQT9HCWHsLYfFu9WGoTZzmEe7reQchLusMufZhE1o_Qcg-Bj3WvY9jHLwprdWLzrDk19VLp8cM50_1rPpxffX98ltze_f15vLitjEtFUsDwDiiznBtpXHAO2aJACd62ve9ZQ4jCUA7wi2C1rXCGNkRy7XrMSVSEnpW3Wy-Nuq9mpOfdFpV1F49DmIalE6LNyMo1ONOO8mMpLTlEmmGRXmRYZwIpIktXu83rznFnwfIi5p8NjCOOkA8ZEUJ4wIj3uKCvvsH3cdDKr_YKI46Jh6Oe_tEHfoJ7PN5v9MoANkAk2LOCdwzgpF6SF1tqauSunpMXa1FRDdRLnAYIP3Z_R_VL07nrqg
Cites_doi 10.1038/s41588-018-0047-6
10.3844/jcssp.2006.735.739
10.1093/nar/gkac1017
10.1093/bib/bbab276
10.1080/02664763.2013.822057
10.1186/s12893-022-01751-4
10.1093/nar/gkab447
10.1038/ncomms15475
10.3389/fendo.2022.1041616
10.1109/JSEN.2022.3230361
10.1186/s12902-023-01382-7
10.1038/ng.2383
10.1186/s12944-016-0221-8
10.3389/fendo.2023.1266692
10.1186/s12935-023-03089-0
10.1038/s41467-017-01995-2
10.1186/s12864-015-1721-z
10.3390/cells11162485
10.1038/ng.2797
10.1371/journal.pone.0131274
10.1007/978-94-007-7335-6_1
10.1007/978-3-030-32251-9_63
10.1109/JBHI.2018.2856820
10.1371/journal.pbio.3001723
10.1109/TIP.2017.2713048
10.1038/ncomms13357
10.1371/journal.pgen.1002254
10.1258/002367707779399518
10.1016/j.xcrm.2022.100844
10.1137/1.9781611975673.67
10.5244/C.29.8
10.1038/ng.3901
10.1016/j.eswa.2021.115736
10.1371/journal.pbio.1002033
10.1038/s41586-021-03221-y
10.1007/s10489-022-03613-1
10.1590/1519-6984.221405
10.1080/00365521.2023.2165417
10.1038/ng.3406
10.3389/fendo.2023.1239398
10.1371/journal.pgen.1009190
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s42003-025-08817-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 19
ExternalDocumentID oai_doaj_org_article_0b17af95c9334690a518019c56280a2d
41039035
10_1038_s42003_025_08817_y
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12471467; 32100931
  funderid: 501100001809
– fundername: Interdisciplinary basic Frontier Innovation Program of Suzhou Medical College of Soochow University (YXY2303022), National Center for International Research (2017B01012)
– fundername: National Key Research and Development Program of China (2018YFA0801103)
– fundername: Jiangsu Province Engineering Research Center of Development and Translation of Key Technologies for Chronic Disease Prevention and Control
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12471467
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 32100931
GroupedDBID 0R~
53G
88I
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNT
RPM
SNYQT
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FE
8FH
8FK
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-ee5603fc6ad9cfe675d28ef8b3bbbd5f109ee3726d0e4f48cc972d6afb1329923
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586031700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3642
IngestDate Mon Oct 13 19:21:29 EDT 2025
Mon Oct 06 18:01:14 EDT 2025
Fri Oct 03 07:31:41 EDT 2025
Mon Oct 06 01:44:07 EDT 2025
Sat Nov 29 07:17:13 EST 2025
Fri Oct 03 01:22:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ee5603fc6ad9cfe675d28ef8b3bbbd5f109ee3726d0e4f48cc972d6afb1329923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4045-7457
0000-0002-6689-7768
OpenAccessLink https://doaj.org/article/0b17af95c9334690a518019c56280a2d
PMID 41039035
PQID 3256607582
PQPubID 4669726
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_0b17af95c9334690a518019c56280a2d
proquest_miscellaneous_3256810641
proquest_journals_3256607582
pubmed_primary_41039035
crossref_primary_10_1038_s42003_025_08817_y
springer_journals_10_1038_s42003_025_08817_y
PublicationCentury 2000
PublicationDate 2025-10-02
PublicationDateYYYYMMDD 2025-10-02
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Zhou (8817_CR19) 2019; 23
8817_CR30
J Qiu (8817_CR39) 2023; 14
AP Morris (8817_CR32) 2012; 44
Y Liu (8817_CR20) 2022; 11
T Beck (8817_CR31) 2023; 51
J Rozman (8817_CR3) 2018; 9
Y Wu (8817_CR42) 2023; 58
W Lu (8817_CR13) 2017; 26
S He (8817_CR38) 2023; 14
Y Hu (8817_CR27) 2015; 16
8817_CR47
8817_CR48
8817_CR49
T Meehan (8817_CR5) 2017; 49
C Cao (8817_CR37) 2023; 23
JS Ried (8817_CR33) 2016; 7
G Nicholson (8817_CR6) 2022; 20
M Kanai (8817_CR10) 2018; 50
ELB Novelli (8817_CR26) 2007; 41
CJ Willer (8817_CR34) 2013; 45
C Cotsapas (8817_CR35) 2011; 7
S Chatterjee (8817_CR46) 1986; 1
AL Swan (8817_CR4) 2020; 16
V-T Le (8817_CR18) 2022; 53
C Cao (8817_CR45) 2022; 13
8817_CR12
8817_CR15
8817_CR16
8817_CR17
AHMR Imon (8817_CR21) 2013; 40
R Lyu (8817_CR11) 2021; 22
W Peng (8817_CR43) 2022; 22
L Antwarg (8817_CR22) 2021; 186
N Kurbatova (8817_CR1) 2015; 10
8817_CR7
B Bulik-Sullivan (8817_CR9) 2015; 47
8817_CR23
M Yang (8817_CR40) 2016; 2016
LAA Shalabi (8817_CR24) 2006; 2
Y Peng (8817_CR44) 2023; 23
MEM Elgart (8817_CR8) 2022; 3
Y Wei (8817_CR14) 2022; 23
NA Karp (8817_CR25) 2017; 8
AR Deans (8817_CR2) 2015; 13
APA Macêdo (8817_CR28) 2021; 81
D Bu (8817_CR36) 2021; 49
JF Rahbani (8817_CR29) 2021; 590
X Li (8817_CR41) 2016; 15
References_xml – volume: 50
  start-page: 390
  year: 2018
  ident: 8817_CR10
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0047-6
– volume: 2
  start-page: 735
  year: 2006
  ident: 8817_CR24
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2006.735.739
– volume: 2016
  start-page: 5412084
  year: 2016
  ident: 8817_CR40
  publication-title: J. Diab. Res.
– volume: 51
  start-page: D986
  year: 2023
  ident: 8817_CR31
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1017
– volume: 22
  start-page: bbab276
  year: 2021
  ident: 8817_CR11
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbab276
– volume: 40
  start-page: 2601
  year: 2013
  ident: 8817_CR21
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2013.822057
– volume: 22
  year: 2022
  ident: 8817_CR43
  publication-title: BMC Surg.
  doi: 10.1186/s12893-022-01751-4
– volume: 49
  start-page: W317
  year: 2021
  ident: 8817_CR36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab447
– volume: 8
  year: 2017
  ident: 8817_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15475
– ident: 8817_CR30
– volume: 13
  start-page: 1041616
  year: 2022
  ident: 8817_CR45
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2022.1041616
– volume: 23
  start-page: 3787
  year: 2022
  ident: 8817_CR14
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3230361
– ident: 8817_CR48
– volume: 23
  year: 2023
  ident: 8817_CR37
  publication-title: BMC Endocr. Disord.
  doi: 10.1186/s12902-023-01382-7
– volume: 44
  start-page: 981
  year: 2012
  ident: 8817_CR32
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2383
– ident: 8817_CR23
– volume: 15
  year: 2016
  ident: 8817_CR41
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-016-0221-8
– volume: 14
  start-page: 1266692
  year: 2023
  ident: 8817_CR38
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2023.1266692
– volume: 1
  start-page: 379
  year: 1986
  ident: 8817_CR46
  publication-title: Stat. Sci.
– volume: 23
  year: 2023
  ident: 8817_CR44
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-023-03089-0
– ident: 8817_CR47
– volume: 9
  year: 2018
  ident: 8817_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01995-2
– volume: 16
  year: 2015
  ident: 8817_CR27
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1721-z
– ident: 8817_CR12
– volume: 11
  start-page: 2485
  year: 2022
  ident: 8817_CR20
  publication-title: Cells
  doi: 10.3390/cells11162485
– volume: 45
  start-page: 1274
  year: 2013
  ident: 8817_CR34
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2797
– volume: 10
  start-page: e0131274
  year: 2015
  ident: 8817_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131274
– ident: 8817_CR7
  doi: 10.1007/978-94-007-7335-6_1
– ident: 8817_CR16
  doi: 10.1007/978-3-030-32251-9_63
– volume: 23
  start-page: 103
  year: 2019
  ident: 8817_CR19
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2856820
– ident: 8817_CR49
– volume: 20
  start-page: e3001723
  year: 2022
  ident: 8817_CR6
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001723
– volume: 26
  start-page: 4321
  year: 2017
  ident: 8817_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713048
– volume: 7
  year: 2016
  ident: 8817_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13357
– volume: 7
  start-page: e1002254
  year: 2011
  ident: 8817_CR35
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002254
– volume: 41
  start-page: 111
  year: 2007
  ident: 8817_CR26
  publication-title: Lab. Anim.
  doi: 10.1258/002367707779399518
– volume: 3
  start-page: 100844
  year: 2022
  ident: 8817_CR8
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100844
– ident: 8817_CR15
  doi: 10.1137/1.9781611975673.67
– ident: 8817_CR17
  doi: 10.5244/C.29.8
– volume: 49
  start-page: 1231
  year: 2017
  ident: 8817_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3901
– volume: 186
  start-page: 115736
  year: 2021
  ident: 8817_CR22
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115736
– volume: 13
  start-page: e1002033
  year: 2015
  ident: 8817_CR2
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002033
– volume: 590
  start-page: 480
  year: 2021
  ident: 8817_CR29
  publication-title: Nature
  doi: 10.1038/s41586-021-03221-y
– volume: 53
  start-page: 3240
  year: 2022
  ident: 8817_CR18
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03613-1
– volume: 81
  start-page: 246
  year: 2021
  ident: 8817_CR28
  publication-title: Braz. J. Biol.
  doi: 10.1590/1519-6984.221405
– volume: 58
  start-page: 789
  year: 2023
  ident: 8817_CR42
  publication-title: Scand. J. Gastroenterol.
  doi: 10.1080/00365521.2023.2165417
– volume: 47
  start-page: 1236
  year: 2015
  ident: 8817_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 14
  start-page: 1239398
  year: 2023
  ident: 8817_CR39
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2023.1239398
– volume: 16
  start-page: e1009190
  year: 2020
  ident: 8817_CR4
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009190
SSID ssj0001999634
Score 2.304878
Snippet Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological...
Abstract Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1415
SubjectTerms 631/1647/48
631/1647/794
Animals
Biomedical and Life Sciences
Datasets
Disease
Genes
Genetic engineering
Homeostasis
Life Sciences
Machine Learning
Metabolism
Mice
Mice, Knockout
Performance evaluation
Phenotype
Phenotypes
Phenotyping
Physiology
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hJ7GxsLqiFVpxKDyD1ZvlZ7SVZNtuq---ZsbO7Qjwu3KLEiSaasefzzHg-gLdGodM0VVtaGZtSRINXnUUgFz3BgSics4lsojs9lefn6mwKuI1TWeVmTUwLtR8cxcgPOPrmGfo32Xxc_CiJNYqyqxOFxk24RV0SeCrdO9vFWAjNczGdlam4PBhFKsYiDleUBBfo9S_-KLXt_xPW_C1PmtzPyf3_FfwB3JuAJzvMlvIQboT-EdzJVJTrxxC_fj46PP7ADKMGxuVid56AJbIcNk8netOpKJbq0MM1o_qwgYK4I5v3-UVPbAG50wfLDZ7IChgVoo5hNT6B7yfH3z59KScOhtIJLldlCAiJeHQz45WLAbcXvpEhSsuttb6NdaVC4F0z81UQUUjnVNf4mYmWGOwRPT6FvX7ow3NgtvbKt7yrnVXCdNZw3JtZFQOaS2dCXcC7jSb0Irfa0ClFzqXOetOoN530ptcFHJGytiOpTXa6MSwv9DTrdGXrzkTVOsU5xQFMW6NHVg5Bn6xM4wvY3-hMT3N31DuFFfBm-xhnHaVSTB-GyzxG4m5aoNTPsolsJRGUXa94W8D7jc3sPv73H3rxb1lewt2GzJZqF5p92FstL8MruO2uVvNx-TrZ_U8DwQqE
  priority: 102
  providerName: ProQuest
Title ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets
URI https://link.springer.com/article/10.1038/s42003-025-08817-y
https://www.ncbi.nlm.nih.gov/pubmed/41039035
https://www.proquest.com/docview/3256607582
https://www.proquest.com/docview/3256810641
https://doaj.org/article/0b17af95c9334690a518019c56280a2d
Volume 8
WOSCitedRecordID wos001586031700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Acceso a contenido Full Text - Doaj
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiDeBpTISN4g2iZ3a5raFruCwJUIglZPlp9RLutp0Ef33zNhpdxEgLlysKHGi8Yxjf-N5EfLKKNg0TdWWVsam5NHAlbAA5KJHOBC5czYVmxCLhVwuVXet1Bf6hOX0wJlxx5WthYmqdaB5oypn2hoWVeVg35aVaTyuvoB6rilT6XQFcTzjY5RMxeTxwJMbFlZvBRpgad7-shOlhP1_Qpm_WUjTxnN6j9wdESM9yZTeJzdC_4DczjUktw9J_PR-djJ_Sw3FzMPl-VUgAE1VbugqheKmcCaaHMjDD4qOXWs8fR3oqs8vekzzn1N00JyZCcVH0YN0CJvhEfl6Ov_y7kM5Fk8oHWdyU4YAWIZFNzVeuRhAL_CNDFFaZq31bawrFQITzdRXgUcunVOi8VMTLZaeB9j3mBz06z48JdTWXvmWidpZxY2whoFSZVUMIGdhQl2Q1ztG6vOcI0Mn2zaTOrNdA9t1YrveFmSGvN73xPzW6QZIXY9S1_-SekGOdpLS4083aAbwbQoQSDYFebl_DL8L2kBMH9aXuY8ENZgD1U-yhPeUcDSLV6wtyJudyK8-_vcBPfsfA3pO7jQ4N9E1oTkiB5uLy_CC3HLfN6vhYkJuiqWckMPZfNF9nqSpDu1Z02EroD3sPp51334CtxgBCg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQguvB-BAkaCE0RN4mRjIyHU0lZdtV32UKT2ZPxEe0mWzRbYP8VvZMZJdoV43HrgFiVOZMffPGzPzEfICyXAaKqkiDX3WZx7BVelBkfOW3QHfG6MDmQT5XjMz87EZIP86HNhMKyy14lBUdva4B75NgPbPAT7xrN3sy8xskbh6WpPodHC4sgtv8GSrXk72oP5fZllB_un7w_jjlUgNjnji9g5MPLMm6GywngHDrPNuPNcM621LXyaCOdYmQ1t4nKfc2NEmdmh8ho52QUWOgCVv5kD2PmAbE5GJ5Pz9a4Orh9Y3mXnJIxvN3kI_0LWWBg7mITlLxYwEAX8ybv97WQ2GLyDm__br7pFbnSuNd1pZeE22XDVHXK1Jdtc3iX-w97uzv4bqiiWaI5n64wJGuiA6DTkLIe8Lxoi7d13ihFwNW5TN3RatS9a5ENoa5nQtoQV4pxiqG3jFs098vFSBnmfDKq6cg8J1akVtmBlarTIVakVg9WnFt6BQJTKpRF51c-8nLXFRGQIAmBctjiRgBMZcCKXEdlFcKxaYiHwcKOef5adXpGJTkvlRWEEY7jToYoUfA5hwK3licpsRLZ6jMhOOzVyDZCIPF89Br2Ch0WqcvVF24an4LBCrx-0kFz1JMf4gYQVEXndY3T98b8P6NG_-_KMXDs8PTmWx6Px0WNyPUORwUiNbIsMFvML94RcMV8X02b-tJM6Sj5dNnp_AiKca7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ODBAE%3A+a+high-performance+model+identifying+complex+phenotypes+in+high-dimensional+biological+datasets&rft.jtitle=Communications+biology&rft.au=Shen%2C+Yafei&rft.au=Zhang%2C+Tao&rft.au=Liu%2C+Zhiwei&rft.au=Kostelidou%2C+Kalliopi&rft.date=2025-10-02&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-025-08817-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42003_025_08817_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon