GPS GDOP classification via improved neural network trainings and principal component analysis
Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tr...
Saved in:
| Published in: | International journal of electronics Vol. 101; no. 9; pp. 1300 - 1313 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
02.09.2014
Taylor & Francis LLC |
| Subjects: | |
| ISSN: | 0020-7217, 1362-3060 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tremendous computational burden on the navigator's processor. Since classification of GPS GDOP is a non-linear problem, neural networks (NNs) can be used as an acceptable solution. Since the back propagation (BP) does not have sufficient speed to train a feed-forward NN, in this paper several improved NN trainings, including Levenberg-Marquardt (LM), modified LM, and resilient BP (RBP), scaled conjugate gradient, one-step secant (OSS) and quasi-Newton methods are proposed to classify the GPS GDOP. In this study, in order to have uncorrelated and informative features of the GPS GDOP, principal component analysis (PCA) is used as a pre-processing step. The simulation results show that using the RBP and PCA leads to greater accuracy and lower calculation time comparing with other existing and proposed methods and it can improve the classification accuracy of GPS satellites to about 99.65%. Moreover, the modified LM is the fastest algorithm that requires only 10 iterations for training the NN and it can be used in online applications. |
|---|---|
| AbstractList | Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is organised geometrically. In the analysis of received signals, it is often essential to invert and transform the data matrices. This requires tremendous computational burden on the navigator's processor. Since classification of GPS GDOP is a non-linear problem, neural networks (NNs) can be used as an acceptable solution. Since the back propagation (BP) does not have sufficient speed to train a feed-forward NN, in this paper several improved NN trainings, including Levenberg-Marquardt (LM), modified LM, and resilient BP (RBP), scaled conjugate gradient, one-step secant (OSS) and quasi-Newton methods are proposed to classify the GPS GDOP. In this study, in order to have uncorrelated and informative features of the GPS GDOP, principal component analysis (PCA) is used as a pre-processing step. The simulation results show that using the RBP and PCA leads to greater accuracy and lower calculation time comparing with other existing and proposed methods and it can improve the classification accuracy of GPS satellites to about 99.65%. Moreover, the modified LM is the fastest algorithm that requires only 10 iterations for training the NN and it can be used in online applications. |
| Author | Sanei, Saeid Azami, Hamed |
| Author_xml | – sequence: 1 givenname: Hamed surname: Azami fullname: Azami, Hamed email: hamed_azami@ieee.org organization: Department of Electrical Engineering, Iran University of Science and Technology, Narmak – sequence: 2 givenname: Saeid surname: Sanei fullname: Sanei, Saeid organization: Faculty of Engineering and Physical Sciences, University of Surrey |
| BookMark | eNqFkE1P7CAUhonRxPHjH7ho4sZN5x6ghdaNMeqda2KiibqVMBQMSmGEzpj595c6unGhq5PA856859lD2z54jdARhimGBv4AEOAE8ykBTKcNJbSFLTTBlJGSAoNtNBmRcmR20V5KLwBAGZAJeprd3Rezy9u7QjmZkjVWycEGX6ysLGy_iGGlu8LrZZQuj-E9xNdiiNJ6659TIX1XLKL1yi7yvwr9IjfzQ36Xbp1sOkA7RrqkDz_nPnr8e_Vw8a-8uZ1dX5zflKqizVB2WgGRWhKOmeGGM95VNWAF81rXraJz1cm6a1quFVe61oa1huK6ImbOGZ0buo9ONntz4belToPobVLaOel1WCaB67plVdXgJqPH39CXsIy570hVuGo4ZSxT1YZSMaQUtRH5zF7GtcAgRuniS7oYpYuN9Bw7_RZTdvgQOjpzv4XPNmHrTYi9zK5dJwa5diGaKLPkJOiPG_4DV_ecyQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3023244 crossref_primary_10_1371_journal_pone_0150005 crossref_primary_10_2478_arsa_2022_0002 crossref_primary_10_1109_TAES_2022_3219366 crossref_primary_10_1007_s12206_016_1005_9 crossref_primary_10_1007_s10291_018_0776_0 crossref_primary_10_1109_ACCESS_2020_3031488 crossref_primary_10_1177_1550147720929620 crossref_primary_10_1016_j_asr_2025_09_016 crossref_primary_10_1080_00396265_2019_1574113 |
| Cites_doi | 10.1016/j.advengsoft.2011.10.013 10.1109/JSTSP.2009.2028381 10.1016/j.dsp.2009.05.007 10.1016/j.dsp.2009.05.005 10.1016/0925-2312(94)00024-M 10.1049/ip-gtd:20020462 10.1007/s10291-006-0030-z 10.1016/S0893-6080(05)80056-5 10.1109/TIM.2010.2049228 10.1049/el:20040052 10.4236/jgis.2011.34029 10.1109/TVT.2009.2017270 |
| ContentType | Journal Article |
| Copyright | 2013 Taylor & Francis 2013 Copyright Taylor & Francis Group 2014 |
| Copyright_xml | – notice: 2013 Taylor & Francis 2013 – notice: Copyright Taylor & Francis Group 2014 |
| DBID | AAYXX CITATION 7SP 8FD L7M 7SC FR3 JQ2 KR7 L~C L~D |
| DOI | 10.1080/00207217.2013.832390 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1362-3060 |
| EndPage | 1313 |
| ExternalDocumentID | 3355949181 10_1080_00207217_2013_832390 832390 |
| Genre | Article Feature |
| GroupedDBID | -DZ .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CS3 DGEBU DKSSO DU5 EAU EBS EJD E~A E~B H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SP 8FD L7M 7SC FR3 JQ2 KR7 L~C L~D |
| ID | FETCH-LOGICAL-c438t-dec02aea2716f7f767d4501c0b5e59c3bcda5d897ec7ce5ef69f31542fb763bf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337963800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7217 |
| IngestDate | Thu Oct 02 10:39:47 EDT 2025 Wed Aug 13 09:47:55 EDT 2025 Sat Nov 29 02:46:05 EST 2025 Tue Nov 18 22:15:53 EST 2025 Mon Oct 20 23:45:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-dec02aea2716f7f767d4501c0b5e59c3bcda5d897ec7ce5ef69f31542fb763bf3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1541487366 |
| PQPubID | 53228 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1559644818 crossref_primary_10_1080_00207217_2013_832390 informaworld_taylorfrancis_310_1080_00207217_2013_832390 proquest_journals_1541487366 crossref_citationtrail_10_1080_00207217_2013_832390 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-02 |
| PublicationDateYYYYMMDD | 2014-09-02 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of electronics |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | Mosavi M. R. (CIT0018) 2011; 5 Ranjbar M. (CIT0021) 2012; 9 McGuire M. (CIT0015) 2003; 52 Azami H. (CIT0002) 2012 CIT0010 CIT0031 CIT0023 CIT0011 Mosavi M. R. (CIT0017) 2011; 7 Hagan M. T. (CIT0008) 1996 Azami H. (CIT0004) 2011; 34 CIT0014 CIT0025 CIT0024 CIT0016 Mosavi M. R. (CIT0019) 2012 CIT0027 CIT0029 CIT0028 CIT0009 |
| References_xml | – ident: CIT0028 doi: 10.1016/j.advengsoft.2011.10.013 – volume: 52 issue: 4 year: 2003 ident: CIT0015 publication-title: IEEE Transaction on Vehicular Technology – ident: CIT0031 doi: 10.1109/JSTSP.2009.2028381 – ident: CIT0010 doi: 10.1016/j.dsp.2009.05.007 – ident: CIT0009 doi: 10.1016/j.dsp.2009.05.005 – volume: 5 start-page: 1166 issue: 7 year: 2011 ident: CIT0018 publication-title: Australian Journal of Basic and Applied Sciences – ident: CIT0025 doi: 10.1016/0925-2312(94)00024-M – ident: CIT0023 doi: 10.1049/ip-gtd:20020462 – ident: CIT0011 doi: 10.1007/s10291-006-0030-z – volume: 9 start-page: 100 issue: 3 year: 2012 ident: CIT0021 publication-title: Journal of Computer Science Issues – ident: CIT0016 doi: 10.1016/S0893-6080(05)80056-5 – year: 2012 ident: CIT0019 publication-title: The Arabian Journal for Science and Engineering, 37(7), 2003–2015. – volume-title: Neural network design year: 1996 ident: CIT0008 – ident: CIT0029 doi: 10.1109/TIM.2010.2049228 – year: 2012 ident: CIT0002 publication-title: Springer Journal of Wireless Personal Communications – volume: 34 start-page: 22 issue: 2 year: 2011 ident: CIT0004 publication-title: Journal of Computer Applications – ident: CIT0014 doi: 10.1049/el:20040052 – ident: CIT0027 doi: 10.4236/jgis.2011.34029 – volume: 7 start-page: 7 issue: 3 year: 2011 ident: CIT0017 publication-title: Journal of Geoinformatics – ident: CIT0024 doi: 10.1109/TVT.2009.2017270 |
| SSID | ssj0003602 |
| Score | 2.0911329 |
| Snippet | Geometric dilution of precision (GDOP) is an engineering expression that denotes how well the constellation of global positioning system (GPS) satellites is... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1300 |
| SubjectTerms | Algorithms Back propagation Classification Computer simulation Design engineering Global Positioning System Global positioning systems GPS GPS GDOP Levenberg-Marquardt (LM) algorithm modified LM algorithm neural network Neural networks one-step secant method Principal component analysis Principal components analysis quasi-Newton method resilient back propagation Satellite navigation systems Satellites scaled conjugate gradient algorithm Training |
| Title | GPS GDOP classification via improved neural network trainings and principal component analysis |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207217.2013.832390 https://www.proquest.com/docview/1541487366 https://www.proquest.com/docview/1559644818 |
| Volume | 101 |
| WOSCitedRecordID | wos000337963800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1362-3060 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003602 issn: 0020-7217 databaseCode: TFW dateStart: 19650101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yfNAHv8XplAi-RtqmbdpHUacPMgdO3JOl-YKBdGPr9vd717RjQ1TQxzafXC6Xu8vld4RceYb7PBGS4S0PC5WOGGitMTOhDHIvMmB0VCCuT6LXS4bDtL_yih_DKtGGtg4oopLVuLlzOWsi4vAFN6J6CQzM4tfAkmC3gxAGxR5ZfNB9W4piHns1XLjHsEXzdu6bTtbOpjXk0i-Sujp-urv_n_ge2alVT3rjeGWfbJjigGyvABIekveH_gt9uHvuU4VaNYYRVStHF6Ocjir_g9EUMTCho8JFkNMmy8SMwsToxHnvoRyj1ccFHGrw3yGfHJHX7v3g9pHVGRiYCnlSMm2UF-QmD8CqssKKWOgw8nzlychEqeJS6TzSSSqMEspExsap5aCUBVaC3JKWH5NWASOdEGqsL5UC8yQ2YWhVkAZGa43QM1JqmfttwhvaZ6qGJ8f5f2T-EsXUUS9D6mWOem3Clq0mDp7jl_rJ6rJmZeUWsS6HScZ_btppWCCr9_ks8zGLeiJ4HLfJ5bIYdiheu-SFGc-xTpSiFewnp38f_YxswVdYRbcFHdIqp3NzTjbVohzNphcV138CZ1f-CQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61tFLhQF8gllddqVdXSRzHyREBCxXb7UrdqpxqxS9pJRQQu_D7mYmTFagqSBXXOH5o7JnxjD9_BviSeJGKUhlOpzw8t05y3LUW3OcmqxPpMehoSVxHajwuz8-rSYcmnHewSoqhQySKaG01KTclo3tIHF3hJlovRcgs8RXXJAbuL-GVRFdLqL7p8PfSGIsi6QjDE05V-ttz_2jlgXd6wF36l61uHdDw7TMM_R2sd7tPdhCXy3t44ZsPsHaPk_Aj_DmZ_GQnRz8mzNLGmpBE7eSx21nNZm0KwjtGNJjYUBNB5Kx_aGLOcGTsKibwsZwA65cN-jX8HslPNuDX8Hh6eMq7Rxi4zUW54M7bJKt9nWFgFVRQhXK5TFKbGOllZYWxrpaurJS3ynrpQ1EFgfuyLBg0XSaITVhpsKctYD6kxlqMUAqf58FmVeadc8Q-Y4wzdToA0Qtf246hnMZ_odMlkWmUnibp6Si9AfBlravI0PHE_-X9edWLNjMS4jMmWjxedbdfA7pT9blO6SH1UomiGMDnZTEqKZ281I2_vKF_ZEWBcFpu_3_vn-DN6fT7SI--jc92YBVL8hbslu3CyuL6xu_Ba3u7mM2v91sVuANh3gI5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qLdI-WLVKT22N4GvK7mZ3s_sotWdL5XpQS30ybL7gQPYO7_Tv70yye5yUWtDXfDOZmcwkk98AnCROpKKSmtMrD8-NLTharSV3uc6apHDodAQQ1ws5GlVXV_V45Rc_hVWSD-0jUETQ1STcM-v7iDj6wU2oXpICs8QnZEn029fgZcDGQo6-HP5e6mJRJh1eeMKpS_957h-jPDicHkCX_qWqw_kzfPv8lW_BZmd7stPILNvwwrU78GYFkfAdXJ-Pf7Lzsx9jZsispjiisHXsftKwSbiAcJYRCCYO1MYQctanmZgzXBibxet7rKdw9WmLpxqWR-iTXfg1_HL5-SvvUjBwk4tqwa0zSda4JkO3yksvS2nzIklNogtX1EZoY5vCVrV0RhpXOF_WXqBVlnmNikt7sQfrLc70HpjzqTYG_ZPS5bk3WZ05ay1hz2htdZMOQPS0V6bDJ6f136h0CWMaqaeIeipSbwB82WsW8Tn-075a3Va1CPciPiYxUeLxroc9C6hO0OcqpTTqlRRlOYDjZTWKKL27NK2b3lGboiY3OK32nz77EWyMz4bq4tvo-wG8xoo8RLplh7C-uL1zH-CVuV9M5rcfgwD8ASflAN0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPS+GDOP+classification+via+improved+neural+network+trainings+and+principal+component+analysis&rft.jtitle=International+journal+of+electronics&rft.au=Azami%2C+Hamed&rft.au=Sanei%2C+Saeid&rft.date=2014-09-02&rft.pub=Taylor+%26+Francis&rft.issn=0020-7217&rft.eissn=1362-3060&rft.volume=101&rft.issue=9&rft.spage=1300&rft.epage=1313&rft_id=info:doi/10.1080%2F00207217.2013.832390&rft.externalDocID=832390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7217&client=summon |