A hybrid MARL clustering framework for real time open pit mine truck scheduling

This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 34875 - 23
Hauptverfasser: Xiang, Xiaolei, Lin, Wei, Li, Danqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 07.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.
AbstractList This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.
Abstract This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.
This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.
ArticleNumber 34875
Author Xiang, Xiaolei
Li, Danqi
Lin, Wei
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Xiang
  fullname: Xiang, Xiaolei
  organization: WA School of Mines, Curtin University
– sequence: 2
  givenname: Wei
  surname: Lin
  fullname: Lin, Wei
  organization: School of Environment, Tsinghua University, Zijin Mining Group Co. Ltd
– sequence: 3
  givenname: Danqi
  surname: Li
  fullname: Li, Danqi
  email: danqi.li@curtin.edu.au
  organization: WA School of Mines, Curtin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41057413$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhUVISdI0f6CLIuimG7d62vLyEvoI3BII6VqMpXHiG9tyJZuQf1_d6zQtXVSbEeI7ZzRzXpPjMYxIyFvOPnImzaekuK5NwYQueClVVbAjciaY0oWQQhz_dT8lFyntWD5a1IrXJ-RUcaYrxeUZud7Q-6cmdp5-39xsqeuXNGPsxjvaRhjwMcQH2oZII0JP525AGiYc6dTNdOhGpHNc3ANN7h790mfZG_KqhT7hxXM9Jz--fL69_FZsr79eXW62hVPSzIWDkkswUvOqNtwgeqgarBA5MAZem8YJp0C0xtcNKGh423qNpZFOqZJ7eU6uVl8fYGen2A0Qn2yAzh4eQryzEOfO9WjbCpzQKBoJoDxnTcmwLn2r8t6kc5i9PqxeUww_F0yzHbrksO9hxLAkK4U2ujSmZBl9_w-6C0sc86QHSlRSM52pd8_U0gzoX773e-0ZECvgYkgpYvuCcGb38do1XpvjtYd47b63XEVp2geE8U_v_6h-Aawapfc
Cites_doi 10.1016/j.ejor.2017.02.039
10.1007/978-0-387-73003-5_196
10.1504/IJMME.2020.111929
10.1016/j.icte.2021.01.005
10.1016/j.rser.2023.113942
10.1111/j.2517-6161.1977.tb01600.x
10.1109/MWSCAS.2017.8053243
10.1016/j.chemolab.2025.105341
10.1016/j.cie.2011.05.022
10.1177/25726668231222998
10.1016/j.resourpol.2022.103155
10.1080/17480930.2017.1336607
10.1016/j.autcon.2024.105308
10.3390/sym14102069
10.1016/j.conengprac.2024.106163
10.1142/S0950609898000092
10.1007/s11063-024-11611-2
10.1016/j.cor.2024.106815
10.1080/17480930.2022.2067709
10.1007/s11432-023-3906-3
10.1287/inte.2020.1047
10.1109/BIGDATA50022.2020.9378191
10.1016/j.swevo.2024.101778
10.1155/2015/745378
10.1016/j.egypro.2015.07.469
10.1016/j.asoc.2022.109556
10.1016/j.ejor.2023.11.038
10.1016/j.jvcir.2018.08.016
10.1016/j.neucom.2023.127191
10.1109/ICPR.1996.547438
10.1609/aaai.v30i1.10295
10.1109/TITS.2020.3008612
10.1016/j.ins.2024.121025
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-16347-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_f7ac25e2b3aa4d10b60e96df41633cce
41057413
10_1038_s41598_025_16347_0
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-ca613a835179818eeda7be7ee1a00ad58bc2c4a2f8d9ba4ab1ffd5e683c4461d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589752300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:20:48 EDT 2025
Thu Oct 09 00:14:11 EDT 2025
Wed Oct 08 08:10:59 EDT 2025
Sat Oct 11 06:59:12 EDT 2025
Sat Nov 29 07:14:50 EST 2025
Wed Oct 08 03:49:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Truck scheduling
Multi-agent deep reinforcement learning algorithm
QMIX
Gaussian mixture model
Open-pit mining
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ca613a835179818eeda7be7ee1a00ad58bc2c4a2f8d9ba4ab1ffd5e683c4461d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f7ac25e2b3aa4d10b60e96df41633cce
PMID 41057413
PQID 3258273505
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_f7ac25e2b3aa4d10b60e96df41633cce
proquest_miscellaneous_3258568860
proquest_journals_3258273505
pubmed_primary_41057413
crossref_primary_10_1038_s41598_025_16347_0
springer_journals_10_1038_s41598_025_16347_0
PublicationCentury 2000
PublicationDate 2025-10-07
PublicationDateYYYYMMDD 2025-10-07
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References A Moradi Afrapoli (16347_CR10) 2019; 33
X Zhou (16347_CR24) 2024; 67
WJ Yun (16347_CR22) 2021; 7
X Qiu (16347_CR29) 2025; 154
AP Dempster (16347_CR39) 1977; 39
J Yu (16347_CR32) 2011; 61
R Noriega (16347_CR18) 2025; 173
16347_CR34
Y Huang (16347_CR1) 2025; 92
16347_CR13
16347_CR35
LY Zhao (16347_CR21) 2024; 56
16347_CR33
M Mohtasham (16347_CR11) 2022; 36
16347_CR27
P Chaowasakoo (16347_CR2) 2017; 261
16347_CR28
A Hazrathosseini (16347_CR4) 2024; 133
J Jin (16347_CR17) 2024; 315
Q Wang (16347_CR3) 2024; 189
Q Chen (16347_CR31) 2018; 55
W Guo (16347_CR26) 2024; 572
G Yuan (16347_CR25) 2024; 678
16347_CR23
Z Chen (16347_CR15) 2024; 160
16347_CR38
L Zhang (16347_CR5) 2015; 75
16347_CR36
A Moradi-Afrapoli (16347_CR9) 2020; 11
J Lee (16347_CR14) 2022; 129
16347_CR37
T Rashid (16347_CR20) 2020; 21
A Haydari (16347_CR16) 2022; 23
16347_CR19
SP Upadhyay (16347_CR8) 2016; 125
A Kartakoullis (16347_CR30) 2025; 259
16347_CR6
A Hazrathosseini (16347_CR12) 2023; 80
16347_CR7
References_xml – volume: 21
  start-page: 1
  year: 2020
  ident: 16347_CR20
  publication-title: Journal of Machine Learning Research
– volume: 261
  start-page: 1052
  year: 2017
  ident: 16347_CR2
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.02.039
– ident: 16347_CR28
  doi: 10.1007/978-0-387-73003-5_196
– volume: 11
  start-page: 257
  year: 2020
  ident: 16347_CR9
  publication-title: Int J Min Miner Eng
  doi: 10.1504/IJMME.2020.111929
– volume: 7
  start-page: 1
  year: 2021
  ident: 16347_CR22
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.01.005
– volume: 189
  start-page: 113942
  year: 2024
  ident: 16347_CR3
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2023.113942
– volume: 39
  start-page: 1
  year: 1977
  ident: 16347_CR39
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 16347_CR33
– ident: 16347_CR35
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 259
  start-page: 105341
  year: 2025
  ident: 16347_CR30
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2025.105341
– volume: 61
  start-page: 881
  year: 2011
  ident: 16347_CR32
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2011.05.022
– volume: 133
  start-page: 50
  year: 2024
  ident: 16347_CR4
  publication-title: Mining Technology: Transactions of the Institutions of Mining and Metallurgy
  doi: 10.1177/25726668231222998
– ident: 16347_CR27
– volume: 80
  start-page: 103155
  year: 2023
  ident: 16347_CR12
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2022.103155
– volume: 33
  start-page: 42
  year: 2019
  ident: 16347_CR10
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2017.1336607
– volume: 160
  start-page: 105308
  year: 2024
  ident: 16347_CR15
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2024.105308
– ident: 16347_CR23
  doi: 10.3390/sym14102069
– volume: 154
  start-page: 106163
  year: 2025
  ident: 16347_CR29
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2024.106163
– ident: 16347_CR7
  doi: 10.1142/S0950609898000092
– volume: 56
  start-page: 1
  year: 2024
  ident: 16347_CR21
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-024-11611-2
– volume: 173
  start-page: 106815
  year: 2025
  ident: 16347_CR18
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2024.106815
– volume: 36
  start-page: 461
  year: 2022
  ident: 16347_CR11
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2022.2067709
– volume: 67
  start-page: 1
  year: 2024
  ident: 16347_CR24
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-023-3906-3
– ident: 16347_CR37
– ident: 16347_CR13
  doi: 10.1287/inte.2020.1047
– ident: 16347_CR19
  doi: 10.1109/BIGDATA50022.2020.9378191
– volume: 92
  start-page: 101778
  year: 2025
  ident: 16347_CR1
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101778
– ident: 16347_CR36
– ident: 16347_CR6
  doi: 10.1155/2015/745378
– volume: 75
  start-page: 1779
  year: 2015
  ident: 16347_CR5
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.469
– volume: 129
  start-page: 109556
  year: 2022
  ident: 16347_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109556
– volume: 315
  start-page: 161
  year: 2024
  ident: 16347_CR17
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2023.11.038
– volume: 55
  start-page: 795
  year: 2018
  ident: 16347_CR31
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2018.08.016
– volume: 572
  start-page: 127191
  year: 2024
  ident: 16347_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127191
– ident: 16347_CR34
  doi: 10.1109/ICPR.1996.547438
– ident: 16347_CR38
  doi: 10.1609/aaai.v30i1.10295
– volume: 23
  start-page: 11
  year: 2022
  ident: 16347_CR16
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3008612
– volume: 125
  start-page: 82
  year: 2016
  ident: 16347_CR8
  publication-title: Mining Technology
– volume: 678
  start-page: 121025
  year: 2024
  ident: 16347_CR25
  publication-title: Inf Sci (N Y)
  doi: 10.1016/j.ins.2024.121025
SSID ssj0000529419
Score 2.4609168
Snippet This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture...
Abstract This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 34875
SubjectTerms 639/166
639/166/988
Algorithms
Anniversaries
Automation
Collaboration
Decision making
Deep learning
Efficiency
Gaussian mixture model
Humanities and Social Sciences
Linear programming
Mining
Multi-agent deep reinforcement learning algorithm
multidisciplinary
Network management systems
Open-pit mining
QMIX
Queuing theory
Reinforcement
Scheduling
Science
Science (multidisciplinary)
Traffic congestion
Truck scheduling
Trucks
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaggNQLOyW0ICNxA6ve4tinaqioOLSlQoB6s7yWijIzdKZI_fc8O8lUFcuFaxJFL3nP_j6_FaFX3GceZUxEKwkHlMgVMSF7kp2XKamWqeqH_LLfHR7q42NzNDjcFkNa5bgn1o06zkLxkW8L3mqAWgDsnfkPUqZGlejqMELjJroFzIaVlK4DfrTysZQolmRmqJWhQm8vAK9KTRlvCRAR2RF6DY9q2_4_cc3f4qQVfvbu_a_g99HdgXjiSW8pD9CNNH2I7vSjKC8foQ8T_PWyVG_hg8nHfRzOLkoHBRAF5zF9CwO_xcAxz3AZSI_L3C08P13i70BUcWlD-w3DURmgq1S4P0af99592n1PhmELJEihlyQ4AHYHfKx0MGMaoNN1PnUpMUepi632gQfpeNbReCedZznHNiktApwoWRRP0Np0Nk1PEY7AObJ3rIvKyDZkQ7PpaFIm-CAE9Q16Pf5yO-97atgaCxfa9gqyoCBbFWRpg94WrayeLP2w64XZ-YkdlpfNnQu8TdwL52Rk1CuajIq50E0RQmrQ1qgcOyzShb3STINerm7D8ioxEzdNs4v-mVZprUCOjd4WVpKUDFkgZKJBb0bjuHr53z_o2b9l2UTrvNonJbTbQmugv_Qc3Q4_l6eL8xfVwH8BRh8B4w
  priority: 102
  providerName: ProQuest
Title A hybrid MARL clustering framework for real time open pit mine truck scheduling
URI https://link.springer.com/article/10.1038/s41598-025-16347-0
https://www.ncbi.nlm.nih.gov/pubmed/41057413
https://www.proquest.com/docview/3258273505
https://www.proquest.com/docview/3258568860
https://doaj.org/article/f7ac25e2b3aa4d10b60e96df41633cce
Volume 15
WOSCitedRecordID wos001589752300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviHcDZWUkbhDVsR0_jlvUCqTusqoALSfLT1FRthW7Req_Z5xklyJAXLjMIXEie8bOfBN7vgF4wXxmUcRUaykwQIlM1iZkX2fnRUqybWT3H_LjsZpO9XxuZtdKfZUzYT09cK-4_axcYG1injsnYkO9pMnImAuQ4CGk8vWlylwLpnpWb2ZEY4YsGcr1_hI9VckmY22NTwpV0188UUfY_yeU-dsOaed4ju7CnQExknHf03twIy3uw-2-huTVA3g3Jp-vStoVmYxPjkk4uyzUB_gmktfnrggCU4Lg8IyUSvKkFMwiF6cr8hURJin8sV8Ixrjoc0pq-kP4cHT4_vWbeqiSUAfB9aoODj2yQyBVqMcajT7PKZ9USo2j1MVW-8CCcCzraLwTzjc5xzZJzQOGgk3kj2Brcb5Iu0AigoXsXaOiNKIN2dBsFE3SBB84p76Cl2uN2YueDMN2m9hc216_FvVrO_1aWsFBUeqmZSGy7i6gee1gXvsv81awtzaJHVbX0nLWaoRdCN4qeL65jeuibHa4RTq_7Nu0UmuJ_Xjcm3LTk3K0FZEUr-DV2rY_X_73AT35HwN6Cjusm4S0pmoPttDK6RncCt9Xp8tvI7ip5qqTegTbB4fT2cmom9koJ2xWpEK5PXs7mX36AXNg--U
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQQX9iVQwEhwglE9tsfjOSAUlqpV01ChgnozXktEm4ROCsqf4jfyPJNJhVhuPXAdW5Y9_vzeZ78N4AmzkXnhQ6akwAuKZzKrXLRZNFaEIItcNu-QHwflcKj296vdFfjRxcIkt8pOJjaC2k9ceiNf56xQqGpRYb-cfs1S1ahkXe1KaLSw2A7z73hlq19svcH9fcrYxtu915vZoqpA5gRXs8wZ1GAGiUdK1ZUr1BGmtKEMITeUGl8o65gThkXlK2uEsXmMvghScYdXp9xzHPccnBcps1hyFWS7yzedZDUTebWIzaFcrdeoH1MMGysyJD6izOgv-q8pE_AnbvubXbZRdxtX_7cfdQ2uLIg16bcn4TqshPENuNiW2pzfhHd98nmeotPITv_9gLjDk5QhApdOYueeRpC_E-TQh2Q2Ogok1RUj09GMHCERJynN7hdSI8R98t0_uAUfzmQ1t2F1PBmHu0A8cqpoTV56WYnCxYrGqqRBVs46zqntwbNui_W0zRmiG1s_V7oFhEZA6AYQmvbgVULBsmfK9918mBwf6IX40LE0jhWBWW6M8Dm1koZK-pjoNHcu9GCtA4NeCKFanyKhB4-XzSg-kk3IjMPkpO1TSKUkzuNOi73lTJIHMBJO3oPnHRhPB__7gu79ey6P4NLm3s5AD7aG2_fhMmvOBs1ouQaruJfhAVxw32aj-vhhc7gIfDprkP4ES8ZhyA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKCogL-xIoYCQ4wSge2-PxHBAKlIioaYgQVOVkvJaINgmdFJS_xq_jeZZUiOXWA9cZy_Ly-b3PfhtCj6kJ1HHnEyk4XFAcFUlhg0mCNtx7kaWieofcG-XjsdzfLyYb6EcbCxPdKluZWAlqN7fxjbzHaCZB1YLC7oXGLWKyPXix-JrEClLR0tqW06ghsuNX3-H6Vj4fbsNeP6F08Pr9qzdJU2EgsZzJZWI1aDMNJCSm7Uol6AudG597n2pCtMuksdRyTYN0hdFcmzQEl3khmYVrVOoY9HsObQIl57SDNifD3cnH9QtPtKHxtGgidQiTvRK0ZYxoo1kCNIjnCflFG1ZFA_7EdH-z0lbKb3Dlf162q-hyQ7lxvz4j19CGn11HF-oinKsb6G0ff17FuDW82383wvbwJOaOgGXAoXVcw8DsMbDrQ7ycHnkcK47hxXSJj4Ci45iA9wsuAfwuevUf3EQfzmQ2t1BnNp_5Owg7YFvB6DR3ouCZDQUJRU68KKyxjBHTRU_b7VaLOpuIqrwAmFQ1OBSAQ1XgUKSLXkZErFvGTODVh_nxgWoEiwq5tjTz1DCtuUuJEcQXwoVItJm1vou2WmCoRjyV6hQVXfRo_RsES7QW6Zmfn9RtMiGlgHHcrnG4Hkn0DQYqyrroWQvM087_PqG7_x7LQ3QRsKlGw_HOPXSJVseEJCTfQh3YSn8fnbffltPy-EFz0jD6dNYo_QlKN2wR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+MARL+clustering+framework+for+real+time+open+pit+mine+truck+scheduling&rft.jtitle=Scientific+reports&rft.au=Xiang%2C+Xiaolei&rft.au=Lin%2C+Wei&rft.au=Li%2C+Danqi&rft.date=2025-10-07&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-16347-0&rft.externalDocID=10_1038_s41598_025_16347_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon