An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery
The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this pape...
Uložené v:
| Vydané v: | International journal of computer mathematics Ročník 91; číslo 7; s. 1574 - 1592 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
03.07.2014
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this paper, operator splitting technique and convex relaxation technique are adapted to transform the low n-rank tensor recovery problem into a convex, unconstrained optimization problem, in which the objective function is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of matrices. Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed. Then, some computational techniques are used to improve the algorithm. At the end of this paper, some preliminary numerical results demonstrate the potential value and application of the tensor as well as the efficiency of the proposed algorithm. |
|---|---|
| AbstractList | The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this paper, operator splitting technique and convex relaxation technique are adapted to transform the low n-rank tensor recovery problem into a convex, unconstrained optimization problem, in which the objective function is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of matrices. Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed. Then, some computational techniques are used to improve the algorithm. At the end of this paper, some preliminary numerical results demonstrate the potential value and application of the tensor as well as the efficiency of the proposed algorithm. |
| Author | Liu, Huihui Song, Zhanjie |
| Author_xml | – sequence: 1 givenname: Huihui surname: Liu fullname: Liu, Huihui email: huihuiliu@tju.edu.cn organization: School of Science & SKL of HESS, Tianjin University – sequence: 2 givenname: Zhanjie surname: Song fullname: Song, Zhanjie organization: School of Science & SKL of HESS, Tianjin University |
| BookMark | eNqFkD1vFDEQhi0UJC6Bf0BhiYZmL-OP83ppUBTxESkSDbRYPu84OPjsYPtI7t_j5aBJAdVoRs87mnlOyUnKCQl5yWDNQMM5AIeRKVhzYGKtN1Jr9oSsGPBpAK42J2S1IMPCPCOntd4CgJ5GtSJfLxINCR-sa9Tl1ELa2xZyotY5jFhsw5nelfwQdjbSm2LngKlRG29yCe3bjvpcaMz3NA3Fpu-0Yap9UtDln1gOz8lTb2PFF3_qGfny_t3ny4_D9acPV5cX14OTQrcBt97PHOftKKSSjnkxWSGmCZlcer4Vdms911aMzs0bpaRkoNB7KQRDbsUZeX3c20_9scfazC7U_kC0CfO-Gqb4JJTQMHb01SP0Nu9L6tcZtlEAkx7HhXpzpFzJtRb0xoX220wrNkTDwCzqzV_1ZlFvjup7WD4K35Xurxz-F3t7jIXUre7sfS5xNs0eYi6-23WhGvHPDb8AMNCc9w |
| CitedBy_id | crossref_primary_10_1007_s11431_020_1840_4 |
| Cites_doi | 10.1002/0471787779 10.1016/0196-6774(90)90014-6 10.1002/0470012110 10.1137/080738970 10.1002/cpa.20132 10.1007/s10107-009-0306-5 10.1088/0266-5611/27/2/025010 10.1109/TIT.2005.862083 10.1016/j.sigpro.2011.09.033 10.1080/00207160.2010.537328 10.1109/TIT.2006.871582 10.1023/A:1017501703105 10.1137/S0097539792240406 10.1137/07070111X 10.1177/109434209200600103 10.1080/00207160.2011.598229 10.1016/j.sigpro.2012.07.011 |
| ContentType | Journal Article |
| Copyright | 2014 Taylor & Francis 2014 Copyright Taylor & Francis Ltd. 2014 |
| Copyright_xml | – notice: 2014 Taylor & Francis 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00207160.2013.854881 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1029-0265 |
| EndPage | 1592 |
| ExternalDocumentID | 3423252851 10_1080_00207160_2013_854881 854881 |
| Genre | Article Feature |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACNCT ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AI. AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MK~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c438t-ebffd2edb73464c1f39a3399e14464c2b3abaf28a37ccd56644106eff4331e2a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340826600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7160 |
| IngestDate | Fri Sep 05 12:55:23 EDT 2025 Wed Aug 13 02:34:56 EDT 2025 Sat Nov 29 02:21:35 EST 2025 Tue Nov 18 21:30:38 EST 2025 Mon Oct 20 23:45:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ebffd2edb73464c1f39a3399e14464c2b3abaf28a37ccd56644106eff4331e2a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1560098777 |
| PQPubID | 52924 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1080_00207160_2013_854881 informaworld_taylorfrancis_310_1080_00207160_2013_854881 proquest_journals_1560098777 proquest_miscellaneous_1629363807 crossref_primary_10_1080_00207160_2013_854881 |
| PublicationCentury | 2000 |
| PublicationDate | 20140703 |
| PublicationDateYYYYMMDD | 2014-07-03 |
| PublicationDate_xml | – month: 07 year: 2014 text: 20140703 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of computer mathematics |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0020 CIT0001 CIT0012 CIT0023 CIT0011 CIT0022 Berry M.W. (CIT0002) 1992; 6 CIT0014 CIT0013 CIT0024 CIT0005 CIT0004 Toh K.C. (CIT0021) 2010; 6 CIT0007 CIT0018 CIT0006 CIT0017 CIT0008 |
| References_xml | – ident: CIT0001 doi: 10.1002/0471787779 – volume: 6 start-page: 615 issue: 3 year: 2010 ident: CIT0021 publication-title: Pac. J. Optim – ident: CIT0011 doi: 10.1016/0196-6774(90)90014-6 – ident: CIT0020 doi: 10.1002/0470012110 – ident: CIT0004 doi: 10.1137/080738970 – ident: CIT0008 doi: 10.1002/cpa.20132 – ident: CIT0017 doi: 10.1007/s10107-009-0306-5 – ident: CIT0010 doi: 10.1088/0266-5611/27/2/025010 – ident: CIT0014 – ident: CIT0005 doi: 10.1109/TIT.2005.862083 – ident: CIT0024 doi: 10.1016/j.sigpro.2011.09.033 – ident: CIT0006 doi: 10.1080/00207160.2010.537328 – ident: CIT0007 doi: 10.1109/TIT.2006.871582 – ident: CIT0022 doi: 10.1023/A:1017501703105 – ident: CIT0018 doi: 10.1137/S0097539792240406 – ident: CIT0013 doi: 10.1137/07070111X – volume: 6 start-page: 13 year: 1992 ident: CIT0002 publication-title: Int. J. Supercomputer Appl doi: 10.1177/109434209200600103 – ident: CIT0023 doi: 10.1080/00207160.2011.598229 – ident: CIT0012 doi: 10.1016/j.sigpro.2012.07.011 |
| SSID | ssj0008976 |
| Score | 1.9725581 |
| Snippet | The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1574 |
| SubjectTerms | Algorithms Artificial intelligence Compressed Data mining low n-rank tensor Mathematical analysis Mathematical models nuclear norm Optimization proximal gradient Recovery singular value decomposition Splitting tensor completion Tensors Vision systems |
| Title | An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207160.2013.854881 https://www.proquest.com/docview/1560098777 https://www.proquest.com/docview/1629363807 |
| Volume | 91 |
| WOSCitedRecordID | wos000340826600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-0265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008976 issn: 0020-7160 databaseCode: TFW dateStart: 19640101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxcBCeYpCQUZiNWpj4zhjhagYUMXAoxOR49ilUpuiNuXx77lzkqoVAiQY4_icxL6zPzt33xFyJoUNTeAcs4nhTISKMw0om8kESmUSidTTMTzchL2e6vej26UofnSrxD20K4gi_FyNxq2TWeURhxHcsDDKFjpm8XMFmNvHXgOwRxW_6z4upmIV-exyKMBQooqd-6aRlbVphbn0y0ztl59u_f8vvkU2S-hJO4WubJM1m-2QepXWgZZWvkueOhmFtt-1ySl6sg-zgg6camNgkUJuiZSi-8twDM0Npt5pLKd6NJhMh_nzmMIH0dHkjWYMM8JT9JGHEtx6g9187JH77tXd5TUr0zAwI7jKYRSdSwObJiEXUpi245HmgGssbiWFCRKuE-0CpXloTArwEBBWS1rnMBjLBprvk1o2yewBoQZE26FOZeS4SNpcOYUnTxeBbgWRTl2D8GoAYlNylGOqjFHcXlCZFl0YYxfGRRc2CFtIvRQcHb_UV8tjG-f-bMQViUxi_rNos9KDuDT2WYzB6K0IiRUb5HRxG8wU_73ozE7mUEcCrpLI7n_496cfkQ24Et5bmDdJLZ_O7TFZN6_5cDY98ar_CcmT_-0 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igl6sT6zPCF4j7SZms0cRi2ItHurjZMhmEy3UrbRbH__emX0URVQQr0kmu5tkMpPsN98Qsi-FC23gPXOx5UyEijMDXjaTMZTKOBJJTsdw3Q47HXV7G12WaMJRCavEM7QviCLyvRqVGy-jK0gchnCDZZQNRGbxAwVONwZfzxyCqUVUX7d1M9mMVZTnl0MJhiJV9Nw3vXyyTp-4S7_s1bkBatX-4dUXyULpfdKjYrkskSmXLpNaldmBloq-Qu6OUgqdvxqbUQSz99KCEZwaa8FOIb1EQhEB03uE7u6HOW4so6Z_Pxj2sodHCl9E-4MXmjJMCk8RJg8lePoG1XlbJVetk-7xKSszMTAruMpgIr1PApfEIRdS2KbnkeHg2jg8TQobxNzExgfK8NDaBDxEcLIa0nmP8VguMHyNTKeD1K0TakG0GZpERp6LuMmVV3j5dBiYRhCZxNcJr2ZA25KmHLNl9HVzwmZaDKHGIdTFENYJm0g9FTQdv7RXHydXZ_n1iC9ymWj-s-hWtRB0qe8jjfHojQi5Fetkb1INmoq_X0zqBmNoI8G1kkjwv_H3p--SudPuRVu3zzrnm2QeakQOHuZbZDobjt02mbXPWW803Mn14B3kFwQd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECZGjfHi27g-MfGK2S1I6dGoG41m48HXSUIp6Ca7XbPW1793hrYbjVETvQJDW2CYgX7zDSE7UrjYRt4zl1rORKw4M-BlM5lCqUwTkQU6hquzuNNRNzfJ-YcofoRV4hnal0QRYa9G5X7IfI2IwwhuMIyyicAsvqvA58bY64nAjQUr-qJ9PdqLVRLSy6EEQ5E6eO6bXj4Zp0_UpV-26mB_2rP_f_M5MlP5nnS_XCzzZMzlC2S2zutAKzVfJLf7OYW-X40tKELZu3nJB06NtWClkFwio4h_6fahu7thQI0V1PTuBsNucd-n8EG0N3ihOcOU8BRB8lCCZ29QnLclctk-ujg4ZlUeBmYFVwVMo_dZ5LI05kIK2_I8MRwcG4dnSWGjlJvU-EgZHlubgX8ILlZTOu8xGstFhi-T8XyQuxVCLYi2YpPJxHORtrjyCq-e9iLTjBKT-Qbh9QRoW5GUY66Mnm6NuEzLIdQ4hLocwgZhI6mHkqTjl_bq49zqIlyO-DKTieY_i67X60BX2v6oMRq9mSCzYoNsj6pBT_Hni8nd4AnaSHCsJNL7r_796Vtk6vywrc9OOqdrZBoqREAO83UyXgyf3AaZtM9F93G4GbTgHaEVAsE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inexact+continuation+accelerated+proximal+gradient+algorithm+for+low+n-rank+tensor+recovery&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Liu%2C+Huihui&rft.au=Song%2C+Zhanjie&rft.date=2014-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=91&rft.issue=7&rft.spage=1574&rft.epage=1592&rft_id=info:doi/10.1080%2F00207160.2013.854881&rft.externalDocID=854881 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |