Exercise facilitates post-stroke recovery through mitigation of neuronal hyperexcitability via interleukin-10 signaling
Physical exercise is an effective therapy for improving stroke recovery. However, the exact underlying molecular mechanisms of exercise-enhanced neuronal repair remain unclear. As exercise affects the immune system in healthy individuals, and the immune system in turn influences recovery after strok...
Saved in:
| Published in: | Nature communications Vol. 16; no. 1; pp. 8928 - 16 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
08.10.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Physical exercise is an effective therapy for improving stroke recovery. However, the exact underlying molecular mechanisms of exercise-enhanced neuronal repair remain unclear. As exercise affects the immune system in healthy individuals, and the immune system in turn influences recovery after stroke, we hypothesized that immune mechanisms play a role in exercise-induced neurological recovery. Using a model of ischemic stroke in adult male mice, we here show that the presence of regulatory T cells (Treg) within the ischemic brain is a prerequisite for exercise-enhanced functional and structural recovery. Treg prevent excessive and sustained hyperexcitability of periinfarct neurons via IL-10 signaling. This reduced hyperexcitability precedes alterations in neuronal connectivity, which underlie functional improvement. Together, we delineate the interaction of exercise-therapy, the immune system and functional recovery after ischemic stroke. Our findings can have translational relevance for further development of immune-targeted therapies.
Exercise promotes recovery after stroke, but the underlying mechanisms are unclear. Here, the authors show that regulatory T cells enable exercise-induced repair by reducing neuronal hyperexcitability via interleukin-10, linking immunity to functional regeneration. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-025-62631-y |