Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System
Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 22; s. 8791 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
14.11.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved. |
|---|---|
| AbstractList | Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved.Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved. Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems, including a low resolution for far away objects, a limited frame range and wasted disk space. This paper presents a novel algorithm for automatically detecting, tracking and zooming in on active targets. The object tracking system is connected to a camera that has a 360° horizontal and 90° vertical movement range. The combination of tracking, movement identification and zoom means that the system is able to effectively improve the resolution of small or distant objects. The object detection system allows for the disk space to be conserved as the system ceases recording when no valid targets are detected. Using an adaptive object segmentation algorithm, it is possible to detect the shape of moving objects efficiently. When processing multiple targets, each target is assigned a color and is treated separately. The tracking algorithm is able to adapt to targets moving at different speeds and is able to control the camera according to a predictive formula to prevent the loss of image quality due to camera trail. In the test environment, the zoom can sufficiently lock onto the head of a moving human; however, simultaneous tracking and zooming occasionally results in a failure to track. If this system is deployed with a facial recognition algorithm, the recognition accuracy can be effectively improved. |
| Audience | Academic |
| Author | Chang, Chuan-Yu Wei, Chung-Mao Hsia, Shih-Chang Wang, Szu-Hong |
| AuthorAffiliation | 2 Department of Information Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan 1 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan |
| AuthorAffiliation_xml | – name: 1 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan – name: 2 Department of Information Engineering, National Yunlin University of Science and Technology, Douliu City, Yunlin County 64002, Taiwan |
| Author_xml | – sequence: 1 givenname: Shih-Chang orcidid: 0000-0001-9828-0773 surname: Hsia fullname: Hsia, Shih-Chang – sequence: 2 givenname: Szu-Hong orcidid: 0000-0002-3889-1764 surname: Wang fullname: Wang, Szu-Hong – sequence: 3 givenname: Chung-Mao surname: Wei fullname: Wei, Chung-Mao – sequence: 4 givenname: Chuan-Yu orcidid: 0000-0001-9476-8130 surname: Chang fullname: Chang, Chuan-Yu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36433387$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1r3DAQhk1JaT7aQ_9AEfSSHjaRLVuyLoVl6cdCIIdNL70IeTx2tLGlVLJT8u87201DEmqBJeRn3vE7vMfZgQ8es-x9zs-E0Pw8FfTUSuevsqO8LMpFXRT84Mn5MDtOact5IYSo32SHQpa7kzrKbtZ-wmFwPfqJXTZbhIldRQs3zvfst5uumfVsOU9htJMDth5tj-xnCCNbDn2IBIysC5FZtrIjRss26NOudjPHO3TDYD0g29ynCce32evODgnfPewn2Y-vX65W3xcXl9_Wq-XFAkpRTwtUhS15hVzUttK6BVk1leS8gRqE1rLJZZtLIaEtGg2qkQp0W2CtBAeB0ImTbL3XbYPdmtvoRhvvTbDO_L0IsTc2kpsBTQ1IVVDrprHUXNu2slDYts7zTue2Iq3Pe63buRmxBRpTtMMz0edfvLs2fbgzWmqZS0UCpw8CMfyaMU1mdAlwNxgMczKFIq9cSV0S-vEFug1z9DQqooQuK3ppos72VG_JgPNdoL5Aq8XRAQWjc3S_VKWshFAVp4IPTy08_vu_EBDwaQ9ADClF7B6RnJtdwMxjwIg9f8GCmygaYefeDf-p-AOW9dG6 |
| CitedBy_id | crossref_primary_10_1016_j_sasc_2025_200282 crossref_primary_10_1016_j_autcon_2023_104980 crossref_primary_10_3390_asi7030044 |
| Cites_doi | 10.1109/TITS.2019.2917560 10.1016/j.patcog.2017.09.040 10.1109/ACCESS.2020.3024926 10.1109/ACCESS.2019.2955387 10.1109/TCSVT.2019.2897980 10.1109/TCSVT.2016.2589879 10.1109/TITS.2018.2888698 10.1109/ACCESS.2021.3074319 10.1109/ACCESS.2018.2803787 10.1109/LRA.2021.3057003 10.1007/s11554-020-01050-2 10.1109/TCE.2017.014979 10.1109/TIP.2018.2878349 10.1109/JSEN.2021.3091018 10.1109/JSTARS.2019.2957484 10.1049/iet-ipr.2018.6175 10.1109/TIP.2021.3108405 10.1109/TIP.2019.2922095 10.1109/ACCESS.2020.3020818 10.1016/j.patcog.2017.09.009 10.1109/ACCESS.2020.3008262 10.1109/ACCESS.2019.2891943 10.1109/TII.2019.2921652 10.1007/s11554-020-00958-z 10.1109/ACCESS.2019.2931820 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s22228791 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5 PMC9696167 A746533750 36433387 10_3390_s22228791 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 109-2221-E-224-042, Taiwan. |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c438t-e72a405e038a599dc65b5600bc8c3996b16d1636cd2b9c7b67c9d2e8730c3ecf3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887676900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:01 EST 2025 Tue Nov 04 02:08:54 EST 2025 Thu Oct 02 07:46:36 EDT 2025 Tue Oct 07 07:27:45 EDT 2025 Tue Nov 04 18:17:23 EST 2025 Wed Feb 19 02:25:55 EST 2025 Tue Nov 18 20:52:04 EST 2025 Sat Nov 29 07:17:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | object tracking camera sensing motion detection surveillance system |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-e72a405e038a599dc65b5600bc8c3996b16d1636cd2b9c7b67c9d2e8730c3ecf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9828-0773 0000-0002-3889-1764 0000-0001-9476-8130 |
| OpenAccessLink | https://doaj.org/article/8ce30cc89bba4389ad5ac2ad811f91a5 |
| PMID | 36433387 |
| PQID | 2739457399 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9696167 proquest_miscellaneous_2740507694 proquest_journals_2739457399 gale_infotracacademiconefile_A746533750 pubmed_primary_36433387 crossref_primary_10_3390_s22228791 crossref_citationtrail_10_3390_s22228791 |
| PublicationCentury | 2000 |
| PublicationDate | 20221114 |
| PublicationDateYYYYMMDD | 2022-11-14 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221114 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Gong (ref_22) 2020; 17 Shifa (ref_28) 2020; 8 Chen (ref_18) 2018; 6 Zhu (ref_3) 2020; 8 Otoom (ref_23) 2021; 18 Koz (ref_5) 2020; 12 Li (ref_12) 2019; 28 Javanbakhti (ref_9) 2017; 63 Garg (ref_7) 2019; 21 Ahmed (ref_20) 2021; 9 Hsia (ref_27) 2020; 14 Huang (ref_11) 2019; 21 Sajjad (ref_8) 2019; 15 Babaee (ref_17) 2018; 76 Cuevas (ref_2) 2018; 74 ref_25 ref_24 Kim (ref_15) 2020; 8 Purohit (ref_4) 2021; 21 Sakkos (ref_16) 2019; 7 Patil (ref_10) 2021; 30 Shidik (ref_1) 2019; 7 Bozcan (ref_19) 2021; 6 Shao (ref_21) 2019; 30 ref_26 Gao (ref_6) 2019; 7 Wang (ref_13) 2016; 27 Fu (ref_14) 2019; 28 |
| References_xml | – volume: 21 start-page: 2204 year: 2019 ident: ref_7 article-title: Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2917560 – ident: ref_24 – ident: ref_26 – volume: 76 start-page: 635 year: 2018 ident: ref_17 article-title: A deep convolutional neural network for video sequence background subtraction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.040 – volume: 8 start-page: 177131 year: 2020 ident: ref_28 article-title: MuLViS: Multi-Level Encryption Based Security System for Surveillance Videos publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024926 – volume: 7 start-page: 170457 year: 2019 ident: ref_1 article-title: A Systematic Review of Intelligence Video Surveillance: Trends, Techniques, Frameworks, and Datasets publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955387 – volume: 30 start-page: 781 year: 2019 ident: ref_21 article-title: Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2897980 – volume: 27 start-page: 2591 year: 2016 ident: ref_13 article-title: Cost-effective active learning for deep image classification publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2589879 – volume: 21 start-page: 79 year: 2019 ident: ref_11 article-title: Cost-Effective Vehicle Type Recognition in Surveillance Images with Deep Active Learning and Web Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2888698 – volume: 9 start-page: 63283 year: 2021 ident: ref_20 article-title: Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074319 – volume: 6 start-page: 14567 year: 2018 ident: ref_18 article-title: From Eyes to Face Synthesis: A New Approach for Human-Centered Smart Surveillance publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2803787 – volume: 6 start-page: 1638 year: 2021 ident: ref_19 article-title: GridNet: Image-Agnostic Conditional Anomaly Detection for Indoor Surveillance publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3057003 – volume: 18 start-page: 937 year: 2021 ident: ref_23 article-title: Enhanced TLD-based video object-tracking implementation tested on embedded platforms publication-title: J. Real Time Image Process. doi: 10.1007/s11554-020-01050-2 – volume: 63 start-page: 325 year: 2017 ident: ref_9 article-title: Fast scene analysis for surveillance & video databases publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2017.014979 – volume: 28 start-page: 1575 year: 2019 ident: ref_12 article-title: A Richly Annotated Pedestrian Dataset for Person Retrieval in Real Surveillance Scenarios publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2878349 – volume: 21 start-page: 19516 year: 2021 ident: ref_4 article-title: Enhancing the Surveillance Detection Range of Image Sensors Using HDR Techniques publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3091018 – ident: ref_25 – volume: 12 start-page: 4746 year: 2020 ident: ref_5 article-title: Ground-Based Hyperspectral Image Surveillance Systems for Explosive Detection: Part I—State of the Art and Challenges publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2957484 – volume: 14 start-page: 570 year: 2020 ident: ref_27 article-title: Fast Search Real-Time Face Recognition based on DCT Coefficients Distribution publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.6175 – volume: 30 start-page: 7889 year: 2021 ident: ref_10 article-title: An Unified Recurrent Video Object Segmentation Framework for Various Surveillance Environments publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3108405 – volume: 28 start-page: 6077 year: 2019 ident: ref_14 article-title: Foreground Gating and Background Refining Network for Surveillance Object Detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2922095 – volume: 8 start-page: 159864 year: 2020 ident: ref_15 article-title: Foreground Objects Detection Using a Fully Convolutional Network with a Background Model Image and Multiple Original Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3020818 – volume: 74 start-page: 156 year: 2018 ident: ref_2 article-title: Real-time nonpara metric background subtraction with tracking-based foreground update publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.009 – volume: 8 start-page: 126700 year: 2020 ident: ref_3 article-title: Kasabov Change Detection in Multitemporal Monitoring Images Under Low Illumination publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008262 – volume: 7 start-page: 10976 year: 2019 ident: ref_16 article-title: Illumination-aware multi-task GANs for foreground segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891943 – volume: 15 start-page: 6541 year: 2019 ident: ref_8 article-title: Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2921652 – volume: 17 start-page: 1801 year: 2020 ident: ref_22 article-title: Research and implementation of multi-object tracking based on vision DSP publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-020-00958-z – volume: 7 start-page: 107550 year: 2019 ident: ref_6 article-title: Particle Filter-Based Prediction for Anomaly Detection in Automatic Surveillance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931820 |
| SSID | ssj0023338 |
| Score | 2.3912349 |
| Snippet | Current surveillance systems frequently use fixed-angle cameras and record a feed from those cameras. There are several disadvantages to such systems,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 8791 |
| SubjectTerms | Algorithms camera sensing Cameras Cost control Deep learning Facial recognition technology Humans motion detection Movement Neural networks object tracking Signal processing Surveillance surveillance system |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHnoUGSmUQElyibp6OT2ipqFoJFaSCtOJi2WNvW9Em7W62v5-ZxJvuCtQLlxwSRxlnxjPfTJxvAN4bykycnZYxumJKCYqzcZU5jEtvcp8aJIzakbh-lUdH1WSivoeC2zxsq1z6xM5Ruwa5Rr5LYVblBR3Up8urmLtG8dfV0ELjLtzjttls53Jyk3BllH_1bEIZpfa785TLHR0d50oM6qj6_3bIKxFpfbfkSvjZf_y_gj-BRwF4inFvKU_hjq-fwcMVOsLn8Ptw4OdsxTfLFRpBsQy5mi64YCtMLcaLtuloXsXhBfki8YuQtxifn9Aj29MLQRhYGLFnuNYljnl3PN17vJhde25vRBYmeo70Tfi5_-XH3kEcmjHEmGdVG3uZGgJ3fpRVplDKYVlYRksWK6S5lTYpHWG7El1qFUpbSlQu9aSUEWYep9kL2Kib2m-BcNY6V6iRM2gp-1HWM4NP6uk15T4vVAQfl-rRGJjKuWHGuaaMhTWpB01G8G4YetnTc_xr0GfW8TCAGbW7E83sRIcFqiv0JCmSNNZwR3jjCoOpcVWSTFViigg-sIVoXvckDJrw-wJNiRm09FgyU11GACyC7aUh6OAQ5vrGCiJ4O1ympczfZ0ztmwWPoRc8kqXKI3jZ29wgc0bIkaxZRiDXrHFtUutX6rPTji6c-Y-SUr66XazX8CDlPzt4h2O-DRvtbOHfwH28bs_ms51uXf0B0oEv3Q priority: 102 providerName: ProQuest |
| Title | Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36433387 https://www.proquest.com/docview/2739457399 https://www.proquest.com/docview/2740507694 https://pubmed.ncbi.nlm.nih.gov/PMC9696167 https://doaj.org/article/8ce30cc89bba4389ad5ac2ad811f91a5 |
| Volume | 22 |
| WOSCitedRecordID | wos000887676900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4QCHimdJKSuDkOASNW_Hx221VVeiy4qCtHCJ7LG3rWizaDfbI7-dmSQbZQVSL1x8cCaSPZ6Jv5nY3wC81xSZWDPPfLTpnAIUa_w8tuhnTicu0kgYtSZx_SQnk3w2U9NeqS8-E9bQAzeKO8zRxQFirozRXKlb21RjpG0ehnMV6pq9NJBqE0y1oVZMkVfDIxRTUH-4ijjRURNx9nafmqT_709xby_aPifZ23hOnsBuixjFsBnpU7jnymfwuMcj-Bx-jjtizUp8NpxaEbQJIafBBWdahS7FcF0tan5WMb6hj4j4QZBZDK8vFksSuBEEXoUWx5qTVOKcj7XTu-fr5a3jukRkGqIhN38B305GX49P_baKgo-kr8p3MtKEylwQ5zpVymKWGoY5BnMkdJKZMLMEyjK0kVEoTSZR2cjl5PoYO5zHL2GnXJTuFQhrjLWpCqxGQ2GLMo6pdyKnkjRxSao8-LjRboEtxThXurguKNTghSi6hfDgXSf6q-HV-JfQES9RJ8BU2HUHGUjRGkhxl4F48IEXuGCHpcGgbu8d0JSY-qoYSqaYiwk5eXCwsYGi9eRVQfCOpkcNze5t95h8kH-s6NIt1ixDCg5kphIP9hqT6cYcE-QjY5QeyC1j2prU9pPy6rLm-WbiojCT-_9DC6_hUcQXN_gAY3IAO9Vy7d7AQ7ytrlbLAdyXM1m3-QAeHI0m0y-D2qGoPfs9or7p-Gz6_Q8L5iko |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58C4YCiwIBBeriV_rPSAUClWjhoDUIkVczO7spq1o7ZI4RfwpfiMztuMmAnHrgUsO8dqatb957u43AM81ZSbWjBMfbTymBMUaPw0t-onTkQs0UoxakbgO5HCYjkbq0wr8mp-F4W2Vc5tYGWpbINfIN8nNqiimH_Xm9LvPXaN4dXXeQqOGxa77-YNStunr_jv6vi-CYPv9_taO33QV8DEK09J3MtAUpbhOmOpYKYtJbNjtG0yRnp6YbmIpSEnQBkahNIlEZQOXkipg6HAc0nMvwWWy45KTPTk6T_BCyvdq9qIwVJ3NacDllYr-c8HnVa0B_nQACx5weXfmgrvbvvG_vaibcL0JrEWv1oRbsOLy23BtgW7xDnzrt_yjpfhouAIlyFcjrxYILkgLnYverCwqGlvRPyFbK75QZiF6xwc0xfLwRFCML7TY0lzLE3u8-5_u3ZtNzhy3byINEjUH_F34fCGzXYfVvMjdfRDWGGtj1bEaDWV3yjhmKAocfZbIRbHy4NUcDhk2TOzcEOQ4o4yMkZO1yPHgWTv0tKYf-dugt4ypdgAzhld_FJODrDFAWYqOJEWSxmjueK9trDHQNu12x6qrYw9eMiIztmskDOrmeAZNiRnCsp5kJr6QAkwPNubAyxqDN83OUefB0_YymSpef9K5K2Y8hl5wRyYq8uBejfFW5pAiY9Ie6YFcQv_SpJav5EeHFR068zt1E_ng32I9gas7-x8G2aA_3H0IawGfYuHdnNEGrJaTmXsEV_CsPJpOHlc6LeDrRevGb22BjKw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBBcryfq5B4RCS0TUEiKVSoWL2Z3dtBWtUxKniL_Gr2PGdkwiELceuPhgr-0Ze967-w3AM02ZiTXj2EcbjSlBscZPA4t-7HTopEaKUUsQ151kOEz399VoDX4u9sLwssqFTSwNtZ0g18jb5GZVGNFBtcf1sojRVv_16TefO0jxTOuinUYlItvux3dK32avBlv0r59L2X_7cfOdX3cY8DEM0sJ3idQUsbhOkOpIKYtxZDgEMJgivSk23dhSwBKjlUZhYuIElZUuJbXAwOE4oOdegHUKyUPZgvXR4P3oU5PuBZT9VVhGQaA67ZnkYksJBrrkActGAX-6gyV_uLpWc8n59a_9z5_tOlytQ27Rq3TkBqy5_CZcWQJivAVfBw0yaSE-GK5NCfLiyPMIgkvVQueiNy8mJcCtGJyQFRafKecQveMDYrE4PBEU_QstNjVX-cQu7wuge3fn0zPHjZ1It0SFDn8b9s6F2zvQyie5uwfCGmNtpDpWo6G8TxnH2EXS0S8KXRgpD14uRCPDGqOdW4UcZ5SrsRRljRR58LQZeloBk_xt0BuWr2YAY4mXJybTg6w2TVmKjihFosZoYlhpG2mU2qbd7lh1deTBC5bOjC0eEYO63rhBLDF2WNZLGKMvoNDTg42FEGa1KZxlvyXQgyfNZTJiPDOlczeZ8xj6wJ0kVqEHdyt5b2gOKGYmTUo8SFY0YYWp1Sv50WEJlM7IT904uf9vsh7DJVKJbGcw3H4AlyVvb-FlnuEGtIrp3D2Ei3hWHM2mj2oFF_DlvJXjFzU8lvs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Object+Tracking+with+an+Automatic+Image+Zoom+Algorithm+for+a+Camera+Sensing+Surveillance+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shih-Chang+Hsia&rft.au=Szu-Hong+Wang&rft.au=Chung-Mao+Wei&rft.au=Chuan-Yu+Chang&rft.date=2022-11-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=8791&rft_id=info:doi/10.3390%2Fs22228791&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ce30cc89bba4389ad5ac2ad811f91a5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |