Ball Screw Fault Diagnosis Based on Wavelet Convolution Transfer Learning

The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC machine tool. This paper studies the fault diagnosis and health assessment of ball screws. Aiming at the problem that the ball screw signal i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 16; s. 6270
Hlavní autoři: Xie, Yifan, Liu, Chang, Huang, Liji, Duan, Hongchun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 20.08.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC machine tool. This paper studies the fault diagnosis and health assessment of ball screws. Aiming at the problem that the ball screw signal is weak and susceptible to interference, using a wavelet convolution structure to improve the network can improve the mining ability of signal time domain and frequency domain features; aiming at the challenge of ball screw sensor installation position limitation, a transfer learning method is proposed, which adopts the domain adaptation method as jointly distributed adaptation (JDA), and realizes the transfer diagnosis across measurement positions by extracting the diagnosis knowledge of different positions of the ball screw. In this paper, the adaptive batch normalization algorithm (AdaBN) is introduced to enhance the proposed model so as to improve the accuracy of migration diagnosis. Experiments were carried out using a self-made lead screw fatigue test bench. Through experimental verification, the method proposed in this paper can extract effective fault diagnosis knowledge. By collecting data under different working conditions at the bearing seat of the ball screw, the fault diagnosis knowledge is extracted and used to identify and diagnose the position fault of the nut seat. In this paper, some background noise is added to the collected data to test the robustness of the proposed network model.
AbstractList The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC machine tool. This paper studies the fault diagnosis and health assessment of ball screws. Aiming at the problem that the ball screw signal is weak and susceptible to interference, using a wavelet convolution structure to improve the network can improve the mining ability of signal time domain and frequency domain features; aiming at the challenge of ball screw sensor installation position limitation, a transfer learning method is proposed, which adopts the domain adaptation method as jointly distributed adaptation (JDA), and realizes the transfer diagnosis across measurement positions by extracting the diagnosis knowledge of different positions of the ball screw. In this paper, the adaptive batch normalization algorithm (AdaBN) is introduced to enhance the proposed model so as to improve the accuracy of migration diagnosis. Experiments were carried out using a self-made lead screw fatigue test bench. Through experimental verification, the method proposed in this paper can extract effective fault diagnosis knowledge. By collecting data under different working conditions at the bearing seat of the ball screw, the fault diagnosis knowledge is extracted and used to identify and diagnose the position fault of the nut seat. In this paper, some background noise is added to the collected data to test the robustness of the proposed network model.
The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC machine tool. This paper studies the fault diagnosis and health assessment of ball screws. Aiming at the problem that the ball screw signal is weak and susceptible to interference, using a wavelet convolution structure to improve the network can improve the mining ability of signal time domain and frequency domain features; aiming at the challenge of ball screw sensor installation position limitation, a transfer learning method is proposed, which adopts the domain adaptation method as jointly distributed adaptation (JDA), and realizes the transfer diagnosis across measurement positions by extracting the diagnosis knowledge of different positions of the ball screw. In this paper, the adaptive batch normalization algorithm (AdaBN) is introduced to enhance the proposed model so as to improve the accuracy of migration diagnosis. Experiments were carried out using a self-made lead screw fatigue test bench. Through experimental verification, the method proposed in this paper can extract effective fault diagnosis knowledge. By collecting data under different working conditions at the bearing seat of the ball screw, the fault diagnosis knowledge is extracted and used to identify and diagnose the position fault of the nut seat. In this paper, some background noise is added to the collected data to test the robustness of the proposed network model.The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC machine tool. This paper studies the fault diagnosis and health assessment of ball screws. Aiming at the problem that the ball screw signal is weak and susceptible to interference, using a wavelet convolution structure to improve the network can improve the mining ability of signal time domain and frequency domain features; aiming at the challenge of ball screw sensor installation position limitation, a transfer learning method is proposed, which adopts the domain adaptation method as jointly distributed adaptation (JDA), and realizes the transfer diagnosis across measurement positions by extracting the diagnosis knowledge of different positions of the ball screw. In this paper, the adaptive batch normalization algorithm (AdaBN) is introduced to enhance the proposed model so as to improve the accuracy of migration diagnosis. Experiments were carried out using a self-made lead screw fatigue test bench. Through experimental verification, the method proposed in this paper can extract effective fault diagnosis knowledge. By collecting data under different working conditions at the bearing seat of the ball screw, the fault diagnosis knowledge is extracted and used to identify and diagnose the position fault of the nut seat. In this paper, some background noise is added to the collected data to test the robustness of the proposed network model.
Audience Academic
Author Xie, Yifan
Duan, Hongchun
Huang, Liji
Liu, Chang
AuthorAffiliation 2 Faculty of Mechanical & Electrical Engineering, Kunming University of Science & Technology, Kunming 650500, China
1 Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology of Yunnan Province, Kunming University of Science & Technology, Kunming 650500, China
AuthorAffiliation_xml – name: 1 Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology of Yunnan Province, Kunming University of Science & Technology, Kunming 650500, China
– name: 2 Faculty of Mechanical & Electrical Engineering, Kunming University of Science & Technology, Kunming 650500, China
Author_xml – sequence: 1
  givenname: Yifan
  surname: Xie
  fullname: Xie, Yifan
– sequence: 2
  givenname: Chang
  orcidid: 0000-0003-1581-128X
  surname: Liu
  fullname: Liu, Chang
– sequence: 3
  givenname: Liji
  surname: Huang
  fullname: Huang, Liji
– sequence: 4
  givenname: Hongchun
  surname: Duan
  fullname: Duan, Hongchun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36016031$$D View this record in MEDLINE/PubMed
BookMark eNplUl1vFCEUnZga-6EP_gEziS_2YVsYGGBeTNqt1U028cEaH8kd5rKyYaHCzBr_vazbNm0ND5DDOYd7Ofe4OggxYFW9peSMsY6c56ahQjSSvKiOKG_4TDUNOXh0PqyOc14T0jDG1KvqkAlCBWH0qFpcgvf1N5Pwd30Nkx_rKwerELPL9SVkHOoY6h-wRY9jPY9hG_00uoLdJAjZYqqXCCm4sHpdvbTgM76520-q79efbuZfZsuvnxfzi-XMcKbG2WCQAAcJVjQWZS-kUKCkocgpUVSqXikQnWESDBuEYJbKrgCcGzr0nLOTarH3HSKs9W1yG0h_dASn_wExrTSk0RmPekBirUXBDLIiJ33X8g5h6ExvFOnb4vVx73U79RsspYUxgX9i-vQmuJ96Fbe641RwJovBhzuDFH9NmEe9cdmg9xAwTlmXTKQgSnSsUN8_o67jlEL5qh1L8LZtJSmssz1rBaUBF2ws75qyBtw4U2K3ruAXkouW0UaoInj3uIWH2u8jLoTzPcGkmHNCq40bYZdhcXZeU6J3Q6QfhqgoTp8p7k3_5_4F8GrFOg
CitedBy_id crossref_primary_10_3390_app132413120
crossref_primary_10_1177_00202940251372860
crossref_primary_10_3390_pr13051514
crossref_primary_10_1016_j_dajour_2023_100327
crossref_primary_10_1016_j_aei_2024_102617
crossref_primary_10_1177_00202940241241924
crossref_primary_10_1016_j_knosys_2024_111475
Cites_doi 10.1109/TPAMI.2013.167
10.1109/LSP.2017.2672753
10.1109/ACCESS.2018.2837621
10.1155/2018/6714520
10.1109/JSEN.2020.2980868
10.1109/TIP.2016.2516952
10.1016/j.promfg.2020.05.151
10.1016/j.mechmachtheory.2020.103932
10.1109/ACCESS.2021.3067152
10.20944/preprints201701.0132.v1
10.1016/j.patcog.2018.03.005
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22166270
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_de0fffe63ce34c10b9549ead9cbc80b5
PMC9416437
A746531268
36016031
10_3390_s22166270
Genre Journal Article
GrantInformation_xml – fundername: Key scientific research projects of Yunnan Province under Grant
  grantid: 202102AC080002
– fundername: Key Scientific Research Projects of Yunnan Province
  grantid: 202102AC080002
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c438t-dce0a4a7af62fe7b6768a87c1e4108178b88a69c37ac3d663f179a6944c1db443
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845195300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:19 EDT 2025
Tue Nov 04 01:52:30 EST 2025
Sun Nov 09 12:26:12 EST 2025
Tue Oct 07 07:27:40 EDT 2025
Tue Nov 04 18:17:02 EST 2025
Sat Nov 01 14:16:25 EDT 2025
Sat Nov 29 07:18:52 EST 2025
Tue Nov 18 21:44:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords transfer learning
fault diagnosis
adaptive batch normalization algorithm
ball screw
convolutional neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-dce0a4a7af62fe7b6768a87c1e4108178b88a69c37ac3d663f179a6944c1db443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1581-128X
OpenAccessLink https://doaj.org/article/de0fffe63ce34c10b9549ead9cbc80b5
PMID 36016031
PQID 2706455570
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_de0fffe63ce34c10b9549ead9cbc80b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9416437
proquest_miscellaneous_2707608693
proquest_journals_2706455570
gale_infotracacademiconefile_A746531268
pubmed_primary_36016031
crossref_citationtrail_10_3390_s22166270
crossref_primary_10_3390_s22166270
PublicationCentury 2000
PublicationDate 20220820
PublicationDateYYYYMMDD 2022-08-20
PublicationDate_xml – month: 8
  year: 2022
  text: 20220820
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_6) 2013; 36
Lei (ref_4) 2016; 25
Deng (ref_5) 2017; 24
Yang (ref_3) 2020; 48
Moslem (ref_8) 2020; 151
Tong (ref_9) 2018; 2018
ref_13
ref_12
ref_10
Lee (ref_1) 2015; 2015
Cao (ref_7) 2018; 6
Shan (ref_2) 2020; 20
ref_15
Li (ref_14) 2018; 80
Liao (ref_11) 2021; 9
References_xml – volume: 36
  start-page: 1134
  year: 2013
  ident: ref_6
  article-title: Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.167
– volume: 24
  start-page: 500
  year: 2017
  ident: ref_5
  article-title: Universum Autoencoder-Based Domain Adaptation for Speech Emotion Recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2672753
– volume: 6
  start-page: 26241
  year: 2018
  ident: ref_7
  article-title: Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837621
– volume: 2018
  start-page: 6714520
  year: 2018
  ident: ref_9
  article-title: Bearing Fault Diagnosis Based on Domain Adaptation Using Transferable Features under Different Working Conditions
  publication-title: Shock Vib.
  doi: 10.1155/2018/6714520
– volume: 20
  start-page: 7896
  year: 2020
  ident: ref_2
  article-title: A multisensor data fusion method for ball screw fault diagnosis based on convolutional neural network with selected channels
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2980868
– ident: ref_12
– ident: ref_10
– volume: 25
  start-page: 1177
  year: 2016
  ident: ref_4
  article-title: LSDT: Latent Sparse Domain Transfer Learning for Visual Adaptation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2516952
– volume: 48
  start-page: 1102
  year: 2020
  ident: ref_3
  article-title: Fault diagnosis of ball screw in industrial robots using non-stationary motor current signals
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.05.151
– ident: ref_15
– volume: 2015
  start-page: 435870
  year: 2015
  ident: ref_1
  article-title: Failure Diagnosis System for a Ball-Screw by Using Vibration Signals
  publication-title: Shock. Vib.
– volume: 151
  start-page: 103932
  year: 2020
  ident: ref_8
  article-title: Intelligent ball screw fault diagnosis using a deep domain adaptation methodology
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103932
– volume: 9
  start-page: 45175
  year: 2021
  ident: ref_11
  article-title: Research on a Rolling Bearing Fault Detection Method With Wavelet Convolution Deep Transfer Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067152
– ident: ref_13
  doi: 10.20944/preprints201701.0132.v1
– volume: 80
  start-page: 109
  year: 2018
  ident: ref_14
  article-title: Adaptive Batch Normalization for practical domain adaptation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.005
RelatedPersons Liu Chang
RelatedPersons_xml – fullname: Liu Chang
SSID ssj0023338
Score 2.4065652
Snippet The ball screw is the core component of the CNC machine tool feed system, and its health plays an important role in the feed system and even in the entire CNC...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6270
SubjectTerms Adaptability
Adaptation
adaptive batch normalization algorithm
Algorithms
Analysis
ball screw
convolutional neural network
Fault diagnosis
Knowledge
Liu Chang
Machine Learning
Machine-tools
Machinists' tools
Manufacturing
Neural networks
Noise
Signal processing
Tool industry
transfer learning
Working conditions
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QCH8iwNFGQQElyiJrbXTk6oW1iBhCokXnuLHMcuK62SssmWv89M4k13BeLCNfZhnHl-fnwD8LKU3Btb-jjnRsaylFWclzaPpU-lqbjXvOfZ_vZRn51l83n-KWy4teFa5SYm9oG6aiztkR9zTcxqRBj15uJnTF2j6HQ1tNC4DjeobTbZuZ5fAS6B-GtgExII7Y9bzlPiO092clBP1f9nQN7KSLu3JbfSz-zO_wp-F_ZD4clOBku5B9dcfR9ub9ERPoAPU7Ncss9YR_5iM7NeduztcBFv0bIpZruKNTX7bqhVRcdOm_oymC3rE553KxbYWs8fwtfZuy-n7-PQaiG2UmRdjItLjDTaeMW906VCFGIybVMnUywadFZmmVG5FdpYUWGV4tGR8YOUNq1KKcUB7NVN7Q6BZZWvlJ9M_CQRCB4RIinl0SREYnKyigheb35-YQMPObXDWBaIR0hPxainCF6MUy8G8o2_TZqSBscJxJfdf2hW50Vwv6JyiffeKWGdQJGTkk430YlyW9osKScRvCL9F-TVKIw14XECLon4sYoTTTx0KVdZBEcbNRfB3dviSscRPB-H0VHp9MXUrln3c7RCAJmLCB4NFjXKLNTQ7jsCvWNrO4vaHakXP3oy8Bwrain043-L9QRucXq3kVBYPIK9brV2T-GmvewW7epZ7zW_AY8cItg
  priority: 102
  providerName: ProQuest
Title Ball Screw Fault Diagnosis Based on Wavelet Convolution Transfer Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/36016031
https://www.proquest.com/docview/2706455570
https://www.proquest.com/docview/2707608693
https://pubmed.ncbi.nlm.nih.gov/PMC9416437
https://doaj.org/article/de0fffe63ce34c10b9549ead9cbc80b5
Volume 22
WOSCitedRecordID wos000845195300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOcS2K0MQoJLtEns-nHc7rZiJbaqeJZTZDs2VKpS1KbLjd_OOEmjRrsSFy4-2HMYz3g8_mT7G4A3hmVeW-NjlWkWM8OKWBmrYuZTpovMi6zm2f76QUyncj5Xs71SX-FNWEMP3BjupHCJ995xah1lNk1MuJfC6StrrExMzV6aCLUDUy3Uooi8Gh4hiqD-ZJNlaWA6T3rZpybpv74V7-Wi_jvJvcQzeQgP2hMjOW00fQS3XPkY7u_xCD6Bi5FeLsknPAD-JhO9XVbkvHlBt9iQEaapgqxK8k2HGhMVOVuVV-16I3Wm8m5NWprVH0_hy2T8-ex93NZIiC2jsopRt0QzLbTnmXfCcIQPWgqbOpZithfSSKm5slRoSws8XniMQOxgaMvCMEafwUG5Kt1zILLwBffDoR8mFFEfYhvOPfqSJloFd0bwbme73LYE4qGOxTJHIBHMnHdmjuB1J_qrYc24SWgUHNAJBKLrugPdn7fuz__l_gjeBvflIRxRGavbXwU4pUBslZ-KQCCXZlxGcLTzcN7G6SZHNTgbBhqyCF51wxhh4dpEl261rWUER-SnaASHzYLodKa8qdMdgegtld6k-iPl4mfN4q3wKMyoePE_rPAS7mXhW0YSdr0jOKjWW3cMd-1VtdisB3BbzEXdygHcGY2ns4-DOlywvfwzxr7ZxeXs-1-uBx0k
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aA4nxwPcgMMAgELxES2w3Th4QWjeqVSsVEgP6FhzHHpWqZLTpJv4Uv5F7k7RrBeJtD7zGVmTHx_f4xPa5AC8zyZ02mfMTrqUvM5n7SWYSX7pQ6pw7xWuf7S8DNRzGo1HycQN-Le7C0LHKRUysA3VeGvpHvssVOauRYdS70x8-ZY2i3dVFCo0GFkf25zlKttnb_gGO7yvOe--P9w_9NquAb6SIKz83NtBSK-0i7qzKIlxw61iZ0MoQ-VHFWRzrKDFCaSNyJGSHmMUHUpowz6QU-N4rcBXjuCKxp0YXAk-g3mvci4RIgt0Z5yH5qwdrnFenBviTAFYYcP105grd9W79bx_qNtxsF9Zsr5kJd2DDFnfhxord4j3od_Vkwj7hOvmc9fR8UrGD5qDheMa6yOY5Kwv2VVMqjortl8VZOy1ZTejOTlnrRntyHz5fSl-2YbMoC_sQWJy7PHKdjusEAsUxSsAocgh5EeiEUO_Bm8Vgp6b1Wad0H5MU9RbhIl3iwoMXy6qnjbnI3yp1CTHLCuQHXj8opydpG17S3AbOORsJYwU2Ocho9xaDRGIyEwdZx4PXhLeUohY2xuj28gV2ify_0j1FPnshj2IPdhawSttwNksvMOXB82UxBiLaXdKFLed1HRWhQE6EBw8aBC_bLKImnbkHag3ba51aLynG32uz8wQVgxTq0b-b9QyuHx5_GKSD_vDoMWxxuqMSEAXswGY1ndsncM2cVePZ9Gk9Yxl8u2zk_wZF8n-5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWMAgEFyiJrYbJweEtlsqql1WlXgtp-A49lKpSpY-dsVf49cxk6ShFYjbHrjGVjSOv5nPE9vfADzLJHfaZM5PuJa-zGTuJ5lJfOlCqXPuFK90tj8dqMPD-OgoGW_Bz9VdGDpWuYqJVaDOS0P_yLtckbIaCUZ1XXMsYjwYvj757lMFKdppXZXTqCGyb3-cYfo2fzUa4Fw_53z45sPeW7-pMOAbKeKFnxsbaKmVdhF3VmURLr51rExoZYhcqeIsjnWUGKG0ETmSs0P84gMpTZhnUgp87wXYxiW55B3YHo_ejb-06Z7A7K_WMhIiCbpzzkNSWw82GLAqFPAnHazx4eZZzTXyG177nz_bdbjaLLnZbu0jN2DLFjfhypoQ4y0Y9fV0yt7jCvqMDfVyumCD-gjiZM76yPM5Kwv2WVORjgXbK4vTxmFZRfXOzlijU3t8Gz6ey1juQKcoC3sPWJy7PHK9nusFAtNmTA6jyKEziEAn5A8evFxNfGoaBXYqBDJNMRMjjKQtRjx42nY9qWVH_tapT-hpO5BSePWgnB2nTeBJcxs452wkjBVocpDRvi6Gj8RkJg6yngcvCHspxTM0xujmWgYOiZTB0l1FCnwhj2IPdlYQS5tAN09_48uDJ20zhijad9KFLZdVHxVh6pwID-7WaG5tFlFd6NwDtYHzjUFtthSTb5UMeoK5hBTq_r_NegyXEPDpwehw_wFc5nR5JSBu2IHOYra0D-GiOV1M5rNHjfsy-Hre0P8FqFWKCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ball+Screw+Fault+Diagnosis+Based+on+Wavelet+Convolution+Transfer+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xie%2C+Yifan&rft.au=Liu%2C+Chang&rft.au=Huang%2C+Liji&rft.au=Duan%2C+Hongchun&rft.date=2022-08-20&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fs22166270&rft_id=info%3Apmid%2F36016031&rft.externalDocID=PMC9416437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon