Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System

Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 22; s. 8791
Hlavní autoři: Hsia, Shih-Chang, Wang, Szu-Hong, Wei, Chung-Mao, Chang, Chuan-Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 14.11.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved.
AbstractList Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved.Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved.
Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved.
Audience Academic
Author Chang, Chuan-Yu
Wei, Chung-Mao
Hsia, Shih-Chang
Wang, Szu-Hong
AuthorAffiliation 2 Department of Information Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan
1 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan
AuthorAffiliation_xml – name: 1 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan
– name: 2 Department of Information Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan
Author_xml – sequence: 1
  givenname: Shih-Chang
  orcidid: 0000-0001-9828-0773
  surname: Hsia
  fullname: Hsia, Shih-Chang
– sequence: 2
  givenname: Szu-Hong
  orcidid: 0000-0002-3889-1764
  surname: Wang
  fullname: Wang, Szu-Hong
– sequence: 3
  givenname: Chung-Mao
  surname: Wei
  fullname: Wei, Chung-Mao
– sequence: 4
  givenname: Chuan-Yu
  orcidid: 0000-0001-9476-8130
  surname: Chang
  fullname: Chang, Chuan-Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36433387$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhk1JaT7aQ_9AEfSSHjaRLVuyLoVl6cdCIIdNL70IeTx2tLGlVLJT8u87201DEmqBJeRn3vE7vMfZgQ8es-x9zs-E0Pw8FfTUSuevsqO8LMpFXRT84Mn5MDtOact5IYSo32SHQpa7kzrKbtZ-wmFwPfqJXTZbhIldRQs3zvfst5uumfVsOU9htJMDth5tj-xnCCNbDn2IBIysC5FZtrIjRss26NOudjPHO3TDYD0g29ynCce32evODgnfPewn2Y-vX65W3xcXl9_Wq-XFAkpRTwtUhS15hVzUttK6BVk1leS8gRqE1rLJZZtLIaEtGg2qkQp0W2CtBAeB0ImTbL3XbYPdmtvoRhvvTbDO_L0IsTc2kpsBTQ1IVVDrprHUXNu2slDYts7zTue2Iq3Pe63buRmxBRpTtMMz0edfvLs2fbgzWmqZS0UCpw8CMfyaMU1mdAlwNxgMczKFIq9cSV0S-vEFug1z9DQqooQuK3ppos72VG_JgPNdoL5Aq8XRAQWjc3S_VKWshFAVp4IPTy08_vu_EBDwaQ9ADClF7B6RnJtdwMxjwIg9f8GCmygaYefeDf-p-AOW9dG6
CitedBy_id crossref_primary_10_1016_j_sasc_2025_200282
crossref_primary_10_1016_j_autcon_2023_104980
crossref_primary_10_3390_asi7030044
Cites_doi 10.1109/TITS.2019.2917560
10.1016/j.patcog.2017.09.040
10.1109/ACCESS.2020.3024926
10.1109/ACCESS.2019.2955387
10.1109/TCSVT.2019.2897980
10.1109/TCSVT.2016.2589879
10.1109/TITS.2018.2888698
10.1109/ACCESS.2021.3074319
10.1109/ACCESS.2018.2803787
10.1109/LRA.2021.3057003
10.1007/s11554-020-01050-2
10.1109/TCE.2017.014979
10.1109/TIP.2018.2878349
10.1109/JSEN.2021.3091018
10.1109/JSTARS.2019.2957484
10.1049/iet-ipr.2018.6175
10.1109/TIP.2021.3108405
10.1109/TIP.2019.2922095
10.1109/ACCESS.2020.3020818
10.1016/j.patcog.2017.09.009
10.1109/ACCESS.2020.3008262
10.1109/ACCESS.2019.2891943
10.1109/TII.2019.2921652
10.1007/s11554-020-00958-z
10.1109/ACCESS.2019.2931820
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22228791
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5
PMC9696167
A746533750
36433387
10_3390_s22228791
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 109-2221-E-224-042, Taiwan.
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c438t-e72a405e038a599dc65b5600bc8c3996b16d1636cd2b9c7b67c9d2e8730c3ecf3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887676900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:01 EST 2025
Tue Nov 04 02:08:54 EST 2025
Thu Oct 02 07:46:36 EDT 2025
Tue Oct 07 07:27:45 EDT 2025
Tue Nov 04 18:17:23 EST 2025
Wed Feb 19 02:25:55 EST 2025
Tue Nov 18 20:52:04 EST 2025
Sat Nov 29 07:17:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords object tracking
camera sensing
motion detection
surveillance system
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-e72a405e038a599dc65b5600bc8c3996b16d1636cd2b9c7b67c9d2e8730c3ecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9828-0773
0000-0002-3889-1764
0000-0001-9476-8130
OpenAccessLink https://doaj.org/article/8ce30cc89bba4389ad5ac2ad811f91a5
PMID 36433387
PQID 2739457399
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9696167
proquest_miscellaneous_2740507694
proquest_journals_2739457399
gale_infotracacademiconefile_A746533750
pubmed_primary_36433387
crossref_primary_10_3390_s22228791
crossref_citationtrail_10_3390_s22228791
PublicationCentury 2000
PublicationDate 20221114
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: 20221114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gong (ref_22) 2020; 17
Shifa (ref_28) 2020; 8
Chen (ref_18) 2018; 6
Zhu (ref_3) 2020; 8
Otoom (ref_23) 2021; 18
Koz (ref_5) 2020; 12
Li (ref_12) 2019; 28
Javanbakhti (ref_9) 2017; 63
Garg (ref_7) 2019; 21
Ahmed (ref_20) 2021; 9
Hsia (ref_27) 2020; 14
Huang (ref_11) 2019; 21
Sajjad (ref_8) 2019; 15
Babaee (ref_17) 2018; 76
Cuevas (ref_2) 2018; 74
ref_25
ref_24
Kim (ref_15) 2020; 8
Purohit (ref_4) 2021; 21
Sakkos (ref_16) 2019; 7
Patil (ref_10) 2021; 30
Shidik (ref_1) 2019; 7
Bozcan (ref_19) 2021; 6
Shao (ref_21) 2019; 30
ref_26
Gao (ref_6) 2019; 7
Wang (ref_13) 2016; 27
Fu (ref_14) 2019; 28
References_xml – volume: 21
  start-page: 2204
  year: 2019
  ident: ref_7
  article-title: Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2917560
– ident: ref_24
– ident: ref_26
– volume: 76
  start-page: 635
  year: 2018
  ident: ref_17
  article-title: A deep convolutional neural network for video sequence background subtraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.040
– volume: 8
  start-page: 177131
  year: 2020
  ident: ref_28
  article-title: MuLViS: Multi-Level Encryption Based Security System for Surveillance Videos
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024926
– volume: 7
  start-page: 170457
  year: 2019
  ident: ref_1
  article-title: A Systematic Review of Intelligence Video Surveillance: Trends, Techniques, Frameworks, and Datasets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955387
– volume: 30
  start-page: 781
  year: 2019
  ident: ref_21
  article-title: Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2897980
– volume: 27
  start-page: 2591
  year: 2016
  ident: ref_13
  article-title: Cost-effective active learning for deep image classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2589879
– volume: 21
  start-page: 79
  year: 2019
  ident: ref_11
  article-title: Cost-Effective Vehicle Type Recognition in Surveillance Images with Deep Active Learning and Web Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2888698
– volume: 9
  start-page: 63283
  year: 2021
  ident: ref_20
  article-title: Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074319
– volume: 6
  start-page: 14567
  year: 2018
  ident: ref_18
  article-title: From Eyes to Face Synthesis: A New Approach for Human-Centered Smart Surveillance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2803787
– volume: 6
  start-page: 1638
  year: 2021
  ident: ref_19
  article-title: GridNet: Image-Agnostic Conditional Anomaly Detection for Indoor Surveillance
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3057003
– volume: 18
  start-page: 937
  year: 2021
  ident: ref_23
  article-title: Enhanced TLD-based video object-tracking implementation tested on embedded platforms
  publication-title: J. Real Time Image Process.
  doi: 10.1007/s11554-020-01050-2
– volume: 63
  start-page: 325
  year: 2017
  ident: ref_9
  article-title: Fast scene analysis for surveillance & video databases
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2017.014979
– volume: 28
  start-page: 1575
  year: 2019
  ident: ref_12
  article-title: A Richly Annotated Pedestrian Dataset for Person Retrieval in Real Surveillance Scenarios
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2878349
– volume: 21
  start-page: 19516
  year: 2021
  ident: ref_4
  article-title: Enhancing the Surveillance Detection Range of Image Sensors Using HDR Techniques
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3091018
– ident: ref_25
– volume: 12
  start-page: 4746
  year: 2020
  ident: ref_5
  article-title: Ground-Based Hyperspectral Image Surveillance Systems for Explosive Detection: Part I—State of the Art and Challenges
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2957484
– volume: 14
  start-page: 570
  year: 2020
  ident: ref_27
  article-title: Fast Search Real-Time Face Recognition based on DCT Coefficients Distribution
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6175
– volume: 30
  start-page: 7889
  year: 2021
  ident: ref_10
  article-title: An Unified Recurrent Video Object Segmentation Framework for Various Surveillance Environments
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3108405
– volume: 28
  start-page: 6077
  year: 2019
  ident: ref_14
  article-title: Foreground Gating and Background Refining Network for Surveillance Object Detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2922095
– volume: 8
  start-page: 159864
  year: 2020
  ident: ref_15
  article-title: Foreground Objects Detection Using a Fully Convolutional Network with a Background Model Image and Multiple Original Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3020818
– volume: 74
  start-page: 156
  year: 2018
  ident: ref_2
  article-title: Real-time nonpara metric background subtraction with tracking-based foreground update
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.009
– volume: 8
  start-page: 126700
  year: 2020
  ident: ref_3
  article-title: Kasabov Change Detection in Multitemporal Monitoring Images Under Low Illumination
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008262
– volume: 7
  start-page: 10976
  year: 2019
  ident: ref_16
  article-title: Illumination-aware multi-task GANs for foreground segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891943
– volume: 15
  start-page: 6541
  year: 2019
  ident: ref_8
  article-title: Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2921652
– volume: 17
  start-page: 1801
  year: 2020
  ident: ref_22
  article-title: Research and implementation of multi-object tracking based on vision DSP
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-020-00958-z
– volume: 7
  start-page: 107550
  year: 2019
  ident: ref_6
  article-title: Particle Filter-Based Prediction for Anomaly Detection in Automatic Surveillance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931820
SSID ssj0023338
Score 2.3912349
Snippet Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8791
SubjectTerms Algorithms
camera sensing
Cameras
Cost control
Deep learning
Facial recognition technology
Humans
motion detection
Movement
Neural networks
object tracking
Signal processing
Surveillance
surveillance system
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHnoUGSmUQElyibp6OT2ipqFoJFaSCtOJi2WNvW9Em7W62v5-ZxJvuCtQLlxwSRxlnxjPfTJxvAN4bykycnZYxumJKCYqzcZU5jEtvcp8aJIzakbh-lUdH1WSivoeC2zxsq1z6xM5Ruwa5Rr5LYVblBR3Up8urmLtG8dfV0ELjLtzjttls53Jyk3BllH_1bEIZpfa785TLHR0d50oM6qj6_3bIKxFpfbfkSvjZf_y_gj-BRwF4inFvKU_hjq-fwcMVOsLn8Ptw4OdsxTfLFRpBsQy5mi64YCtMLcaLtuloXsXhBfki8YuQtxifn9Aj29MLQRhYGLFnuNYljnl3PN17vJhde25vRBYmeo70Tfi5_-XH3kEcmjHEmGdVG3uZGgJ3fpRVplDKYVlYRksWK6S5lTYpHWG7El1qFUpbSlQu9aSUEWYep9kL2Kib2m-BcNY6V6iRM2gp-1HWM4NP6uk15T4vVAQfl-rRGJjKuWHGuaaMhTWpB01G8G4YetnTc_xr0GfW8TCAGbW7E83sRIcFqiv0JCmSNNZwR3jjCoOpcVWSTFViigg-sIVoXvckDJrw-wJNiRm09FgyU11GACyC7aUh6OAQ5vrGCiJ4O1ympczfZ0ztmwWPoRc8kqXKI3jZ29wgc0bIkaxZRiDXrHFtUutX6rPTji6c-Y-SUr66XazX8CDlPzt4h2O-DRvtbOHfwH28bs_ms51uXf0B0oEv3Q
  priority: 102
  providerName: ProQuest
Title Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System
URI https://www.ncbi.nlm.nih.gov/pubmed/36433387
https://www.proquest.com/docview/2739457399
https://www.proquest.com/docview/2740507694
https://pubmed.ncbi.nlm.nih.gov/PMC9696167
https://doaj.org/article/8ce30cc89bba4389ad5ac2ad811f91a5
Volume 22
WOSCitedRecordID wos000887676900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4QCHimdJKSuDkOASNW_Hx221VVeiy4qCtHCJ7LG3rWizaDfbI7-dmSQbZQVSL1x8cCaSPZ6Jv5nY3wC81xSZWDPPfLTpnAIUa_w8tuhnTicu0kgYtSZx_SQnk3w2U9NeqS8-E9bQAzeKO8zRxQFirozRXKlb21RjpG0ehnMV6pq9NJBqE0y1oVZMkVfDIxRTUH-4ijjRURNx9nafmqT_709xby_aPifZ23hOnsBuixjFsBnpU7jnymfwuMcj-Bx-jjtizUp8NpxaEbQJIafBBWdahS7FcF0tan5WMb6hj4j4QZBZDK8vFksSuBEEXoUWx5qTVOKcj7XTu-fr5a3jukRkGqIhN38B305GX49P_baKgo-kr8p3MtKEylwQ5zpVymKWGoY5BnMkdJKZMLMEyjK0kVEoTSZR2cjl5PoYO5zHL2GnXJTuFQhrjLWpCqxGQ2GLMo6pdyKnkjRxSao8-LjRboEtxThXurguKNTghSi6hfDgXSf6q-HV-JfQES9RJ8BU2HUHGUjRGkhxl4F48IEXuGCHpcGgbu8d0JSY-qoYSqaYiwk5eXCwsYGi9eRVQfCOpkcNze5t95h8kH-s6NIt1ixDCg5kphIP9hqT6cYcE-QjY5QeyC1j2prU9pPy6rLm-WbiojCT-_9DC6_hUcQXN_gAY3IAO9Vy7d7AQ7ytrlbLAdyXM1m3-QAeHI0m0y-D2qGoPfs9or7p-Gz6_Q8L5iko
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58C4YCiwIBBeriV_rPSAUClWjhoDUIkVczO7spq1o7ZI4RfwpfiMztuMmAnHrgUsO8dqatb957u43AM81ZSbWjBMfbTymBMUaPw0t-onTkQs0UoxakbgO5HCYjkbq0wr8mp-F4W2Vc5tYGWpbINfIN8nNqiimH_Xm9LvPXaN4dXXeQqOGxa77-YNStunr_jv6vi-CYPv9_taO33QV8DEK09J3MtAUpbhOmOpYKYtJbNjtG0yRnp6YbmIpSEnQBkahNIlEZQOXkipg6HAc0nMvwWWy45KTPTk6T_BCyvdq9qIwVJ3NacDllYr-c8HnVa0B_nQACx5weXfmgrvbvvG_vaibcL0JrEWv1oRbsOLy23BtgW7xDnzrt_yjpfhouAIlyFcjrxYILkgLnYverCwqGlvRPyFbK75QZiF6xwc0xfLwRFCML7TY0lzLE3u8-5_u3ZtNzhy3byINEjUH_F34fCGzXYfVvMjdfRDWGGtj1bEaDWV3yjhmKAocfZbIRbHy4NUcDhk2TOzcEOQ4o4yMkZO1yPHgWTv0tKYf-dugt4ypdgAzhld_FJODrDFAWYqOJEWSxmjueK9trDHQNu12x6qrYw9eMiIztmskDOrmeAZNiRnCsp5kJr6QAkwPNubAyxqDN83OUefB0_YymSpef9K5K2Y8hl5wRyYq8uBejfFW5pAiY9Ie6YFcQv_SpJav5EeHFR068zt1E_ng32I9gas7-x8G2aA_3H0IawGfYuHdnNEGrJaTmXsEV_CsPJpOHlc6LeDrRevGb22BjKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBBcryfq5B4RCS0TUEiKVSoWL2Z3dtBWtUxKniL_Gr2PGdkwiELceuPhgr-0Ze967-w3AM02ZiTXj2EcbjSlBscZPA4t-7HTopEaKUUsQ151kOEz399VoDX4u9sLwssqFTSwNtZ0g18jb5GZVGNFBtcf1sojRVv_16TefO0jxTOuinUYlItvux3dK32avBlv0r59L2X_7cfOdX3cY8DEM0sJ3idQUsbhOkOpIKYtxZDgEMJgivSk23dhSwBKjlUZhYuIElZUuJbXAwOE4oOdegHUKyUPZgvXR4P3oU5PuBZT9VVhGQaA67ZnkYksJBrrkActGAX-6gyV_uLpWc8n59a_9z5_tOlytQ27Rq3TkBqy5_CZcWQJivAVfBw0yaSE-GK5NCfLiyPMIgkvVQueiNy8mJcCtGJyQFRafKecQveMDYrE4PBEU_QstNjVX-cQu7wuge3fn0zPHjZ1It0SFDn8b9s6F2zvQyie5uwfCGmNtpDpWo6G8TxnH2EXS0S8KXRgpD14uRCPDGqOdW4UcZ5SrsRRljRR58LQZeloBk_xt0BuWr2YAY4mXJybTg6w2TVmKjihFosZoYlhpG2mU2qbd7lh1deTBC5bOjC0eEYO63rhBLDF2WNZLGKMvoNDTg42FEGa1KZxlvyXQgyfNZTJiPDOlczeZ8xj6wJ0kVqEHdyt5b2gOKGYmTUo8SFY0YYWp1Sv50WEJlM7IT904uf9vsh7DJVKJbGcw3H4AlyVvb-FlnuEGtIrp3D2Ei3hWHM2mj2oFF_DlvJXjFzU8lvs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Object+Tracking+with+an+Automatic+Image+Zoom+Algorithm+for+a+Camera+Sensing+Surveillance+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shih-Chang+Hsia&rft.au=Szu-Hong+Wang&rft.au=Chung-Mao+Wei&rft.au=Chuan-Yu+Chang&rft.date=2022-11-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=8791&rft_id=info:doi/10.3390%2Fs22228791&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon