Enhancing cybersecurity in virtual power plants by detecting network based cyber attacks using an unsupervised autoencoder approach
The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are p...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 32374 - 23 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
05.09.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model’s ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations. |
|---|---|
| AbstractList | The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations. Abstract The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model’s ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations. The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations.The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity. Common attack types include Denial of Service (DoS), Man-in-the-Middle (MITM), and False Data Injection Attacks (FDIA).Among these threats, FDIA are especially concerning as they manipulate critical operational data, such as bid prices and energy quantities, to disrupt system reliability, market stability, and financial performance. This study proposes an unsupervised Autoencoder (AE) deep learning approach to detect FDIA in VPP systems. The methodology is validated on a 9-bus and IEEE-39 bus test system modeled in MATLAB Simulink, encompassing renewable energy sources, energy storage systems, and variable loads. Time-series data generated over 1,000 days is used for training, validation, and testing the AE model. The results demonstrate the model's ability to detect anomalies with high accuracy by analyzing reconstruction errors. By identifying false data, the approach ensures system reliability, protects against financial losses, and maintains energy market stability. This work highlights the importance of advanced machine learning techniques in enhancing cyber security for IoT-based energy systems and ensuring secure VPP operations. |
| ArticleNumber | 32374 |
| Author | Chudhury, Nalin Behari Dev Shuaibu, Hassan Abdurrahman Ustun, Taha Selim Singh, Kumari Nutan Goswami, Arup Kumar |
| Author_xml | – sequence: 1 givenname: Kumari Nutan surname: Singh fullname: Singh, Kumari Nutan organization: Electrical Engineering Department, National Institute of Technology Silchar – sequence: 2 givenname: Arup Kumar surname: Goswami fullname: Goswami, Arup Kumar organization: Electrical Engineering Department, National Institute of Technology Silchar – sequence: 3 givenname: Nalin Behari Dev surname: Chudhury fullname: Chudhury, Nalin Behari Dev organization: Electrical Engineering Department, National Institute of Technology Silchar – sequence: 4 givenname: Hassan Abdurrahman surname: Shuaibu fullname: Shuaibu, Hassan Abdurrahman email: hassan.shvaibu@kiu.ac.ug organization: Department of Electrical, Telecommunications and Computer Engineering, Kampala International University – sequence: 5 givenname: Taha Selim surname: Ustun fullname: Ustun, Taha Selim organization: Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology (AIST) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40913053$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNUREvpH2CBLLFhE_ArTrJEVWkrVWIDa8uP62mmGTvYTkez5o_jTEpBLPDGlvWdc319z-vqxAcPVfWW4I8Es-5T4qTpuxrTpsakE6zev6jOKOZNTRmlJ3-dT6uLlLa4rIb2nPSvqlOOe8Jww86qn1f-Xnkz-A0yBw0xgZnjkA9o8OhxiHlWI5rCHiKaRuVzQvqALGQweZF4yPsQH5BWCexqgFTOyjwkNKeFUB7NPs0TxMdhYdScA3gT7EJOUwzK3L-pXjo1Jrh42s-r71-uvl3e1Hdfr28vP9_VhrMu18bYRjFLBFcYGtxYSzrNndAcd5bQzvZUmE4L3jJOjHJYCM1a11vletYzxs6r29XXBrWVUxx2Kh5kUIM8XoS4kSrmwYwgceuanrPWAjhOW9CaCewICGsUcEeK14fVq7TwY4aU5W5IBsbySRDmJBnlLW-FIE1B3_-DbsMcfen0SLGuTJIX6t0TNesd2Ofn_R5VAegKmBhSiuCeEYLlEgm5RkKWSMhjJOS-iNgqSgX2G4h_av9H9Qudb7s7 |
| Cites_doi | 10.1186/s40294-020-00070-w 10.3389/fenrg.2023.1285317 10.1109/TSUSC.2018.2879670 10.1016/j.compeleceng.2023.108638 10.3390/info14030180 10.1155/2024/6969383 10.1109/TNNLS.2015.2404803 10.1016/j.segan.2024.101534 10.1109/TETCI.2017.2739838 10.1016/j.egyr.2022.05.207 10.1109/TSG.2019.2928168 10.1109/PEDG51384.2021.9494255 10.1109/SMARTGRID.2010.5622048 10.1109/STC55697.2022.00019 10.3390/sym13050826 10.1016/j.epsr.2024.110407 10.1109/CSO.2014.15 10.1109/TETC.2014.2364928 10.1145/3600160.3605179 10.1109/ACCESS.2021.3058628 10.3390/info14090500 10.1109/AUPEC48547.2019.211918 10.1109/ISGT-Asia.2019.8881319 10.3390/en14092657 10.1109/WTS.2018.8363930 10.1109/TITS.2021.3068092 10.1109/IAS48185.2021.9677432 10.1186/s42162-021-00139-7 10.1016/j.trpro.2021.07.113 10.1109/ICCSIE55183.2023.10175256 10.1109/CIEEC50170.2021.9510236 10.1186/s42400-022-00134-9 10.1109/ISGT-Asia.2019.8881433 10.1109/TII.2015.2414354 10.1016/j.ijcip.2024.100677 10.3390/en14206507 10.1016/j.jisa.2020.102518 10.3390/s23031683 10.1109/ACCESS.2021.3071141 10.1109/TII.2017.2788868 10.1109/SMC.2016.7844673 10.1109/ICEES51510.2021.9383723 10.1038/s41598-019-55320-6 10.1016/j.comnet.2019.107094 10.1109/ICPECA47973.2019.8975629 10.1080/09720510.2020.1724625 10.1109/ISGT51731.2023.10066361 10.1109/IECON49645.2022.9968505 10.1109/ICCPS.2012.26 10.1016/j.aei.2021.101272 10.1049/gtd2.12848 10.3390/en17030619 10.1109/ACCESS.2017.2728681 10.1109/JSYST.2023.3236951 10.3390/info15010036 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-01863-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database Biological Science Database ProQuest Databases ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Architecture |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_07f59437deef427ebb360f1e6dcae4f1 40913053 10_1038_s41598_025_01863_w |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-ccd5a3d164a0e505dd18b4f6b408d128d926c8b647341caf066b37f9daf939333 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567114400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:31 EDT 2025 Sat Sep 06 17:30:37 EDT 2025 Tue Oct 07 08:07:41 EDT 2025 Tue Sep 09 02:31:55 EDT 2025 Sat Nov 29 07:35:40 EST 2025 Sat Sep 06 10:14:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Virtual power plant (VPP) Renewable energy sources (RES) Energy market (EM) Cyber security False data injection attack (FDIA) Auto-encoder (AE) |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ccd5a3d164a0e505dd18b4f6b408d128d926c8b647341caf066b37f9daf939333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3247384154?pq-origsite=%requestingapplication% |
| PMID | 40913053 |
| PQID | 3247384154 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_07f59437deef427ebb360f1e6dcae4f1 proquest_miscellaneous_3247476615 proquest_journals_3247384154 pubmed_primary_40913053 crossref_primary_10_1038_s41598_025_01863_w springer_journals_10_1038_s41598_025_01863_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-05 |
| PublicationDateYYYYMMDD | 2025-09-05 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 1863_CR35 1863_CR38 M Ahmed (1863_CR25) 2020; 8 1863_CR37 1863_CR32 1863_CR34 P Hu (1863_CR29) 2023; 23 1863_CR33 DB Unsal (1863_CR30) 2021; 14 Y Ahmed (1863_CR53) 2024; 15 K Shen (1863_CR31) 2023; 14 1863_CR9 TS Ustun (1863_CR36) 2021; 13 1863_CR6 1863_CR5 SK Venkatachary (1863_CR39) 2024; 45 1863_CR3 H Gkoktsis (1863_CR41) 2022; 9 1863_CR2 S Pan (1863_CR18) 2015; 17 M Ozay (1863_CR20) 2016; 27 1863_CR47 J Cui (1863_CR56) 2023; 17 1863_CR46 1863_CR49 GM Abdolrasol (1863_CR1) 2021; 14 1863_CR48 1863_CR43 1863_CR42 1863_CR45 1863_CR44 A Chawla (1863_CR8) 2022; 8 1863_CR40 L Zhang (1863_CR51) 2023; 14 SK Venkatachary (1863_CR11) 2020; 23 SK Venkatachary (1863_CR13) 2021; 4 MJ Zideh (1863_CR54) 2024; 232 1863_CR14 1863_CR58 1863_CR16 1863_CR15 1863_CR10 1863_CR12 1863_CR50 1863_CR52 MZ Gunduz (1863_CR4) 2019 H An (1863_CR57) 2024; 40 1863_CR17 1863_CR19 1863_CR24 1863_CR27 1863_CR26 Y Zhu (1863_CR55) 2023; 11 1863_CR21 1863_CR23 1863_CR22 S Tan (1863_CR7) 2017; 5 1863_CR28 |
| References_xml | – volume: 8 start-page: 4 year: 2020 ident: 1863_CR25 publication-title: Complex. Adapt. Syst. Model. doi: 10.1186/s40294-020-00070-w – volume: 11 start-page: 1285317 year: 2023 ident: 1863_CR55 publication-title: Front. Energy Res. doi: 10.3389/fenrg.2023.1285317 – ident: 1863_CR9 doi: 10.1109/TSUSC.2018.2879670 – ident: 1863_CR26 doi: 10.1016/j.compeleceng.2023.108638 – volume: 14 start-page: 180 year: 2023 ident: 1863_CR31 publication-title: Information doi: 10.3390/info14030180 – ident: 1863_CR32 doi: 10.1155/2024/6969383 – volume: 27 start-page: 1773 issue: 8 year: 2016 ident: 1863_CR20 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2015.2404803 – volume: 40 start-page: 2352 year: 2024 ident: 1863_CR57 publication-title: Sustainable Energy Grids Networks doi: 10.1016/j.segan.2024.101534 – ident: 1863_CR16 doi: 10.1109/TETCI.2017.2739838 – volume: 8 start-page: 570 year: 2022 ident: 1863_CR8 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.05.207 – ident: 1863_CR34 doi: 10.1109/TSG.2019.2928168 – ident: 1863_CR15 doi: 10.1109/PEDG51384.2021.9494255 – ident: 1863_CR24 doi: 10.1109/SMARTGRID.2010.5622048 – ident: 1863_CR12 doi: 10.1109/STC55697.2022.00019 – volume: 13 start-page: 826 issue: 5 year: 2021 ident: 1863_CR36 publication-title: Symmetry doi: 10.3390/sym13050826 – volume: 232 start-page: 0378 year: 2024 ident: 1863_CR54 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2024.110407 – ident: 1863_CR21 doi: 10.1109/CSO.2014.15 – volume: 5 start-page: 506 issue: 4 year: 2017 ident: 1863_CR7 publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2014.2364928 – ident: 1863_CR14 doi: 10.1145/3600160.3605179 – ident: 1863_CR6 doi: 10.1109/ACCESS.2021.3058628 – volume: 14 start-page: 500 year: 2023 ident: 1863_CR51 publication-title: Information doi: 10.3390/info14090500 – ident: 1863_CR17 doi: 10.1109/AUPEC48547.2019.211918 – ident: 1863_CR58 doi: 10.1109/ISGT-Asia.2019.8881319 – volume: 17 start-page: 174 issue: 2 year: 2015 ident: 1863_CR18 publication-title: IJ Netw. Secur. – volume: 14 start-page: 2657 year: 2021 ident: 1863_CR30 publication-title: Energies doi: 10.3390/en14092657 – ident: 1863_CR45 doi: 10.1109/WTS.2018.8363930 – ident: 1863_CR10 doi: 10.1109/TITS.2021.3068092 – ident: 1863_CR52 doi: 10.1109/IAS48185.2021.9677432 – volume: 4 start-page: 5 year: 2021 ident: 1863_CR13 publication-title: Energy Inf. doi: 10.1186/s42162-021-00139-7 – ident: 1863_CR49 doi: 10.1016/j.trpro.2021.07.113 – ident: 1863_CR23 doi: 10.1109/ICCSIE55183.2023.10175256 – ident: 1863_CR44 doi: 10.1109/CIEEC50170.2021.9510236 – ident: 1863_CR46 doi: 10.1186/s42400-022-00134-9 – ident: 1863_CR2 doi: 10.1109/ISGT-Asia.2019.8881433 – ident: 1863_CR3 doi: 10.1109/TII.2015.2414354 – volume: 45 start-page: 1874 year: 2024 ident: 1863_CR39 publication-title: Int. J. Crit. Infrastruct. Prot. doi: 10.1016/j.ijcip.2024.100677 – ident: 1863_CR42 – volume: 14 start-page: 6507 year: 2021 ident: 1863_CR1 publication-title: Energies doi: 10.3390/en14206507 – ident: 1863_CR33 doi: 10.1016/j.jisa.2020.102518 – volume: 23 start-page: 1683 year: 2023 ident: 1863_CR29 publication-title: Sensors doi: 10.3390/s23031683 – ident: 1863_CR35 doi: 10.1109/ACCESS.2021.3071141 – ident: 1863_CR38 doi: 10.1109/TII.2017.2788868 – ident: 1863_CR47 doi: 10.1109/SMC.2016.7844673 – ident: 1863_CR43 doi: 10.1109/ICEES51510.2021.9383723 – volume: 9 start-page: 1390 issue: 2 year: 2022 ident: 1863_CR41 publication-title: Latin-American J. Comput. – ident: 1863_CR48 doi: 10.1038/s41598-019-55320-6 – year: 2019 ident: 1863_CR4 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.107094 – ident: 1863_CR5 doi: 10.1109/ICPECA47973.2019.8975629 – volume: 23 start-page: 263 issue: 2 year: 2020 ident: 1863_CR11 publication-title: J. Stat. Manage. Syst. doi: 10.1080/09720510.2020.1724625 – ident: 1863_CR19 doi: 10.1109/ISGT51731.2023.10066361 – ident: 1863_CR37 doi: 10.1109/IECON49645.2022.9968505 – ident: 1863_CR40 doi: 10.1109/ICCPS.2012.26 – ident: 1863_CR50 doi: 10.1016/j.aei.2021.101272 – volume: 17 start-page: 4514 year: 2023 ident: 1863_CR56 publication-title: IET Gener Transm Distrib. doi: 10.1049/gtd2.12848 – ident: 1863_CR22 doi: 10.3390/en17030619 – ident: 1863_CR28 doi: 10.1109/ACCESS.2017.2728681 – ident: 1863_CR27 doi: 10.1109/JSYST.2023.3236951 – volume: 15 start-page: 36 year: 2024 ident: 1863_CR53 publication-title: Information doi: 10.3390/info15010036 |
| SSID | ssj0000529419 |
| Score | 2.4644504 |
| Snippet | The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks.... Abstract The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 32374 |
| SubjectTerms | 639/166/4073 639/166/987 639/4077/4073 639/4077/909 Algorithms Alternative energy sources Architecture Auto-encoder (AE) Communication Consumers Cyber security Cybersecurity Deep learning Denial of service attacks Energy consumption Energy market (EM) Energy resources Energy storage False data injection attack (FDIA) Humanities and Social Sciences Infrastructure Internet of Things Interoperability Machine learning multidisciplinary Neural networks Power plants Privacy Renewable energy sources Renewable energy sources (RES) Renewable resources Science Science (multidisciplinary) Smart grid technology Software Virtual power plant (VPP) |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJuUgozEDaI6sePHEVArDqjiAKg3y8-yEvKudpNWe-aP47GzSxEgLlyTiWN7xp4Zzcw3CL0MHY1W9qGlStqWWcVaG4JtOYuEx0gDL-VjXz6IszN5fq4-Xmv1BTlhFR64btwxEXFQjAofQmS9CNZSTmIXuHcmsFgcHyLUNWeqonr3inVqrpIhVB5vsqaCarIectUkp-3VL5qoAPb_ycr8LUJaFM_pXXRnthjxmzrTe-hGSPfRrdpDcvsAfT9JXwEzI11gt7XZmJsb0uFFwpeLNZSH4BW0QsOrb5Dzgu0W-wChA_gk1SxwDMrM1wGwGUcovMeQEn-BTcJT2kwruFOAxkzjEsAvPVDOgOQP0efTk0_v3rdzZ4XWMSrH1jk_GOqzq2RIyDaQ9520LHLLiPRZY3nVcyctZyIrOWcy27ilIipvoqKKUvoIHaRlCk8Qltln7IjtDTTxYdHkbZddGKJizqpsjjbo1W6X9aoCaOgS-KZSV57ozBNdeKKvGvQWGLGnBPDr8iCLhJ5FQv9LJBp0tGOjnk_kRmfDUVCZf8ga9GL_Op8lCJCYFJZTpWEiWyxDgx5X9u9nwgBANd9YDXq9k4efg_99QYf_Y0FP0e2-CK5qyXCEDsb1FJ6hm-5yXGzWz4vk_wB96gl7 priority: 102 providerName: Directory of Open Access Journals |
| Title | Enhancing cybersecurity in virtual power plants by detecting network based cyber attacks using an unsupervised autoencoder approach |
| URI | https://link.springer.com/article/10.1038/s41598-025-01863-w https://www.ncbi.nlm.nih.gov/pubmed/40913053 https://www.proquest.com/docview/3247384154 https://www.proquest.com/docview/3247476615 https://doaj.org/article/07f59437deef427ebb360f1e6dcae4f1 |
| Volume | 15 |
| WOSCitedRecordID | wos001567114400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Lb9Mw-BOsIE1IPMYrMCojcYNoSewm9gltqBNIrIoQoHKK7NgulVCStcmmnvnj-HPSDsTjwsWH5Ivl5HvmewK8MDG1iicmpIKrkCnBQmWMClNmo9RaalJfPvb5fTab8flc5IPDbT2kVW5lohfUui7RR37kFH9GuVM37HVzHuLUKIyuDiM0rsMIx2YjnWfzbOdjwSgWi8VQKxNRfrR2G2BNWYIZazyl4eUv-si37f-TrflbnNSrn9M7_3vwu3B7MDzJcU8p9-CaqQ7g1vFPcYQDuNlPptzch-_T6it24qgWpNwoZyIOY-7IsiIXyxUWnZAGB6yR5htm0hC1IdrgRvhI1eeWE1SRut-AyLbFcn6CifYLIivSVeuuQUmFMLJra2ypqRFyaHP-AD6dTj--eRsO8xrCklHehmWpJ5Jq9wMmI-MsK61jrphNFYu4dnpQiyQtuUrd92BxKR0xpIpmVmhpBRWU0oewV9WVeQyEuz_ROFKJxNFAzEqHRh6biRWsVMIZuQG83GKtaPq2HIUPp1Ne9DguHI4Lj-PiMoATROwOEltq-wv1alEMHFpEmZ0IRjNtjGVJZpSiaWRjk-pSGmbjAA63-C0GPl8XV8gN4PnutuNQDLvIytRdD8MyZwdNAnjUk9PuJAzbsjo5GMCrLX1dbf73F3ry77M8hf3Ek7gIo8kh7LWrzjyDG-VFu1yvxp5H_MrHMDqZzvIPY--KcOtZkuOauXWUvzvLv_wAMF0iRQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQiExKO8AgWMBCeImsTexD4gVKBVV92u9lBQezJ2bC8roeyym-1qz_wffiOePLYgHrceuCYTZ-J8nhl7XgDPbUyd5okNqeA6ZFqwUFurw5S5KHWO2rRKH_vYzwYDfnIihhvwvc2FwbDKViZWgtpMcjwj3_GKP6Pcqxv2Zvo1xK5R6F1tW2jUsDi0q6Xfss1f9977__siSfb3jt8dhE1XgTBnlJdhnpuuosZvE1Rkvf43JuaauVSziBsvrY1I0pzr1L-OxbnyLKeaZk4Y5QT123_qx70Em8yDPerA5rB3NDxdn-qg34zFosnOiSjfmXuWMYstwRg5ntJw-YsGrBoF_Mm6_c0zWym8_Zv_21TdghuNaU1267VwGzZssQXXd3_ylGzBlbr35uoOfNsrPmOtkWJE8pX2RnDTyI-MC3I2nmFaDZliCzky_YKxQkSviLE4ED5S1NHzBI0AUw9AVFliwQKCqQQjogqyKOaLKcpipFGLcoJFQw1SNoXc78KHC5mQe9ApJoV9AIT7vXYc6URh8yPmlIcNj23XCZZr4c34AF62KJHTuvCIrAIGKJc1pqTHlKwwJZcBvEUgrSmxaHh1YTIbyUYGyShzXcFoZqx1LMms1jSNXGxTkyvLXBzAdosn2UiyuTwHUwDP1re9DELHkirsZFHTsMxbet0A7tfwXXPCsPCsl_QBvGrxfD743z_o4b95eQpXD46P-rLfGxw-gmtJtbxEGHW3oVPOFvYxXM7PyvF89qRZoQQ-XTTSfwC1YHln |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOkAIicuAERhgJHiCqEnsJvYDQhtrxbSpqhCgvRk7tkulKS1tuqrP_Ct-HT65dCAub3vgNTlxHOfzufjcAJ7bmDrNExtSwXXItGChtlaHKXNR6hy1aZU-9ukkGw756akYbcH3NhcGwypbnlgxajPN8Yy86wV_RrkXN6zrmrCI0eHgzexriB2k0NPattOoIXJs1ytvvi1eHx36f_0iSQb9D2_fhU2HgTBnlJdhnpueosabDCqyXhcwJuaauVSziBvPuY1I0pzr1L-axbny0081zZwwygkqKB6Geva_nVFv9HRg-6A_HL3fnPCgD43FosnUiSjvLvz0MaMtwXg5ntJw9Ys0rJoG_EnT_c1LWwm_wa3_edluw81G5Sb79R65A1u22IEb-z95UHbgat2Tc30XvvWLL1iDpBiTfK29ctw0-COTgpxP5phuQ2bYWo7MzjCGiOg1MRYHwkeKOqqeoHJg6gGIKkssZEAwxWBMVEGWxWI5Qx6NNGpZTrGYqEHKpsD7Pfh4KQtyHzrFtLAPgHBvg8eRThQ2RWJOeQjx2PacYLkWXr0P4GWLGDmrC5LIKpCAclnjS3p8yQpfchXAAYJqQ4nFxKsL0_lYNrxJRpnrCUYzY61jSWa1pmnkYpuaXFnm4gD2WmzJhsMt5AWwAni2ue15EzqcVGGny5qGZV4D7AWwW0N5MxOGBWm9BAjgVYvti8H__kEP_z2Xp3DNw1ueHA2PH8H1pNppIox6e9Ap50v7GK7k5-VkMX_SbFYCny8b6D8AX2GCAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cybersecurity+in+virtual+power+plants+by+detecting+network+based+cyber+attacks+using+an+unsupervised+autoencoder+approach&rft.jtitle=Scientific+reports&rft.au=Singh%2C+Kumari+Nutan&rft.au=Goswami%2C+Arup+Kumar&rft.au=Chudhury%2C+Nalin+Behari+Dev&rft.au=Shuaibu%2C+Hassan+Abdurrahman&rft.date=2025-09-05&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=32374&rft_id=info:doi/10.1038%2Fs41598-025-01863-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |