GPS GDOP classification via improved neural network trainings and principal component analysis

Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of electronics Ročník 101; číslo 9; s. 1300 - 1313
Hlavní autoři: Azami, Hamed, Sanei, Saeid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.09.2014
Taylor & Francis LLC
Témata:
ISSN:0020-7217, 1362-3060
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tremendous computational burden on the navigator's processor. Since classification of GPS GDOP is a non-linear problem, neural networks (NNs) can be used as an acceptable solution. Since the back propagation (BP) does not have sufficient speed to train a feed-forward NN, in this paper several improved NN trainings, including Levenberg-Marquardt (LM), modified LM, and resilient BP (RBP), scaled conjugate gradient, one-step secant (OSS) and quasi-Newton methods are proposed to classify the GPS GDOP. In this study, in order to have uncorrelated and informative features of the GPS GDOP, principal component analysis (PCA) is used as a pre-processing step. The simulation results show that using the RBP and PCA leads to greater accuracy and lower calculation time comparing with other existing and proposed methods and it can improve the classification accuracy of GPS satellites to about 99.65%. Moreover, the modified LM is the fastest algorithm that requires only 10 iterations for training the NN and it can be used in online applications.
AbstractList Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tremendous computational burden on the navigator's processor. Since classification of GPS GDOP is a non-linear problem, neural networks (NNs) can be used as an acceptable solution. Since the back propagation (BP) does not have sufficient speed to train a feed-forward NN, in this paper several improved NN trainings, including Levenberg-Marquardt (LM), modified LM, and resilient BP (RBP), scaled conjugate gradient, one-step secant (OSS) and quasi-Newton methods are proposed to classify the GPS GDOP. In this study, in order to have uncorrelated and informative features of the GPS GDOP, principal component analysis (PCA) is used as a pre-processing step. The simulation results show that using the RBP and PCA leads to greater accuracy and lower calculation time comparing with other existing and proposed methods and it can improve the classification accuracy of GPS satellites to about 99.65%. Moreover, the modified LM is the fastest algorithm that requires only 10 iterations for training the NN and it can be used in online applications.
Author Sanei, Saeid
Azami, Hamed
Author_xml – sequence: 1
  givenname: Hamed
  surname: Azami
  fullname: Azami, Hamed
  email: hamed_azami@ieee.org
  organization: Department of Electrical Engineering, Iran University of Science and Technology, Narmak
– sequence: 2
  givenname: Saeid
  surname: Sanei
  fullname: Sanei, Saeid
  organization: Faculty of Engineering and Physical Sciences, University of Surrey
BookMark eNqFkE1P7CAUhonRxPHjH7ho4sZN5x6ghdaNMeqda2KiibqVMBQMSmGEzpj595c6unGhq5PA856859lD2z54jdARhimGBv4AEOAE8ykBTKcNJbSFLTTBlJGSAoNtNBmRcmR20V5KLwBAGZAJeprd3Rezy9u7QjmZkjVWycEGX6ysLGy_iGGlu8LrZZQuj-E9xNdiiNJ6659TIX1XLKL1yi7yvwr9IjfzQ36Xbp1sOkA7RrqkDz_nPnr8e_Vw8a-8uZ1dX5zflKqizVB2WgGRWhKOmeGGM95VNWAF81rXraJz1cm6a1quFVe61oa1huK6ImbOGZ0buo9ONntz4belToPobVLaOel1WCaB67plVdXgJqPH39CXsIy570hVuGo4ZSxT1YZSMaQUtRH5zF7GtcAgRuniS7oYpYuN9Bw7_RZTdvgQOjpzv4XPNmHrTYi9zK5dJwa5diGaKLPkJOiPG_4DV_ecyQ
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3023244
crossref_primary_10_1371_journal_pone_0150005
crossref_primary_10_2478_arsa_2022_0002
crossref_primary_10_1109_TAES_2022_3219366
crossref_primary_10_1007_s12206_016_1005_9
crossref_primary_10_1007_s10291_018_0776_0
crossref_primary_10_1109_ACCESS_2020_3031488
crossref_primary_10_1177_1550147720929620
crossref_primary_10_1016_j_asr_2025_09_016
crossref_primary_10_1080_00396265_2019_1574113
Cites_doi 10.1016/j.advengsoft.2011.10.013
10.1109/JSTSP.2009.2028381
10.1016/j.dsp.2009.05.007
10.1016/j.dsp.2009.05.005
10.1016/0925-2312(94)00024-M
10.1049/ip-gtd:20020462
10.1007/s10291-006-0030-z
10.1016/S0893-6080(05)80056-5
10.1109/TIM.2010.2049228
10.1049/el:20040052
10.4236/jgis.2011.34029
10.1109/TVT.2009.2017270
ContentType Journal Article
Copyright 2013 Taylor & Francis 2013
Copyright Taylor & Francis Group 2014
Copyright_xml – notice: 2013 Taylor & Francis 2013
– notice: Copyright Taylor & Francis Group 2014
DBID AAYXX
CITATION
7SP
8FD
L7M
7SC
FR3
JQ2
KR7
L~C
L~D
DOI 10.1080/00207217.2013.832390
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1362-3060
EndPage 1313
ExternalDocumentID 3355949181
10_1080_00207217_2013_832390
832390
Genre Article
Feature
GroupedDBID -DZ
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EAU
EBS
EJD
E~A
E~B
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SP
8FD
L7M
7SC
FR3
JQ2
KR7
L~C
L~D
ID FETCH-LOGICAL-c438t-dec02aea2716f7f767d4501c0b5e59c3bcda5d897ec7ce5ef69f31542fb763bf3
IEDL.DBID TFW
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337963800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7217
IngestDate Thu Oct 02 10:39:47 EDT 2025
Wed Aug 13 09:47:55 EDT 2025
Sat Nov 29 02:46:05 EST 2025
Tue Nov 18 22:15:53 EST 2025
Mon Oct 20 23:45:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-dec02aea2716f7f767d4501c0b5e59c3bcda5d897ec7ce5ef69f31542fb763bf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1541487366
PQPubID 53228
PageCount 14
ParticipantIDs proquest_miscellaneous_1559644818
crossref_primary_10_1080_00207217_2013_832390
informaworld_taylorfrancis_310_1080_00207217_2013_832390
proquest_journals_1541487366
crossref_citationtrail_10_1080_00207217_2013_832390
PublicationCentury 2000
PublicationDate 2014-09-02
PublicationDateYYYYMMDD 2014-09-02
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of electronics
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Mosavi M. R. (CIT0018) 2011; 5
Ranjbar M. (CIT0021) 2012; 9
McGuire M. (CIT0015) 2003; 52
Azami H. (CIT0002) 2012
CIT0010
CIT0031
CIT0023
CIT0011
Mosavi M. R. (CIT0017) 2011; 7
Hagan M. T. (CIT0008) 1996
Azami H. (CIT0004) 2011; 34
CIT0014
CIT0025
CIT0024
CIT0016
Mosavi M. R. (CIT0019) 2012
CIT0027
CIT0029
CIT0028
CIT0009
References_xml – ident: CIT0028
  doi: 10.1016/j.advengsoft.2011.10.013
– volume: 52
  issue: 4
  year: 2003
  ident: CIT0015
  publication-title: IEEE Transaction on Vehicular Technology
– ident: CIT0031
  doi: 10.1109/JSTSP.2009.2028381
– ident: CIT0010
  doi: 10.1016/j.dsp.2009.05.007
– ident: CIT0009
  doi: 10.1016/j.dsp.2009.05.005
– volume: 5
  start-page: 1166
  issue: 7
  year: 2011
  ident: CIT0018
  publication-title: Australian Journal of Basic and Applied Sciences
– ident: CIT0025
  doi: 10.1016/0925-2312(94)00024-M
– ident: CIT0023
  doi: 10.1049/ip-gtd:20020462
– ident: CIT0011
  doi: 10.1007/s10291-006-0030-z
– volume: 9
  start-page: 100
  issue: 3
  year: 2012
  ident: CIT0021
  publication-title: Journal of Computer Science Issues
– ident: CIT0016
  doi: 10.1016/S0893-6080(05)80056-5
– year: 2012
  ident: CIT0019
  publication-title: The Arabian Journal for Science and Engineering, 37(7), 2003–2015.
– volume-title: Neural network design
  year: 1996
  ident: CIT0008
– ident: CIT0029
  doi: 10.1109/TIM.2010.2049228
– year: 2012
  ident: CIT0002
  publication-title: Springer Journal of Wireless Personal Communications
– volume: 34
  start-page: 22
  issue: 2
  year: 2011
  ident: CIT0004
  publication-title: Journal of Computer Applications
– ident: CIT0014
  doi: 10.1049/el:20040052
– ident: CIT0027
  doi: 10.4236/jgis.2011.34029
– volume: 7
  start-page: 7
  issue: 3
  year: 2011
  ident: CIT0017
  publication-title: Journal of Geoinformatics
– ident: CIT0024
  doi: 10.1109/TVT.2009.2017270
SSID ssj0003602
Score 2.0911329
Snippet Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1300
SubjectTerms Algorithms
Back propagation
Classification
Computer simulation
Design engineering
Global Positioning System
Global positioning systems
GPS
GPS GDOP
Levenberg-Marquardt (LM) algorithm
modified LM algorithm
neural network
Neural networks
one-step secant method
Principal component analysis
Principal components analysis
quasi-Newton method
resilient back propagation
Satellite navigation systems
Satellites
scaled conjugate gradient algorithm
Training
Title GPS GDOP classification via improved neural network trainings and principal component analysis
URI https://www.tandfonline.com/doi/abs/10.1080/00207217.2013.832390
https://www.proquest.com/docview/1541487366
https://www.proquest.com/docview/1559644818
Volume 101
WOSCitedRecordID wos000337963800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1362-3060
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003602
  issn: 0020-7217
  databaseCode: TFW
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yeNCDb_FNBK-Rtkma9CjqrgfRBV97sqRpAgvSXdzV3-9M0y4rooIem-cwmUxm0sk3hJxI7iWIhWAiE5IJIRzTJvIsKoWQ0mTO1Pcdj9fq5kYPBll_7hU_hlWiD-0DUEStq3Fzm2LSRsThC25E9VIYmMVPQSTBbwclDIY9ivh992mminkaNXDhEcMe7du5bwb5dDZ9Qi79oqnr46e7-n_C18hKY3rSsyAr62TBVRtkeQ6QcJM89_p3tHdx26cWrWoMI6pXjr4PDR3W9w-upIiBCQNVIYKctlkmJhQIo-Nwew_1GK0-quBQg_KAfLJFHrqX9-dXrMnAwKzgespKZ6PEOJOAV-WVV6kqhYxiGxXSyczywpZGljpTzirrpPNp5jkYZYkvQG8Vnm-TTgUz7RBqvNPcJbYoFThlYNJnRpsYxrEKSqJ0l_CW97lt4MmR_pc8nqGYBu7lyL08cG-XsFmvcYDn-KW9nl_WfFpfi_iQwyTnP3c9aEUgb_b5JI8xi7pWPAX6j2fVsEPxt4up3OgN28gMveBY7_199n2yBF-ijm5LDkhn-vrmDsmifZ8OJ69HtdR_AI8T_VU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9VC-pDtX6grdUIfY3sbpJN9rGop8XzPPBafWrIZhM4kFW807_fmc3uoRQtSF-TzQeTmUlm9pdfCPkueZCgFoKJQkgmhPBM2ySwpBJCSlt42-Q7fvfVYKCvr4thiyactLBKjKFDJIpofDUaNyajO0gcXuFGWi-FyCx-ADoJgfscWZCw1SKqb9S7mjljnictYXjCsEl3e-6VXl7sTi-4S__y1c0G1Fv5D1NfJZ_a0yf9EdXlM_ng6zWy_IyTcJ38ORle0pOjiyF1eLBGJFGzePRxbOm4SUH4iiINJnRURxA57R6amFCYGb2LCXyoR8D6bQ37GpRH8pMN8qt3PDo8Ze0jDMwJrqes8i7JrLcZBFZBBZWrSsgkdUkpvSwcL11lZaUL5Z1yXvqQF4HDuSwLJbiuMvBNMl_DSFuE2uA195krKwVxGZzqC6ttCv04BSVJvk14J3zjWoZynP-NSWdEplF6BqVnovS2CZu1uosMHf_4Xj9fVzNtMiMhPmNi-NtNdzodMK2pT0yKD6lrxXOY__6sGowU_7zY2t8-4DeywEA41V_eP_oeWTwdnfdN_-fg7CtZghrRgN2yHTI_vX_w38hH9zgdT-53GxN4AoFIAYU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_WlmIfbKsVrbZNwdeU3U2yyT6W6lmpnAfa6lNDNpvAQdk7vNO_35lk9zgpKuhrsvlgMjOZmZ38hpB9yYMEthBMVEIyIYRn2maBZY0QUtrK2xjv-HOihkN9eVmNll7xY1ol-tAhAUVEXY3CPW1CnxGHL7gR1UthYhb_BiwJfvsL8jJiYwFHnw8uFrqYl1mHF54xHNI_nrtnljuX0x3o0v9Udbx_Bm-fv_N3ZL2zPen3xCzvyYpvN8ibJUTCTfL3aHRGjw5OR9ShWY15RPHo6M3Y0nEMQPiGIggmTNSmFHLal5mYUdgYnabwPfRjuvqkhVsN2hP0yQfye3B4_uMn60owMCe4nrPGu6yw3hbgVgUVVKkaIbPcZbX0snK8do2Vja6Ud8p56UNZBQ5WWRFqUFx14FtktYWVtgm1wWvuC1c3CrwysOkrq20O8zgFLVm5Q3hPe-M6fHLc_z-TL2BME_UMUs8k6u0Qthg1Tfgcj3yvl4_VzGNcJKQiJoY_PHSvZwHTCfrM5FhGXStewv6_LrpBRPG_i2395Bq_kRW6wbn--PTVv5DXo4OBOTke_tola9AhYqZbsUdW51fX_hN55W7m49nV5ygAt0fvACk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPS+GDOP+classification+via+improved+neural+network+trainings+and+principal+component+analysis&rft.jtitle=International+journal+of+electronics&rft.au=Azami%2C+Hamed&rft.au=Sanei%2C+Saeid&rft.date=2014-09-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7217&rft.eissn=1362-3060&rft.volume=101&rft.issue=9&rft.spage=1300&rft_id=info:doi/10.1080%2F00207217.2013.832390&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3355949181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7217&client=summon