Enhancing cybersecurity in virtual power plants by detecting network based cyber attacks using an unsupervised autoencoder approach

The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are p...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 32374 - 23
Main Authors: Singh, Kumari Nutan, Goswami, Arup Kumar, Chudhury, Nalin Behari Dev, Shuaibu, Hassan Abdurrahman, Ustun, Taha Selim
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05.09.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model’s ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.
AbstractList The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.
Abstract The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model’s ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.
The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.
ArticleNumber 32374
Author Chudhury, Nalin Behari Dev
Shuaibu, Hassan Abdurrahman
Ustun, Taha Selim
Singh, Kumari Nutan
Goswami, Arup Kumar
Author_xml – sequence: 1
  givenname: Kumari Nutan
  surname: Singh
  fullname: Singh, Kumari Nutan
  organization: Electrical Engineering Department, National Institute of Technology Silchar
– sequence: 2
  givenname: Arup Kumar
  surname: Goswami
  fullname: Goswami, Arup Kumar
  organization: Electrical Engineering Department, National Institute of Technology Silchar
– sequence: 3
  givenname: Nalin Behari Dev
  surname: Chudhury
  fullname: Chudhury, Nalin Behari Dev
  organization: Electrical Engineering Department, National Institute of Technology Silchar
– sequence: 4
  givenname: Hassan Abdurrahman
  surname: Shuaibu
  fullname: Shuaibu, Hassan Abdurrahman
  email: hassan.shvaibu@kiu.ac.ug
  organization: Department of Electrical, Telecommunications and Computer Engineering, Kampala International University
– sequence: 5
  givenname: Taha Selim
  surname: Ustun
  fullname: Ustun, Taha Selim
  organization: Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology (AIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40913053$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhE_ArTrJEVWkrVWIDa8uP62mmGTvYTkez5o_jTEpBLPDGlvWdc319z-vqxAcPVfWW4I8Es-5T4qTpuxrTpsakE6zev6jOKOZNTRmlJ3-dT6uLlLa4rIb2nPSvqlOOe8Jww86qn1f-Xnkz-A0yBw0xgZnjkA9o8OhxiHlWI5rCHiKaRuVzQvqALGQweZF4yPsQH5BWCexqgFTOyjwkNKeFUB7NPs0TxMdhYdScA3gT7EJOUwzK3L-pXjo1Jrh42s-r71-uvl3e1Hdfr28vP9_VhrMu18bYRjFLBFcYGtxYSzrNndAcd5bQzvZUmE4L3jJOjHJYCM1a11vletYzxs6r29XXBrWVUxx2Kh5kUIM8XoS4kSrmwYwgceuanrPWAjhOW9CaCewICGsUcEeK14fVq7TwY4aU5W5IBsbySRDmJBnlLW-FIE1B3_-DbsMcfen0SLGuTJIX6t0TNesd2Ofn_R5VAegKmBhSiuCeEYLlEgm5RkKWSMhjJOS-iNgqSgX2G4h_av9H9Qudb7s7
Cites_doi 10.1186/s40294-020-00070-w
10.3389/fenrg.2023.1285317
10.1109/TSUSC.2018.2879670
10.1016/j.compeleceng.2023.108638
10.3390/info14030180
10.1155/2024/6969383
10.1109/TNNLS.2015.2404803
10.1016/j.segan.2024.101534
10.1109/TETCI.2017.2739838
10.1016/j.egyr.2022.05.207
10.1109/TSG.2019.2928168
10.1109/PEDG51384.2021.9494255
10.1109/SMARTGRID.2010.5622048
10.1109/STC55697.2022.00019
10.3390/sym13050826
10.1016/j.epsr.2024.110407
10.1109/CSO.2014.15
10.1109/TETC.2014.2364928
10.1145/3600160.3605179
10.1109/ACCESS.2021.3058628
10.3390/info14090500
10.1109/AUPEC48547.2019.211918
10.1109/ISGT-Asia.2019.8881319
10.3390/en14092657
10.1109/WTS.2018.8363930
10.1109/TITS.2021.3068092
10.1109/IAS48185.2021.9677432
10.1186/s42162-021-00139-7
10.1016/j.trpro.2021.07.113
10.1109/ICCSIE55183.2023.10175256
10.1109/CIEEC50170.2021.9510236
10.1186/s42400-022-00134-9
10.1109/ISGT-Asia.2019.8881433
10.1109/TII.2015.2414354
10.1016/j.ijcip.2024.100677
10.3390/en14206507
10.1016/j.jisa.2020.102518
10.3390/s23031683
10.1109/ACCESS.2021.3071141
10.1109/TII.2017.2788868
10.1109/SMC.2016.7844673
10.1109/ICEES51510.2021.9383723
10.1038/s41598-019-55320-6
10.1016/j.comnet.2019.107094
10.1109/ICPECA47973.2019.8975629
10.1080/09720510.2020.1724625
10.1109/ISGT51731.2023.10066361
10.1109/IECON49645.2022.9968505
10.1109/ICCPS.2012.26
10.1016/j.aei.2021.101272
10.1049/gtd2.12848
10.3390/en17030619
10.1109/ACCESS.2017.2728681
10.1109/JSYST.2023.3236951
10.3390/info15010036
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-01863-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Architecture
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_07f59437deef427ebb360f1e6dcae4f1
40913053
10_1038_s41598_025_01863_w
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-ccd5a3d164a0e505dd18b4f6b408d128d926c8b647341caf066b37f9daf939333
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567114400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:31 EDT 2025
Sat Sep 06 17:30:37 EDT 2025
Tue Oct 07 08:07:41 EDT 2025
Tue Sep 09 02:31:55 EDT 2025
Sat Nov 29 07:35:40 EST 2025
Sat Sep 06 10:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Virtual power plant (VPP)
Renewable energy sources (RES)
Energy market (EM)
Cyber security
False data injection attack (FDIA)
Auto-encoder (AE)
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ccd5a3d164a0e505dd18b4f6b408d128d926c8b647341caf066b37f9daf939333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3247384154?pq-origsite=%requestingapplication%
PMID 40913053
PQID 3247384154
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_07f59437deef427ebb360f1e6dcae4f1
proquest_miscellaneous_3247476615
proquest_journals_3247384154
pubmed_primary_40913053
crossref_primary_10_1038_s41598_025_01863_w
springer_journals_10_1038_s41598_025_01863_w
PublicationCentury 2000
PublicationDate 2025-09-05
PublicationDateYYYYMMDD 2025-09-05
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 1863_CR35
1863_CR38
M Ahmed (1863_CR25) 2020; 8
1863_CR37
1863_CR32
1863_CR34
P Hu (1863_CR29) 2023; 23
1863_CR33
DB Unsal (1863_CR30) 2021; 14
Y Ahmed (1863_CR53) 2024; 15
K Shen (1863_CR31) 2023; 14
1863_CR9
TS Ustun (1863_CR36) 2021; 13
1863_CR6
1863_CR5
SK Venkatachary (1863_CR39) 2024; 45
1863_CR3
H Gkoktsis (1863_CR41) 2022; 9
1863_CR2
S Pan (1863_CR18) 2015; 17
M Ozay (1863_CR20) 2016; 27
1863_CR47
J Cui (1863_CR56) 2023; 17
1863_CR46
1863_CR49
GM Abdolrasol (1863_CR1) 2021; 14
1863_CR48
1863_CR43
1863_CR42
1863_CR45
1863_CR44
A Chawla (1863_CR8) 2022; 8
1863_CR40
L Zhang (1863_CR51) 2023; 14
SK Venkatachary (1863_CR11) 2020; 23
SK Venkatachary (1863_CR13) 2021; 4
MJ Zideh (1863_CR54) 2024; 232
1863_CR14
1863_CR58
1863_CR16
1863_CR15
1863_CR10
1863_CR12
1863_CR50
1863_CR52
MZ Gunduz (1863_CR4) 2019
H An (1863_CR57) 2024; 40
1863_CR17
1863_CR19
1863_CR24
1863_CR27
1863_CR26
Y Zhu (1863_CR55) 2023; 11
1863_CR21
1863_CR23
1863_CR22
S Tan (1863_CR7) 2017; 5
1863_CR28
References_xml – volume: 8
  start-page: 4
  year: 2020
  ident: 1863_CR25
  publication-title: Complex. Adapt. Syst. Model.
  doi: 10.1186/s40294-020-00070-w
– volume: 11
  start-page: 1285317
  year: 2023
  ident: 1863_CR55
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1285317
– ident: 1863_CR9
  doi: 10.1109/TSUSC.2018.2879670
– ident: 1863_CR26
  doi: 10.1016/j.compeleceng.2023.108638
– volume: 14
  start-page: 180
  year: 2023
  ident: 1863_CR31
  publication-title: Information
  doi: 10.3390/info14030180
– ident: 1863_CR32
  doi: 10.1155/2024/6969383
– volume: 27
  start-page: 1773
  issue: 8
  year: 2016
  ident: 1863_CR20
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2015.2404803
– volume: 40
  start-page: 2352
  year: 2024
  ident: 1863_CR57
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2024.101534
– ident: 1863_CR16
  doi: 10.1109/TETCI.2017.2739838
– volume: 8
  start-page: 570
  year: 2022
  ident: 1863_CR8
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.05.207
– ident: 1863_CR34
  doi: 10.1109/TSG.2019.2928168
– ident: 1863_CR15
  doi: 10.1109/PEDG51384.2021.9494255
– ident: 1863_CR24
  doi: 10.1109/SMARTGRID.2010.5622048
– ident: 1863_CR12
  doi: 10.1109/STC55697.2022.00019
– volume: 13
  start-page: 826
  issue: 5
  year: 2021
  ident: 1863_CR36
  publication-title: Symmetry
  doi: 10.3390/sym13050826
– volume: 232
  start-page: 0378
  year: 2024
  ident: 1863_CR54
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110407
– ident: 1863_CR21
  doi: 10.1109/CSO.2014.15
– volume: 5
  start-page: 506
  issue: 4
  year: 2017
  ident: 1863_CR7
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2364928
– ident: 1863_CR14
  doi: 10.1145/3600160.3605179
– ident: 1863_CR6
  doi: 10.1109/ACCESS.2021.3058628
– volume: 14
  start-page: 500
  year: 2023
  ident: 1863_CR51
  publication-title: Information
  doi: 10.3390/info14090500
– ident: 1863_CR17
  doi: 10.1109/AUPEC48547.2019.211918
– ident: 1863_CR58
  doi: 10.1109/ISGT-Asia.2019.8881319
– volume: 17
  start-page: 174
  issue: 2
  year: 2015
  ident: 1863_CR18
  publication-title: IJ Netw. Secur.
– volume: 14
  start-page: 2657
  year: 2021
  ident: 1863_CR30
  publication-title: Energies
  doi: 10.3390/en14092657
– ident: 1863_CR45
  doi: 10.1109/WTS.2018.8363930
– ident: 1863_CR10
  doi: 10.1109/TITS.2021.3068092
– ident: 1863_CR52
  doi: 10.1109/IAS48185.2021.9677432
– volume: 4
  start-page: 5
  year: 2021
  ident: 1863_CR13
  publication-title: Energy Inf.
  doi: 10.1186/s42162-021-00139-7
– ident: 1863_CR49
  doi: 10.1016/j.trpro.2021.07.113
– ident: 1863_CR23
  doi: 10.1109/ICCSIE55183.2023.10175256
– ident: 1863_CR44
  doi: 10.1109/CIEEC50170.2021.9510236
– ident: 1863_CR46
  doi: 10.1186/s42400-022-00134-9
– ident: 1863_CR2
  doi: 10.1109/ISGT-Asia.2019.8881433
– ident: 1863_CR3
  doi: 10.1109/TII.2015.2414354
– volume: 45
  start-page: 1874
  year: 2024
  ident: 1863_CR39
  publication-title: Int. J. Crit. Infrastruct. Prot.
  doi: 10.1016/j.ijcip.2024.100677
– ident: 1863_CR42
– volume: 14
  start-page: 6507
  year: 2021
  ident: 1863_CR1
  publication-title: Energies
  doi: 10.3390/en14206507
– ident: 1863_CR33
  doi: 10.1016/j.jisa.2020.102518
– volume: 23
  start-page: 1683
  year: 2023
  ident: 1863_CR29
  publication-title: Sensors
  doi: 10.3390/s23031683
– ident: 1863_CR35
  doi: 10.1109/ACCESS.2021.3071141
– ident: 1863_CR38
  doi: 10.1109/TII.2017.2788868
– ident: 1863_CR47
  doi: 10.1109/SMC.2016.7844673
– ident: 1863_CR43
  doi: 10.1109/ICEES51510.2021.9383723
– volume: 9
  start-page: 1390
  issue: 2
  year: 2022
  ident: 1863_CR41
  publication-title: Latin-American J. Comput.
– ident: 1863_CR48
  doi: 10.1038/s41598-019-55320-6
– year: 2019
  ident: 1863_CR4
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.107094
– ident: 1863_CR5
  doi: 10.1109/ICPECA47973.2019.8975629
– volume: 23
  start-page: 263
  issue: 2
  year: 2020
  ident: 1863_CR11
  publication-title: J. Stat. Manage. Syst.
  doi: 10.1080/09720510.2020.1724625
– ident: 1863_CR19
  doi: 10.1109/ISGT51731.2023.10066361
– ident: 1863_CR37
  doi: 10.1109/IECON49645.2022.9968505
– ident: 1863_CR40
  doi: 10.1109/ICCPS.2012.26
– ident: 1863_CR50
  doi: 10.1016/j.aei.2021.101272
– volume: 17
  start-page: 4514
  year: 2023
  ident: 1863_CR56
  publication-title: IET Gener Transm Distrib.
  doi: 10.1049/gtd2.12848
– ident: 1863_CR22
  doi: 10.3390/en17030619
– ident: 1863_CR28
  doi: 10.1109/ACCESS.2017.2728681
– ident: 1863_CR27
  doi: 10.1109/JSYST.2023.3236951
– volume: 15
  start-page: 36
  year: 2024
  ident: 1863_CR53
  publication-title: Information
  doi: 10.3390/info15010036
SSID ssj0000529419
Score 2.4644504
Snippet The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks....
Abstract The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 32374
SubjectTerms 639/166/4073
639/166/987
639/4077/4073
639/4077/909
Algorithms
Alternative energy sources
Architecture
Auto-encoder (AE)
Communication
Consumers
Cyber security
Cybersecurity
Deep learning
Denial of service attacks
Energy consumption
Energy market (EM)
Energy resources
Energy storage
False data injection attack (FDIA)
Humanities and Social Sciences
Infrastructure
Internet of Things
Interoperability
Machine learning
multidisciplinary
Neural networks
Power plants
Privacy
Renewable energy sources
Renewable energy sources (RES)
Renewable resources
Science
Science (multidisciplinary)
Smart grid technology
Software
Virtual power plant (VPP)
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJuUgozEDaI6sePHEVArDqjiAKg3y8-yEvKudpNWe-aP47GzSxEgLlyTiWN7xp4Zzcw3CL0MHY1W9qGlStqWWcVaG4JtOYuEx0gDL-VjXz6IszN5fq4-Xmv1BTlhFR64btwxEXFQjAofQmS9CNZSTmIXuHcmsFgcHyLUNWeqonr3inVqrpIhVB5vsqaCarIectUkp-3VL5qoAPb_ycr8LUJaFM_pXXRnthjxmzrTe-hGSPfRrdpDcvsAfT9JXwEzI11gt7XZmJsb0uFFwpeLNZSH4BW0QsOrb5Dzgu0W-wChA_gk1SxwDMrM1wGwGUcovMeQEn-BTcJT2kwruFOAxkzjEsAvPVDOgOQP0efTk0_v3rdzZ4XWMSrH1jk_GOqzq2RIyDaQ9520LHLLiPRZY3nVcyctZyIrOWcy27ilIipvoqKKUvoIHaRlCk8Qltln7IjtDTTxYdHkbZddGKJizqpsjjbo1W6X9aoCaOgS-KZSV57ozBNdeKKvGvQWGLGnBPDr8iCLhJ5FQv9LJBp0tGOjnk_kRmfDUVCZf8ga9GL_Op8lCJCYFJZTpWEiWyxDgx5X9u9nwgBANd9YDXq9k4efg_99QYf_Y0FP0e2-CK5qyXCEDsb1FJ6hm-5yXGzWz4vk_wB96gl7
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing cybersecurity in virtual power plants by detecting network based cyber attacks using an unsupervised autoencoder approach
URI https://link.springer.com/article/10.1038/s41598-025-01863-w
https://www.ncbi.nlm.nih.gov/pubmed/40913053
https://www.proquest.com/docview/3247384154
https://www.proquest.com/docview/3247476615
https://doaj.org/article/07f59437deef427ebb360f1e6dcae4f1
Volume 15
WOSCitedRecordID wos001567114400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Lb9Mw-BOsIE1IPMYrMCojcYNoSewm9gltqBNIrIoQoHKK7NgulVCStcmmnvnj-HPSDsTjwsWH5Ivl5HvmewK8MDG1iicmpIKrkCnBQmWMClNmo9RaalJfPvb5fTab8flc5IPDbT2kVW5lohfUui7RR37kFH9GuVM37HVzHuLUKIyuDiM0rsMIx2YjnWfzbOdjwSgWi8VQKxNRfrR2G2BNWYIZazyl4eUv-si37f-TrflbnNSrn9M7_3vwu3B7MDzJcU8p9-CaqQ7g1vFPcYQDuNlPptzch-_T6it24qgWpNwoZyIOY-7IsiIXyxUWnZAGB6yR5htm0hC1IdrgRvhI1eeWE1SRut-AyLbFcn6CifYLIivSVeuuQUmFMLJra2ypqRFyaHP-AD6dTj--eRsO8xrCklHehmWpJ5Jq9wMmI-MsK61jrphNFYu4dnpQiyQtuUrd92BxKR0xpIpmVmhpBRWU0oewV9WVeQyEuz_ROFKJxNFAzEqHRh6biRWsVMIZuQG83GKtaPq2HIUPp1Ne9DguHI4Lj-PiMoATROwOEltq-wv1alEMHFpEmZ0IRjNtjGVJZpSiaWRjk-pSGmbjAA63-C0GPl8XV8gN4PnutuNQDLvIytRdD8MyZwdNAnjUk9PuJAzbsjo5GMCrLX1dbf73F3ry77M8hf3Ek7gIo8kh7LWrzjyDG-VFu1yvxp5H_MrHMDqZzvIPY--KcOtZkuOauXWUvzvLv_wAMF0iRQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQiExKO8AgWMBCeImsTexD4gVKBVV92u9lBQezJ2bC8roeyym-1qz_wffiOePLYgHrceuCYTZ-J8nhl7XgDPbUyd5okNqeA6ZFqwUFurw5S5KHWO2rRKH_vYzwYDfnIihhvwvc2FwbDKViZWgtpMcjwj3_GKP6Pcqxv2Zvo1xK5R6F1tW2jUsDi0q6Xfss1f9977__siSfb3jt8dhE1XgTBnlJdhnpuuosZvE1Rkvf43JuaauVSziBsvrY1I0pzr1L-OxbnyLKeaZk4Y5QT123_qx70Em8yDPerA5rB3NDxdn-qg34zFosnOiSjfmXuWMYstwRg5ntJw-YsGrBoF_Mm6_c0zWym8_Zv_21TdghuNaU1267VwGzZssQXXd3_ylGzBlbr35uoOfNsrPmOtkWJE8pX2RnDTyI-MC3I2nmFaDZliCzky_YKxQkSviLE4ED5S1NHzBI0AUw9AVFliwQKCqQQjogqyKOaLKcpipFGLcoJFQw1SNoXc78KHC5mQe9ApJoV9AIT7vXYc6URh8yPmlIcNj23XCZZr4c34AF62KJHTuvCIrAIGKJc1pqTHlKwwJZcBvEUgrSmxaHh1YTIbyUYGyShzXcFoZqx1LMms1jSNXGxTkyvLXBzAdosn2UiyuTwHUwDP1re9DELHkirsZFHTsMxbet0A7tfwXXPCsPCsl_QBvGrxfD743z_o4b95eQpXD46P-rLfGxw-gmtJtbxEGHW3oVPOFvYxXM7PyvF89qRZoQQ-XTTSfwC1YHln
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOkAIicuAERhgJHiCqEnsJvYDQhtrxbSpqhCgvRk7tkulKS1tuqrP_Ct-HT65dCAub3vgNTlxHOfzufjcAJ7bmDrNExtSwXXItGChtlaHKXNR6hy1aZU-9ukkGw756akYbcH3NhcGwypbnlgxajPN8Yy86wV_RrkXN6zrmrCI0eHgzexriB2k0NPattOoIXJs1ytvvi1eHx36f_0iSQb9D2_fhU2HgTBnlJdhnpueosabDCqyXhcwJuaauVSziBvPuY1I0pzr1L-axbny0081zZwwygkqKB6Geva_nVFv9HRg-6A_HL3fnPCgD43FosnUiSjvLvz0MaMtwXg5ntJw9Ys0rJoG_EnT_c1LWwm_wa3_edluw81G5Sb79R65A1u22IEb-z95UHbgat2Tc30XvvWLL1iDpBiTfK29ctw0-COTgpxP5phuQ2bYWo7MzjCGiOg1MRYHwkeKOqqeoHJg6gGIKkssZEAwxWBMVEGWxWI5Qx6NNGpZTrGYqEHKpsD7Pfh4KQtyHzrFtLAPgHBvg8eRThQ2RWJOeQjx2PacYLkWXr0P4GWLGDmrC5LIKpCAclnjS3p8yQpfchXAAYJqQ4nFxKsL0_lYNrxJRpnrCUYzY61jSWa1pmnkYpuaXFnm4gD2WmzJhsMt5AWwAni2ue15EzqcVGGny5qGZV4D7AWwW0N5MxOGBWm9BAjgVYvti8H__kEP_z2Xp3DNw1ueHA2PH8H1pNppIox6e9Ap50v7GK7k5-VkMX_SbFYCny8b6D8AX2GCAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cybersecurity+in+virtual+power+plants+by+detecting+network+based+cyber+attacks+using+an+unsupervised+autoencoder+approach&rft.jtitle=Scientific+reports&rft.au=Singh%2C+Kumari+Nutan&rft.au=Goswami%2C+Arup+Kumar&rft.au=Chudhury%2C+Nalin+Behari+Dev&rft.au=Shuaibu%2C+Hassan+Abdurrahman&rft.date=2025-09-05&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=32374&rft_id=info:doi/10.1038%2Fs41598-025-01863-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon