Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface
Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the...
Saved in:
| Published in: | Biomechanics and modeling in mechanobiology Vol. 15; no. 5; pp. 1055 - 1068 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1617-7959, 1617-7940 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane’s nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of
3.75
μ
m
were represented using an elastic membrane governed by a Mooney–Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of
150
μ
m
-
2
under linear shear flow varying from 100 to
400
s
-
1
. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of
400
s
-
1
. Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. |
|---|---|
| AbstractList | Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of 3.75 mu m were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of 150 mu m super(-2) under linear shear flow varying from 100 to 400s super(-1). The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of 400s super(-1). Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane’s nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of 3.75 μ m were represented using an elastic membrane governed by a Mooney–Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of 150 μ m - 2 under linear shear flow varying from 100 to 400 s - 1 . The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of 400 s - 1 . Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of ... were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of ... under linear shear flow varying from 100 to ... The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of ... Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of [Formula: see text] were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of [Formula: see text] under linear shear flow varying from 100 to [Formula: see text]. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of [Formula: see text]. Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of [Formula: see text] were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of [Formula: see text] under linear shear flow varying from 100 to [Formula: see text]. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of [Formula: see text]. Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction. |
| Author | Balsara, Hiren D. Banton, Rohan J. Eggleton, Charles D. |
| Author_xml | – sequence: 1 givenname: Hiren D. surname: Balsara fullname: Balsara, Hiren D. organization: Department of Mechanical Engineering, University of Maryland, Baltimore County – sequence: 2 givenname: Rohan J. surname: Banton fullname: Banton, Rohan J. organization: US Army Research Laboratory, Aberdeen Proving Ground – sequence: 3 givenname: Charles D. surname: Eggleton fullname: Eggleton, Charles D. email: eggleton@umbc.edu organization: Department of Mechanical Engineering, University of Maryland, Baltimore County |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26564174$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstq3TAQhkVJaW59gG6KoJtu3I5kXexlCW0aCGSTrM1YHp0o-HIqyYX06WvXSSiBlqw0Qt8_mst_zA7GaSTG3gn4JADs5yRAlrYAoQuwShb6FTsSRtjC1goOnmJdH7LjlO4AJJRV-YYdSqONElYdsf3F-JNSDjvMYdzxfEucvCeXE588H2hoI47EO_JTHLANfcj3fBo5xhx8cAF77nCf5p44dreUwvKWpz95_Dy6vNyxD7-o42mOHh2dstce-0RvH84TdvPt6_XZ9-Ly6vzi7Mtl4VRZ5aJTXqlOA4Lw2nnvBShZC0W-VbY0zlZthyi9ciCdobY1iGRaqb1GtK0qT9jHLe8-Tj_mpcVmCMlR3y_tTHNqRKV0BRYq_QJU2qpSoF6CiroGqaVY0A_P0Ltpjss0NgqMUWal3j9QcztQ1-xjGDDeN48bWgCxAS5OKUXyT4iAZnVBs7mgWVzQrC5o1irtM40LGddd5Iih_69Sbsq0_DLuKP5V9D9FvwHV8saY |
| CitedBy_id | crossref_primary_10_1007_s10237_017_0956_9 crossref_primary_10_1016_j_bpj_2024_11_3315 crossref_primary_10_1017_jfm_2018_890 crossref_primary_10_1016_j_colsurfb_2018_10_017 |
| Cites_doi | 10.1152/ajpheart.91536.2007 10.1529/biophysj.104.051029 10.1039/b717821b 10.1529/biophysj.104.039693 10.4049/jimmunol.180.10.6439 10.1039/c1ra01108a 10.1016/0378-5173(86)90091-8 10.1016/0009-2509(86)85144-2 10.1126/science.1125527 10.1074/jbc.273.49.32506 10.1098/rsta.1948.0024 10.1016/j.jconrel.2011.10.005 10.1016/S0021-9290(99)00174-8 10.1016/j.ceb.2008.04.003 10.1083/jcb.200403144 10.1126/science.169.3949.933 10.1021/ma020669l 10.1021/j100794a030 10.1039/b204500c 10.1016/j.jtbi.2008.05.020 10.1083/jcb.144.1.185 10.1007/s00397-008-0333-9 10.1016/0378-5173(83)90127-8 10.1016/j.jcis.2005.08.062 10.1083/jcb.112.3.491 10.1080/10739680802425195 10.1016/j.jcis.2006.04.062 10.1039/C0SM00812E 10.1016/S0006-3495(92)81660-0 10.1529/biophysj.104.054171 10.1063/1.869703 10.1063/1.1862635 10.1016/S0142-9612(99)00111-8 10.1063/1.1712836 10.1039/b602417c 10.1016/0092-8674(91)90393-D 10.1016/S0301-4622(02)00191-6 10.1243/03093247V242055 10.1073/pnas.95.21.12283 10.1016/S0006-3495(98)77758-6 10.1021/la052314b 10.1016/S0006-3495(92)81577-1 10.1016/0021-9991(89)90213-1 10.1073/pnas.95.12.6797 10.1016/j.jbiomech.2007.03.017 10.1007/s10237-010-0201-2 10.1126/science.347575 10.3109/02652048909019914 10.1021/la1017032 10.1182/blood.V82.4.1308.1308 10.1007/978-3-319-11355-5 10.1182/blood.V86.12.4417.bloodjournal86124417 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 Springer-Verlag Berlin Heidelberg 2016 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Springer-Verlag Berlin Heidelberg 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7X8 |
| DOI | 10.1007/s10237-015-0742-5 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database ProQuest Central Student Technology Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology |
| EISSN | 1617-7940 |
| EndPage | 1068 |
| ExternalDocumentID | 4180611581 26564174 10_1007_s10237_015_0742_5 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c438t-d4f44d50a01f5cfff1042914efb4736c78bdaa2f4c02c6ebb6aae6b25f5aa7b43 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383611800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1617-7959 |
| IngestDate | Fri Sep 05 12:24:29 EDT 2025 Tue Oct 07 09:25:08 EDT 2025 Sun Nov 09 13:16:33 EST 2025 Fri Nov 07 23:31:51 EST 2025 Wed Feb 19 02:41:46 EST 2025 Tue Nov 18 22:43:18 EST 2025 Sat Nov 29 02:06:44 EST 2025 Fri Feb 21 02:36:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Adhesion mechanics Capsule deformation Immersed boundary method Leuko-polymersomes Monte Carlo simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-d4f44d50a01f5cfff1042914efb4736c78bdaa2f4c02c6ebb6aae6b25f5aa7b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26564174 |
| PQID | 1819066461 |
| PQPubID | 54766 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1845807085 proquest_miscellaneous_1827884045 proquest_miscellaneous_1819902521 proquest_journals_1819066461 pubmed_primary_26564174 crossref_primary_10_1007_s10237_015_0742_5 crossref_citationtrail_10_1007_s10237_015_0742_5 springer_journals_10_1007_s10237_015_0742_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20161000 2016-10-00 20161001 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
| PublicationTitle | Biomechanics and modeling in mechanobiology |
| PublicationTitleAbbrev | Biomech Model Mechanobiol |
| PublicationTitleAlternate | Biomech Model Mechanobiol |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Jadhav, Chan, Konstantopoulos, Eggleton (CR27) 2007; 40 Dagastine, Manica, Carnie, Chan, Stevens, Grieser (CR11) 2006; 313 Pappu, Doddi, Bagchi (CR40) 2008; 254 Green (CR20) 1970; 169 Horn, Asadullah, Connor (CR24) 2006; 22 CR32 Mehta, Cummings, McEver (CR34) 1998; 273 Dembo (CR12) 1994; 24 Mooney (CR36) 1940; 11 Alexeev, Verberg, Balazs (CR1) 2006; 2 Discher, Maloney, Grainger, Hall (CR14) 2002; 101–102 Moore, Varki, McEver (CR37) 1991; 112 Eggleton, Popel (CR18) 1998; 10 Nimmerfall, Rosenthaler (CR38) 1986; 32 Bart (CR3) 1968; 23 Hyduk, Cybulsky (CR25) 2009; 16 CR48 Caputo, Hammer (CR6) 2005; 89 Connor, Horn (CR10) 2003; 123 Edwards-Lévy, Lévy (CR17) 1999; 20 Chen, Springer (CR9) 1999; 144 Alon, Ley (CR2) 2008; 20 Dore, Korthuis, Granger, Entman, Smith (CR16) 1993; 82 Rachik, Barthes-Biesel, Carin, Edwards-Levy (CR46) 2006; 301 Bell (CR4) 1978; 200 Tözeren, Ley (CR53) 1992; 63 Lawrence, Springer (CR30) 1991; 65 Shao, Ting-Beall, Hochmuth (CR49) 1998; 95 Bermudez, Brannan, Hammer, Bates, Discher (CR5) 2002; 35 Chan, Klaseboer, Manica (CR7) 2011; 7 Gupta, Sraj, Konstantopoulos, Eggleton (CR21) 2010; 9 Pawar, Jadhav, Eggleton, Konstantopoulos (CR41) 2008; 295 Zdravkov, Peters, Meijer (CR57) 2006; 296 Lee, Feijen (CR31) 2012; 161 Khismatullin, Truskey (CR28) 2005; 17 Tandon, Diamond (CR52) 1998; 75 CR13 Platikanov (CR44) 1964; 68 Yago, Wu, Wey, Klopocki, Zhu, McEver (CR56) 2004; 166 Dong, Lei (CR15) 2000; 33 Krasik, Hammer (CR29) 2004; 87 Petri, Phillipson, Kubes (CR43) 2008; 180 Quan (CR45) 2012; 2 Charrier, Shrivastava, Wu (CR8) 1989; 24 Magill (CR33) 1990; 105 Miyazawa, Yajima, Kaneda, Yanaki (CR35) 2000; 51 Peskin (CR42) 1989; 81 Hammer, Robbins, Haun, Lin, Qi, Smith, Ghoroghchian, Therien, Bates (CR23) 2008; 139 Jadhav, Eggleton, Konstantopoulos (CR26) 2005; 88 Norman, Moore, McEver, Ley (CR39) 1995; 86 Tufano, Peters, Van Puyvelde, Meijer (CR54) 2009; 48 Smith, Smith, Lawrence, Ley (CR50) 2002; 9 Rivlin (CR47) 1948; 241 Soda, Pannell, Olson (CR51) 1989; 6 Vallner, Honigberg, Kotzan, Stewart (CR55) 1983; 16 Hammer, Apte (CR22) 1992; 63 Fritz, Katopodis, Kolbinger, Anselmetti (CR19) 1998; 95 VK Gupta (742_CR21) 2010; 9 DA Hammer (742_CR22) 1992; 63 742_CR13 M Mooney (742_CR36) 1940; 11 S Jadhav (742_CR27) 2007; 40 R Rivlin (742_CR47) 1948; 241 J Fritz (742_CR19) 1998; 95 B Petri (742_CR43) 2008; 180 P Mehta (742_CR34) 1998; 273 P Pawar (742_CR41) 2008; 295 C Eggleton (742_CR18) 1998; 10 D Platikanov (742_CR44) 1964; 68 P Tandon (742_CR52) 1998; 75 DB Khismatullin (742_CR28) 2005; 17 T Yago (742_CR56) 2004; 166 EF Krasik (742_CR29) 2004; 87 RG Horn (742_CR24) 2006; 22 JY Shao (742_CR49) 1998; 95 MB Lawrence (742_CR30) 1991; 65 M Magill (742_CR33) 1990; 105 F Nimmerfall (742_CR38) 1986; 32 C Dong (742_CR15) 2000; 33 DA Hammer (742_CR23) 2008; 139 J Vallner (742_CR55) 1983; 16 M Dore (742_CR16) 1993; 82 ML Smith (742_CR50) 2002; 9 M Rachik (742_CR46) 2006; 301 C Tufano (742_CR54) 2009; 48 J Charrier (742_CR8) 1989; 24 S Chen (742_CR9) 1999; 144 742_CR32 S Jadhav (742_CR26) 2005; 88 SJ Hyduk (742_CR25) 2009; 16 JS Lee (742_CR31) 2012; 161 KE Caputo (742_CR6) 2005; 89 V Pappu (742_CR40) 2008; 254 RR Dagastine (742_CR11) 2006; 313 K Miyazawa (742_CR35) 2000; 51 BM Discher (742_CR14) 2002; 101–102 A Tözeren (742_CR53) 1992; 63 M Soda (742_CR51) 1989; 6 S Quan (742_CR45) 2012; 2 C Peskin (742_CR42) 1989; 81 F Edwards-Lévy (742_CR17) 1999; 20 GI Bell (742_CR4) 1978; 200 KL Moore (742_CR37) 1991; 112 H Bermudez (742_CR5) 2002; 35 JN Connor (742_CR10) 2003; 123 AE Green (742_CR20) 1970; 169 742_CR48 DY Chan (742_CR7) 2011; 7 R Alon (742_CR2) 2008; 20 A Zdravkov (742_CR57) 2006; 296 KE Norman (742_CR39) 1995; 86 A Alexeev (742_CR1) 2006; 2 E Bart (742_CR3) 1968; 23 M Dembo (742_CR12) 1994; 24 |
| References_xml | – volume: 295 start-page: H1439 issue: 4 year: 2008 end-page: H1450 ident: CR41 article-title: Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.91536.2007 – volume: 88 start-page: 96 issue: 1 year: 2005 end-page: 104 ident: CR26 article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling publication-title: Biophys J doi: 10.1529/biophysj.104.051029 – volume: 139 start-page: 129 year: 2008 end-page: 141 ident: CR23 article-title: Leuko-polymersomes publication-title: Faraday Discuss doi: 10.1039/b717821b – volume: 87 start-page: 2919 issue: 5 year: 2004 end-page: 2930 ident: CR29 article-title: A semianalytic model of leukocyte rolling publication-title: Biophys J doi: 10.1529/biophysj.104.039693 – volume: 180 start-page: 6439 issue: 10 year: 2008 end-page: 6446 ident: CR43 article-title: The physiology of leukocyte recruitment: an in vivo perspective publication-title: J Immunol doi: 10.4049/jimmunol.180.10.6439 – volume: 2 start-page: 1927 issue: 5 year: 2012 end-page: 1935 ident: CR45 article-title: Dynamics and thin film drainage of a deformable droplet moving towards a solid wall with finite inertia publication-title: RSC Adv doi: 10.1039/c1ra01108a – volume: 32 start-page: 1 issue: 1 year: 1986 end-page: 6 ident: CR38 article-title: Modified release of drug: a way to its quantification publication-title: Int J Pharm doi: 10.1016/0378-5173(86)90091-8 – volume: 23 start-page: 193 issue: 3 year: 1968 end-page: 210 ident: CR3 article-title: The slow unsteady settling of a fluid sphere toward a flat fluid interface publication-title: Chem Eng Sci doi: 10.1016/0009-2509(86)85144-2 – volume: 313 start-page: 210 issue: 5784 year: 2006 end-page: 213 ident: CR11 article-title: Dynamic forces between two deformable oil droplets in water publication-title: Science doi: 10.1126/science.1125527 – volume: 273 start-page: 32506 issue: 49 year: 1998 end-page: 32513 ident: CR34 article-title: Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1 publication-title: J Biol Chem doi: 10.1074/jbc.273.49.32506 – volume: 241 start-page: 379 issue: 835 year: 1948 end-page: 397 ident: CR47 article-title: Large elastic deformations of isotropic materials. iv. further developments of the general theory publication-title: Philos Trans R Soc Lond A Math Phys Eng Sci doi: 10.1098/rsta.1948.0024 – volume: 161 start-page: 473 issue: 2 year: 2012 end-page: 483 ident: CR31 article-title: Polymersomes for drug delivery: design, formation and characterization publication-title: J Controll Release doi: 10.1016/j.jconrel.2011.10.005 – volume: 33 start-page: 35 issue: 1 year: 2000 end-page: 43 ident: CR15 article-title: Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability publication-title: J Biomech doi: 10.1016/S0021-9290(99)00174-8 – volume: 20 start-page: 525 issue: 5 year: 2008 end-page: 532 ident: CR2 article-title: Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2008.04.003 – volume: 9 start-page: 523 issue: 6 year: 2002 end-page: 536 ident: CR50 article-title: Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo publication-title: Microcirculation – volume: 24 start-page: 51 year: 1994 end-page: 77 ident: CR12 article-title: On peeling an adherent cell from a surface publication-title: Lect Math Life Sci – volume: 51 start-page: 239 issue: 4 year: 2000 end-page: 252 ident: CR35 article-title: Preparation of a new soft capsule for cosmetics publication-title: J Cosmet Sci – volume: 166 start-page: 913 issue: 6 year: 2004 end-page: 923 ident: CR56 article-title: Catch bonds govern adhesion through l-selectin at threshold shear publication-title: J Cell Biol doi: 10.1083/jcb.200403144 – volume: 169 start-page: 933 issue: 3949 year: 1970 end-page: 941 ident: CR20 article-title: The fundamental nuclear interaction: important developments of the past decade on mesons and the theory of nuclear forces are described publication-title: Science (New York, NY) doi: 10.1126/science.169.3949.933 – volume: 35 start-page: 8203 issue: 21 year: 2002 end-page: 8208 ident: CR5 article-title: Molecular weight dependence of polymersome membrane structure, elasticity, and stability publication-title: Macromolecules doi: 10.1021/ma020669l – volume: 68 start-page: 3619 issue: 12 year: 1964 end-page: 3624 ident: CR44 article-title: Experimental investigation on the dimpling of thin liquid films publication-title: J Phys Chem doi: 10.1021/j100794a030 – volume: 123 start-page: 193 year: 2003 end-page: 206 ident: CR10 article-title: The influence of surface forces on thin film drainage between a fluid drop and a flat solid publication-title: Faraday Discuss doi: 10.1039/b204500c – volume: 254 start-page: 483 issue: 2 year: 2008 end-page: 498 ident: CR40 article-title: A computational study of leukocyte adhesion and its effect on flow pattern in microvessels publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.05.020 – ident: CR32 – volume: 144 start-page: 185 issue: 1 year: 1999 end-page: 200 ident: CR9 article-title: An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear publication-title: J Cell Biol doi: 10.1083/jcb.144.1.185 – volume: 48 start-page: 343 issue: 3 year: 2009 end-page: 358 ident: CR54 article-title: Study of morphological hysteresis in partially immiscible polymers publication-title: Rheol Acta doi: 10.1007/s00397-008-0333-9 – volume: 16 start-page: 47 issue: 1 year: 1983 end-page: 55 ident: CR55 article-title: A proposed general protocol for testing bioequivalence of controlled-release drug products publication-title: Int J Pharm doi: 10.1016/0378-5173(83)90127-8 – volume: 296 start-page: 86 issue: 1 year: 2006 end-page: 94 ident: CR57 article-title: Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2005.08.062 – volume: 112 start-page: 491 issue: 3 year: 1991 end-page: 499 ident: CR37 article-title: GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction publication-title: J Cell Biol doi: 10.1083/jcb.112.3.491 – volume: 16 start-page: 17 issue: 1 year: 2009 end-page: 30 ident: CR25 article-title: Role of alpha4beta1 integrins in chemokine-induced monocyte arrest under conditions of shear stress publication-title: Microcirculation doi: 10.1080/10739680802425195 – volume: 301 start-page: 217 issue: 1 year: 2006 end-page: 226 ident: CR46 article-title: Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.04.062 – volume: 7 start-page: 2235 issue: 6 year: 2011 end-page: 2264 ident: CR7 article-title: Film drainage and coalescence between deformable drops and bubbles publication-title: Soft Matter doi: 10.1039/C0SM00812E – volume: 63 start-page: 700 issue: 3 year: 1992 end-page: 709 ident: CR53 article-title: How do selectins mediate leukocyte rolling in venules? publication-title: Biophys J doi: 10.1016/S0006-3495(92)81660-0 – volume: 89 start-page: 187 issue: 1 year: 2005 end-page: 200 ident: CR6 article-title: Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations publication-title: Biophys J doi: 10.1529/biophysj.104.054171 – volume: 10 start-page: 1834 year: 1998 end-page: 1845 ident: CR18 article-title: Large deformation of red blood cell ghosts in a simple shear flow publication-title: Phys Fluids doi: 10.1063/1.869703 – volume: 17 start-page: 031,505 issue: 3 year: 2005 ident: CR28 article-title: Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity publication-title: Phys Fluids (1994-present) doi: 10.1063/1.1862635 – volume: 82 start-page: 1308 issue: 4 year: 1993 end-page: 1316 ident: CR16 article-title: P-selectin mediates spontaneous leukocyte rolling in vivo publication-title: Blood – volume: 20 start-page: 2069 issue: 21 year: 1999 end-page: 2084 ident: CR17 article-title: Serum albumin-alginate coated beads: mechanical properties and stability publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00111-8 – volume: 11 start-page: 582 year: 1940 end-page: 592 ident: CR36 article-title: A theory of large elastic deformation publication-title: J Appl Phys doi: 10.1063/1.1712836 – volume: 2 start-page: 499 issue: 6 year: 2006 end-page: 509 ident: CR1 article-title: Modeling the interactions between deformable capsules rolling on a compliant surface publication-title: Soft Matter doi: 10.1039/b602417c – volume: 65 start-page: 859 issue: 5 year: 1991 end-page: 873 ident: CR30 article-title: Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins publication-title: Cell doi: 10.1016/0092-8674(91)90393-D – volume: 101–102 start-page: 333 year: 2002 end-page: 345 ident: CR14 article-title: Effect of neutral lipids on coexisting phases in monolayers of pulmonary surfactant publication-title: Biophys Chem doi: 10.1016/S0301-4622(02)00191-6 – volume: 24 start-page: 55 issue: 2 year: 1989 end-page: 74 ident: CR8 article-title: Free and constrained inflation of elastic membranes in relation to thermoforming-non-axisymmetric problems publication-title: J Strain Anal Eng Design doi: 10.1243/03093247V242055 – volume: 95 start-page: 12283 issue: 21 year: 1998 end-page: 12288 ident: CR19 article-title: Force-mediated kinetics of single p-selectin/ligand complexes observed by atomic force microscopy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.21.12283 – volume: 75 start-page: 3163 issue: 6 year: 1998 end-page: 3178 ident: CR52 article-title: Kinetics of beta2-integrin and l-selectin bonding during neutrophil aggregation in shear flow publication-title: Biophys J doi: 10.1016/S0006-3495(98)77758-6 – ident: CR48 – volume: 22 start-page: 2610 issue: 6 year: 2006 end-page: 2619 ident: CR24 article-title: Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall publication-title: Langmuir doi: 10.1021/la052314b – volume: 63 start-page: 35 issue: 1 year: 1992 end-page: 57 ident: CR22 article-title: Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion publication-title: Biophys J doi: 10.1016/S0006-3495(92)81577-1 – volume: 105 start-page: 59 issue: 6 year: 1990 end-page: 62 ident: CR33 article-title: Microencapsulation for the personal care industry publication-title: Cosmet Toilet – volume: 81 start-page: 372 issue: 2 year: 1989 end-page: 405 ident: CR42 article-title: A 3-dimensional computational method for blood-flow in the heart. 1 Immersed elastic fibers in a viscous incompressible fluid publication-title: J Comput Phys doi: 10.1016/0021-9991(89)90213-1 – volume: 95 start-page: 6797 issue: 12 year: 1998 end-page: 6802 ident: CR49 article-title: Static and dynamic lengths of neutrophil microvilli publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.12.6797 – ident: CR13 – volume: 40 start-page: 2891 issue: 13 year: 2007 end-page: 2897 ident: CR27 article-title: Shear modulation of intercellular contact area between two deformable cells colliding under flow publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.03.017 – volume: 9 start-page: 613 issue: 5 year: 2010 end-page: 627 ident: CR21 article-title: Multi-scale simulation of L-selectin-PSGL-1-dependent homotypic leukocyte binding and rupture publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-010-0201-2 – volume: 200 start-page: 618 issue: 4342 year: 1978 end-page: 627 ident: CR4 article-title: Models for the specific adhesion of cells to cells publication-title: Science (New York, NY) doi: 10.1126/science.347575 – volume: 86 start-page: 4417 issue: 12 year: 1995 end-page: 4421 ident: CR39 article-title: Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1 publication-title: Blood – volume: 6 start-page: 319 issue: 3 year: 1989 end-page: 326 ident: CR51 article-title: Microencapsulated enzyme systems for the acceleration of cheese ripening publication-title: J Microencapsul doi: 10.3109/02652048909019914 – volume: 295 start-page: H1439 issue: 4 year: 2008 ident: 742_CR41 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.91536.2007 – volume: 2 start-page: 1927 issue: 5 year: 2012 ident: 742_CR45 publication-title: RSC Adv doi: 10.1039/c1ra01108a – volume: 48 start-page: 343 issue: 3 year: 2009 ident: 742_CR54 publication-title: Rheol Acta doi: 10.1007/s00397-008-0333-9 – volume: 24 start-page: 51 year: 1994 ident: 742_CR12 publication-title: Lect Math Life Sci – volume: 166 start-page: 913 issue: 6 year: 2004 ident: 742_CR56 publication-title: J Cell Biol doi: 10.1083/jcb.200403144 – volume: 254 start-page: 483 issue: 2 year: 2008 ident: 742_CR40 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.05.020 – volume: 7 start-page: 2235 issue: 6 year: 2011 ident: 742_CR7 publication-title: Soft Matter doi: 10.1039/C0SM00812E – ident: 742_CR48 doi: 10.1021/la1017032 – volume: 33 start-page: 35 issue: 1 year: 2000 ident: 742_CR15 publication-title: J Biomech doi: 10.1016/S0021-9290(99)00174-8 – volume: 63 start-page: 700 issue: 3 year: 1992 ident: 742_CR53 publication-title: Biophys J doi: 10.1016/S0006-3495(92)81660-0 – volume: 144 start-page: 185 issue: 1 year: 1999 ident: 742_CR9 publication-title: J Cell Biol doi: 10.1083/jcb.144.1.185 – volume: 63 start-page: 35 issue: 1 year: 1992 ident: 742_CR22 publication-title: Biophys J doi: 10.1016/S0006-3495(92)81577-1 – volume: 10 start-page: 1834 year: 1998 ident: 742_CR18 publication-title: Phys Fluids doi: 10.1063/1.869703 – volume: 200 start-page: 618 issue: 4342 year: 1978 ident: 742_CR4 publication-title: Science (New York, NY) doi: 10.1126/science.347575 – volume: 101–102 start-page: 333 year: 2002 ident: 742_CR14 publication-title: Biophys Chem doi: 10.1016/S0301-4622(02)00191-6 – volume: 105 start-page: 59 issue: 6 year: 1990 ident: 742_CR33 publication-title: Cosmet Toilet – volume: 81 start-page: 372 issue: 2 year: 1989 ident: 742_CR42 publication-title: J Comput Phys doi: 10.1016/0021-9991(89)90213-1 – volume: 16 start-page: 17 issue: 1 year: 2009 ident: 742_CR25 publication-title: Microcirculation doi: 10.1080/10739680802425195 – volume: 95 start-page: 12283 issue: 21 year: 1998 ident: 742_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.21.12283 – volume: 51 start-page: 239 issue: 4 year: 2000 ident: 742_CR35 publication-title: J Cosmet Sci – volume: 75 start-page: 3163 issue: 6 year: 1998 ident: 742_CR52 publication-title: Biophys J doi: 10.1016/S0006-3495(98)77758-6 – volume: 82 start-page: 1308 issue: 4 year: 1993 ident: 742_CR16 publication-title: Blood doi: 10.1182/blood.V82.4.1308.1308 – volume: 89 start-page: 187 issue: 1 year: 2005 ident: 742_CR6 publication-title: Biophys J doi: 10.1529/biophysj.104.054171 – volume: 40 start-page: 2891 issue: 13 year: 2007 ident: 742_CR27 publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.03.017 – volume: 65 start-page: 859 issue: 5 year: 1991 ident: 742_CR30 publication-title: Cell doi: 10.1016/0092-8674(91)90393-D – volume: 20 start-page: 2069 issue: 21 year: 1999 ident: 742_CR17 publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00111-8 – volume: 2 start-page: 499 issue: 6 year: 2006 ident: 742_CR1 publication-title: Soft Matter doi: 10.1039/b602417c – volume: 241 start-page: 379 issue: 835 year: 1948 ident: 742_CR47 publication-title: Philos Trans R Soc Lond A Math Phys Eng Sci doi: 10.1098/rsta.1948.0024 – volume: 20 start-page: 525 issue: 5 year: 2008 ident: 742_CR2 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2008.04.003 – ident: 742_CR13 doi: 10.1007/978-3-319-11355-5 – volume: 112 start-page: 491 issue: 3 year: 1991 ident: 742_CR37 publication-title: J Cell Biol doi: 10.1083/jcb.112.3.491 – volume: 32 start-page: 1 issue: 1 year: 1986 ident: 742_CR38 publication-title: Int J Pharm doi: 10.1016/0378-5173(86)90091-8 – volume: 23 start-page: 193 issue: 3 year: 1968 ident: 742_CR3 publication-title: Chem Eng Sci doi: 10.1016/0009-2509(86)85144-2 – volume: 17 start-page: 031,505 issue: 3 year: 2005 ident: 742_CR28 publication-title: Phys Fluids (1994-present) doi: 10.1063/1.1862635 – volume: 9 start-page: 613 issue: 5 year: 2010 ident: 742_CR21 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-010-0201-2 – ident: 742_CR32 – volume: 139 start-page: 129 year: 2008 ident: 742_CR23 publication-title: Faraday Discuss doi: 10.1039/b717821b – volume: 16 start-page: 47 issue: 1 year: 1983 ident: 742_CR55 publication-title: Int J Pharm doi: 10.1016/0378-5173(83)90127-8 – volume: 296 start-page: 86 issue: 1 year: 2006 ident: 742_CR57 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2005.08.062 – volume: 6 start-page: 319 issue: 3 year: 1989 ident: 742_CR51 publication-title: J Microencapsul doi: 10.3109/02652048909019914 – volume: 313 start-page: 210 issue: 5784 year: 2006 ident: 742_CR11 publication-title: Science doi: 10.1126/science.1125527 – volume: 24 start-page: 55 issue: 2 year: 1989 ident: 742_CR8 publication-title: J Strain Anal Eng Design doi: 10.1243/03093247V242055 – volume: 301 start-page: 217 issue: 1 year: 2006 ident: 742_CR46 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.04.062 – volume: 11 start-page: 582 year: 1940 ident: 742_CR36 publication-title: J Appl Phys doi: 10.1063/1.1712836 – volume: 95 start-page: 6797 issue: 12 year: 1998 ident: 742_CR49 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.12.6797 – volume: 169 start-page: 933 issue: 3949 year: 1970 ident: 742_CR20 publication-title: Science (New York, NY) doi: 10.1126/science.169.3949.933 – volume: 180 start-page: 6439 issue: 10 year: 2008 ident: 742_CR43 publication-title: J Immunol doi: 10.4049/jimmunol.180.10.6439 – volume: 22 start-page: 2610 issue: 6 year: 2006 ident: 742_CR24 publication-title: Langmuir doi: 10.1021/la052314b – volume: 68 start-page: 3619 issue: 12 year: 1964 ident: 742_CR44 publication-title: J Phys Chem doi: 10.1021/j100794a030 – volume: 86 start-page: 4417 issue: 12 year: 1995 ident: 742_CR39 publication-title: Blood doi: 10.1182/blood.V86.12.4417.bloodjournal86124417 – volume: 273 start-page: 32506 issue: 49 year: 1998 ident: 742_CR34 publication-title: J Biol Chem doi: 10.1074/jbc.273.49.32506 – volume: 88 start-page: 96 issue: 1 year: 2005 ident: 742_CR26 publication-title: Biophys J doi: 10.1529/biophysj.104.051029 – volume: 87 start-page: 2919 issue: 5 year: 2004 ident: 742_CR29 publication-title: Biophys J doi: 10.1529/biophysj.104.039693 – volume: 161 start-page: 473 issue: 2 year: 2012 ident: 742_CR31 publication-title: J Controll Release doi: 10.1016/j.jconrel.2011.10.005 – volume: 9 start-page: 523 issue: 6 year: 2002 ident: 742_CR50 publication-title: Microcirculation – volume: 35 start-page: 8203 issue: 21 year: 2002 ident: 742_CR5 publication-title: Macromolecules doi: 10.1021/ma020669l – volume: 123 start-page: 193 year: 2003 ident: 742_CR10 publication-title: Faraday Discuss doi: 10.1039/b204500c |
| SSID | ssj0020383 |
| Score | 2.1412756 |
| Snippet | Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Understanding, manipulating and controlling cellular adhesion processes can be... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1055 |
| SubjectTerms | Adhesion Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Cell adhesion & migration Cell Adhesion - drug effects Cell Membrane - drug effects Cell Membrane - metabolism Contact Deformities Engineering Formability Kinetics Ligands Mathematical models Membrane Glycoproteins - pharmacology Membranes Models, Biological Monte Carlo simulation Numerical Analysis, Computer-Assisted Original Paper Plastics Receptors, Cell Surface - metabolism Shear flow Strain hardening Stress, Mechanical Substrates Surface roughness Theoretical and Applied Mechanics Weight-Bearing |
| SummonAdditionalLinks | – databaseName: Springer LINK Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEB50VdAHL6uuR1eJ4JNSaNNpmj6KuPggi3hj30ouE13YbZdzWVh_vZOmPR5ZPaDPnYZkMpdvMpMJwAtXGjaLIWQ1EmZYSMt2kJqMtJfWsktSZtjp9_XhoT46aj6M97gXU7X7lJIcLPXGZTdZxjLJKovxXFZdhWvs7XTUxo-fvq6jrDz13oy4PYsPaU-pzD8N8bszuoQwL2VHB6dzcOe_pnsXbo8YU7xOQnEPrlC3CzfSq5MXu3BrowfhfTjb6LTRfROMB8VY4yH6IE7plMPpjoSnAd0OpbQXou9EFLnUfUI4w6H2CQnjv1M8fBPLfhgn-sx01Hj8g7xYrObBOHoAXw7efn7zLhufYcgclnqZeQyIvspNXoTKhRCK6MQKpGCxLpWrtfXGyIAul06RtcoYUlZWoTKmtlg-hJ2u7-gRCDa9WqOnxukG4-krhoYajzUpyUhEzSCf9qN1Y4_y-FTGSfuru3Jka8tsbSNb22oGL9e_nKUGHduI96dNbkddXbRFBEVKoSpm8Hz9mbUspk6Yw_0q0cSErNxKI2teHWPkbTRYabaymmn2kpCtZy0ZWiMHiDN4NUnUxiT_tqTH_0T9BG5GPqdqxH3YWc5X9BSuu_Pl8WL-bFCkny3PF8Y priority: 102 providerName: Springer Nature |
| Title | Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface |
| URI | https://link.springer.com/article/10.1007/s10237-015-0742-5 https://www.ncbi.nlm.nih.gov/pubmed/26564174 https://www.proquest.com/docview/1819066461 https://www.proquest.com/docview/1819902521 https://www.proquest.com/docview/1827884045 https://www.proquest.com/docview/1845807085 |
| Volume | 15 |
| WOSCitedRecordID | wos000383611800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1617-7940 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: M7P dateStart: 20020601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1617-7940 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: M7S dateStart: 20020601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1617-7940 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: 7X7 dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1617-7940 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: BENPR dateStart: 20020601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1617-7940 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: M2P dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: RSV dateStart: 20020601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB8LZWUkTiCLxHFs54QAteIAq1ULaG-R40ep1CbLPpDKr8djJ9uiir1wsRRlEtkZe-abR2YAXplCB7HoPZXcccpz1gQ56CrqlGVNE1SS0JHTn-Vkomazato73JZ9WuUgE6Ogtp1BH_nbHFWXEFzk7-Y_KXaNwuhq30JjB_awSkIRU_emG4MrS2U4EcJT7Kk9RDXTr3OswKTLkqJ1SMu_9dI1sHktUBr1z-Hd_535PbjTI0_yPm2V-3DDtQ_gVupFefEQ5lcqbrQnJOBC0ud6kM6Tc3cezOrWEesiyo0ptRekawluvVSFghgdTO4zR7T94dAJR1ZdfA_qzuRyPP3tLFmuF14b9wi-HR58_fiJ9u0YqOGFWlHLPee2zHSW-9J473NUZjl3vuGyEEaqxmrNPDcZM8I1jdDaiYaVvtRaNrx4DLtt17qnQIIIVopbVxlVcfTCcl-5ynLpBAuIRIwgG5hRm75WObbMOKsvqywj_-rAvxr5V5cjeL15ZJ4KdWwj3h9YVfdndllf8mkELze3w2nDEEr4wt060WBglm2lYTKsLmDlbTS8VEHaqkDzJO2wzaxZgNg8GIojeDNsuSuT_NeSnm1f0nO4jR82pSHuw-5qsXYv4Kb5tTpdLsawI2cyjmoMex8OJtOjcPWFTcfxQMXxOIxHx9__AD3vJFc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAZUL78JCASPBhcoicRzHOSCEgKpVl1UPReot-DGGSm2y7AO0_Ch-I5442RZV7K0HzplYHvvzPDzjGUJe2EwHseg9KwQIJlJughyEkoFy3JigkqRud3pYjEbq6Kg8WCO_-7cwmFbZy8RWULvG4h356xRVl5RCpm_H3xl2jcLoat9CI8JiHxY_g8s2fbP3IezvS853Ph6-32VdVwFmRaZmzAkvhMsTnaQ-t977FGVyKsAbUWTSFso4rbkXNuFWgjFSa5CG5z7XujAiC-NeIVeDGcFVmyp4sHTwklj2E10Ghj28-yhqfKrHM0zyzBl6oyz_Ww9eMG4vBGZbfbdz639bqdvkZmdZ03fxKNwha1DfJddjr83FPTI-V1Gk_kqD3Uu7XBbaeHoKpyZobaAOWiu-TRle0KameLRilQ1q9Xg6PwGq3TfAS0Y6a9px0DaIV6rHv8DR6XzitYX75POlsLtJ1uumhoeEBhWjlHBQWlUKvGUWvoTSiQIkDxaXHJCk3_zKdrXYsSXISXVWRRrxUgW8VIiXKh-QV8tfxrEQySrirR4aVSeTptUZLgbk-fJzkCYYIgor3MwjDQae-UoaXgTugi-wikbkKmgTFWgeREQvZ82DCyGCIzwg2z3Ez03yXyw9Ws3SM7Kxe_hpWA33RvuPyQ1c5JhyuUXWZ5M5PCHX7I_Z8XTytD2ylHy5bOT_AfM9fjI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgfAge-BhfBwOCxBOoWpu6afuIgBOI6TSJD-2tShMHJm3t6a6HNP564qY9Dg1OQjzXjRLHsX-OHRvguUm1V4vORTkSRpjI2utBKiMqrKxrb5KU7nf6IJ_NiqOj8nDoc7ocs93HkGR408BVmppuf27d_sbDN5lyymQWsW8XZRfhEnLPIHbXP35Ze1xxqMPJGD7iptpjWPNPQ_xumM6hzXOR0t4ATW_-99RvwY0Be4pXQVhuwwVqduFK6EZ5tgvXN2oT3oH5RgWO5qvwOFEMuR-ideKUTr2b3ZCw1KPePsX2TLSNYFEMVSmE0d4FPyGh7TfiSznRtf04bEvDFeTxD7JiuVo4begufJ6-_fT6XTS0Z4gMpkUXWXSINot1nLjMOOcSNm4JkqsxT5XJi9pqLR2aWBpFda20JlXLzGVa5zWm92CnaRt6AMKr5KJAS6UpSuRbWXQllRZzUtIjFDWBeNybygy1y7mFxkn1q-oys7XybK2YrVU2gRfrX-ahcMc24r1xw6vhDC-rhMGSUqiSCTxbf_anj0MqnsPtKtBwoFZupZG5X53HzttoMCu89i08zf0gcOtZSw-50TuOE3g5StfGJP-2pIf_RP0Urh6-mVYH72cfHsE1ZnlIWNyDnW6xosdw2XzvjpeLJ_35-gm5fyOO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+effects+of+membrane+deformability+on+artificial+capsule+adhesion+to+the+functionalized+surface&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Balsara%2C+Hiren+D&rft.au=Banton%2C+Rohan+J&rft.au=Eggleton%2C+Charles+D&rft.date=2016-10-01&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=15&rft.issue=5&rft.spage=1055&rft.epage=1068&rft_id=info:doi/10.1007%2Fs10237-015-0742-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |