An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery

The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this pape...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 91; číslo 7; s. 1574 - 1592
Hlavní autori: Liu, Huihui, Song, Zhanjie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 03.07.2014
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this paper, operator splitting technique and convex relaxation technique are adapted to transform the low n-rank tensor recovery problem into a convex, unconstrained optimization problem, in which the objective function is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of matrices. Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed. Then, some computational techniques are used to improve the algorithm. At the end of this paper, some preliminary numerical results demonstrate the potential value and application of the tensor as well as the efficiency of the proposed algorithm.
AbstractList The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this paper, operator splitting technique and convex relaxation technique are adapted to transform the low n-rank tensor recovery problem into a convex, unconstrained optimization problem, in which the objective function is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of matrices. Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed. Then, some computational techniques are used to improve the algorithm. At the end of this paper, some preliminary numerical results demonstrate the potential value and application of the tensor as well as the efficiency of the proposed algorithm.
Author Liu, Huihui
Song, Zhanjie
Author_xml – sequence: 1
  givenname: Huihui
  surname: Liu
  fullname: Liu, Huihui
  email: huihuiliu@tju.edu.cn
  organization: School of Science & SKL of HESS, Tianjin University
– sequence: 2
  givenname: Zhanjie
  surname: Song
  fullname: Song, Zhanjie
  organization: School of Science & SKL of HESS, Tianjin University
BookMark eNqFkD1vFDEQhi0UJC6Bf0BhiYZmL-OP83ppUBTxESkSDbRYPu84OPjsYPtI7t_j5aBJAdVoRs87mnlOyUnKCQl5yWDNQMM5AIeRKVhzYGKtN1Jr9oSsGPBpAK42J2S1IMPCPCOntd4CgJ5GtSJfLxINCR-sa9Tl1ELa2xZyotY5jFhsw5nelfwQdjbSm2LngKlRG29yCe3bjvpcaMz3NA3Fpu-0Yap9UtDln1gOz8lTb2PFF3_qGfny_t3ny4_D9acPV5cX14OTQrcBt97PHOftKKSSjnkxWSGmCZlcer4Vdms911aMzs0bpaRkoNB7KQRDbsUZeX3c20_9scfazC7U_kC0CfO-Gqb4JJTQMHb01SP0Nu9L6tcZtlEAkx7HhXpzpFzJtRb0xoX220wrNkTDwCzqzV_1ZlFvjup7WD4K35Xurxz-F3t7jIXUre7sfS5xNs0eYi6-23WhGvHPDb8AMNCc9w
CitedBy_id crossref_primary_10_1007_s11431_020_1840_4
Cites_doi 10.1002/0471787779
10.1016/0196-6774(90)90014-6
10.1002/0470012110
10.1137/080738970
10.1002/cpa.20132
10.1007/s10107-009-0306-5
10.1088/0266-5611/27/2/025010
10.1109/TIT.2005.862083
10.1016/j.sigpro.2011.09.033
10.1080/00207160.2010.537328
10.1109/TIT.2006.871582
10.1023/A:1017501703105
10.1137/S0097539792240406
10.1137/07070111X
10.1177/109434209200600103
10.1080/00207160.2011.598229
10.1016/j.sigpro.2012.07.011
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2013.854881
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1592
ExternalDocumentID 3423252851
10_1080_00207160_2013_854881
854881
Genre Article
Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c438t-ebffd2edb73464c1f39a3399e14464c2b3abaf28a37ccd56644106eff4331e2a3
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340826600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Fri Sep 05 12:55:23 EDT 2025
Wed Aug 13 02:34:56 EDT 2025
Sat Nov 29 02:21:35 EST 2025
Tue Nov 18 21:30:38 EST 2025
Mon Oct 20 23:45:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ebffd2edb73464c1f39a3399e14464c2b3abaf28a37ccd56644106eff4331e2a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1560098777
PQPubID 52924
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_00207160_2013_854881
informaworld_taylorfrancis_310_1080_00207160_2013_854881
proquest_journals_1560098777
proquest_miscellaneous_1629363807
crossref_primary_10_1080_00207160_2013_854881
PublicationCentury 2000
PublicationDate 20140703
PublicationDateYYYYMMDD 2014-07-03
PublicationDate_xml – month: 07
  year: 2014
  text: 20140703
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0020
CIT0001
CIT0012
CIT0023
CIT0011
CIT0022
Berry M.W. (CIT0002) 1992; 6
CIT0014
CIT0013
CIT0024
CIT0005
CIT0004
Toh K.C. (CIT0021) 2010; 6
CIT0007
CIT0018
CIT0006
CIT0017
CIT0008
References_xml – ident: CIT0001
  doi: 10.1002/0471787779
– volume: 6
  start-page: 615
  issue: 3
  year: 2010
  ident: CIT0021
  publication-title: Pac. J. Optim
– ident: CIT0011
  doi: 10.1016/0196-6774(90)90014-6
– ident: CIT0020
  doi: 10.1002/0470012110
– ident: CIT0004
  doi: 10.1137/080738970
– ident: CIT0008
  doi: 10.1002/cpa.20132
– ident: CIT0017
  doi: 10.1007/s10107-009-0306-5
– ident: CIT0010
  doi: 10.1088/0266-5611/27/2/025010
– ident: CIT0014
– ident: CIT0005
  doi: 10.1109/TIT.2005.862083
– ident: CIT0024
  doi: 10.1016/j.sigpro.2011.09.033
– ident: CIT0006
  doi: 10.1080/00207160.2010.537328
– ident: CIT0007
  doi: 10.1109/TIT.2006.871582
– ident: CIT0022
  doi: 10.1023/A:1017501703105
– ident: CIT0018
  doi: 10.1137/S0097539792240406
– ident: CIT0013
  doi: 10.1137/07070111X
– volume: 6
  start-page: 13
  year: 1992
  ident: CIT0002
  publication-title: Int. J. Supercomputer Appl
  doi: 10.1177/109434209200600103
– ident: CIT0023
  doi: 10.1080/00207160.2011.598229
– ident: CIT0012
  doi: 10.1016/j.sigpro.2012.07.011
SSID ssj0008976
Score 1.9725581
Snippet The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1574
SubjectTerms Algorithms
Artificial intelligence
Compressed
Data mining
low n-rank tensor
Mathematical analysis
Mathematical models
nuclear norm
Optimization
proximal gradient
Recovery
singular value decomposition
Splitting
tensor completion
Tensors
Vision systems
Title An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2013.854881
https://www.proquest.com/docview/1560098777
https://www.proquest.com/docview/1629363807
Volume 91
WOSCitedRecordID wos000340826600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxcBCeYpCQUZiNWpj4zhjhagYUMXAoxOR49ilUpuiNuXx77lzkqoVAiQY4_icxL6zPzt33xFyJoUNTeAcs4nhTISKMw0om8kESmUSidTTMTzchL2e6vej26UofnSrxD20K4gi_FyNxq2TWeURhxHcsDDKFjpm8XMFmNvHXgOwRxW_6z4upmIV-exyKMBQooqd-6aRlbVphbn0y0ztl59u_f8vvkU2S-hJO4WubJM1m-2QepXWgZZWvkueOhmFtt-1ySl6sg-zgg6camNgkUJuiZSi-8twDM0Npt5pLKd6NJhMh_nzmMIH0dHkjWYMM8JT9JGHEtx6g9187JH77tXd5TUr0zAwI7jKYRSdSwObJiEXUpi245HmgGssbiWFCRKuE-0CpXloTArwEBBWS1rnMBjLBprvk1o2yewBoQZE26FOZeS4SNpcOYUnTxeBbgWRTl2D8GoAYlNylGOqjFHcXlCZFl0YYxfGRRc2CFtIvRQcHb_UV8tjG-f-bMQViUxi_rNos9KDuDT2WYzB6K0IiRUb5HRxG8wU_73ozE7mUEcCrpLI7n_496cfkQ24Et5bmDdJLZ_O7TFZN6_5cDY98ar_CcmT_-0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igl6sT6zPCF4j7SZms0cRi2ItHurjZMhmEy3UrbRbH__emX0URVQQr0kmu5tkMpPsN98Qsi-FC23gPXOx5UyEijMDXjaTMZTKOBJJTsdw3Q47HXV7G12WaMJRCavEM7QviCLyvRqVGy-jK0gchnCDZZQNRGbxAwVONwZfzxyCqUVUX7d1M9mMVZTnl0MJhiJV9Nw3vXyyTp-4S7_s1bkBatX-4dUXyULpfdKjYrkskSmXLpNaldmBloq-Qu6OUgqdvxqbUQSz99KCEZwaa8FOIb1EQhEB03uE7u6HOW4so6Z_Pxj2sodHCl9E-4MXmjJMCk8RJg8lePoG1XlbJVetk-7xKSszMTAruMpgIr1PApfEIRdS2KbnkeHg2jg8TQobxNzExgfK8NDaBDxEcLIa0nmP8VguMHyNTKeD1K0TakG0GZpERp6LuMmVV3j5dBiYRhCZxNcJr2ZA25KmHLNl9HVzwmZaDKHGIdTFENYJm0g9FTQdv7RXHydXZ_n1iC9ymWj-s-hWtRB0qe8jjfHojQi5Fetkb1INmoq_X0zqBmNoI8G1kkjwv_H3p--SudPuRVu3zzrnm2QeakQOHuZbZDobjt02mbXPWW803Mn14B3kFwQd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECZGjfHi27g-MfGK2S1I6dGoG41m48HXSUIp6Ca7XbPW1793hrYbjVETvQJDW2CYgX7zDSE7UrjYRt4zl1rORKw4M-BlM5lCqUwTkQU6hquzuNNRNzfJ-YcofoRV4hnal0QRYa9G5X7IfI2IwwhuMIyyicAsvqvA58bY64nAjQUr-qJ9PdqLVRLSy6EEQ5E6eO6bXj4Zp0_UpV-26mB_2rP_f_M5MlP5nnS_XCzzZMzlC2S2zutAKzVfJLf7OYW-X40tKELZu3nJB06NtWClkFwio4h_6fahu7thQI0V1PTuBsNucd-n8EG0N3ihOcOU8BRB8lCCZ29QnLclctk-ujg4ZlUeBmYFVwVMo_dZ5LI05kIK2_I8MRwcG4dnSWGjlJvU-EgZHlubgX8ILlZTOu8xGstFhi-T8XyQuxVCLYi2YpPJxHORtrjyCq-e9iLTjBKT-Qbh9QRoW5GUY66Mnm6NuEzLIdQ4hLocwgZhI6mHkqTjl_bq49zqIlyO-DKTieY_i67X60BX2v6oMRq9mSCzYoNsj6pBT_Hni8nd4AnaSHCsJNL7r_796Vtk6vywrc9OOqdrZBoqREAO83UyXgyf3AaZtM9F93G4GbTgHaEVAsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inexact+continuation+accelerated+proximal+gradient+algorithm+for+low+n-rank+tensor+recovery&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Liu%2C+Huihui&rft.au=Song%2C+Zhanjie&rft.date=2014-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=91&rft.issue=7&rft.spage=1574&rft.epage=1592&rft_id=info:doi/10.1080%2F00207160.2013.854881&rft.externalDocID=854881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon