A hybrid MARL clustering framework for real time open pit mine truck scheduling
This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 34875 - 23 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
07.10.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines. |
|---|---|
| AbstractList | This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines.This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines. Abstract This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines. This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture Model (GMM) algorithm for optimizing intelligent path planning and scheduling of mining trucks in open-pit mining environments. The focus of this method is twofold. Firstly, it achieves collaborative cooperation among multiple mining trucks using the QMIX algorithm. Secondly, it integrates the GMM algorithm with QMIX for modeling, predicting, classifying and analyzing existing vehicle outcomes, to enhance the navigation capabilities of mining trucks within the environment. Through simulation experiments, the effectiveness of this combined algorithm was validated in improving vehicle operational efficiency, reducing non-working waiting time, and enhancing transportation efficiency. Moreover, this research compares the results of the algorithm with single-agent deep reinforcement learning algorithms, demonstrating the advantages of multi-agent algorithms in environments characterized with multi-agent collaboration. The QMIX-GMM mixed framework outperformed traditional approaches as complexity increased in the mining environments. The study provides new technological insights for intelligent planning of mining trucks and offers significant reference value for the automation of multi-agent collaboration in other environments. The limitation has been with regard to the maximum fleet size considered in the study being suitable to small or mid-scale mines. |
| ArticleNumber | 34875 |
| Author | Xiang, Xiaolei Li, Danqi Lin, Wei |
| Author_xml | – sequence: 1 givenname: Xiaolei surname: Xiang fullname: Xiang, Xiaolei organization: WA School of Mines, Curtin University – sequence: 2 givenname: Wei surname: Lin fullname: Lin, Wei organization: School of Environment, Tsinghua University, Zijin Mining Group Co. Ltd – sequence: 3 givenname: Danqi surname: Li fullname: Li, Danqi email: danqi.li@curtin.edu.au organization: WA School of Mines, Curtin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41057413$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3TAQhUVISdI0f6CLIuimG7d62vLyEvoI3BII6VqMpXHiG9tyJZuQf1_d6zQtXVSbEeI7ZzRzXpPjMYxIyFvOPnImzaekuK5NwYQueClVVbAjciaY0oWQQhz_dT8lFyntWD5a1IrXJ-RUcaYrxeUZud7Q-6cmdp5-39xsqeuXNGPsxjvaRhjwMcQH2oZII0JP525AGiYc6dTNdOhGpHNc3ANN7h790mfZG_KqhT7hxXM9Jz--fL69_FZsr79eXW62hVPSzIWDkkswUvOqNtwgeqgarBA5MAZem8YJp0C0xtcNKGh423qNpZFOqZJ7eU6uVl8fYGen2A0Qn2yAzh4eQryzEOfO9WjbCpzQKBoJoDxnTcmwLn2r8t6kc5i9PqxeUww_F0yzHbrksO9hxLAkK4U2ujSmZBl9_w-6C0sc86QHSlRSM52pd8_U0gzoX773e-0ZECvgYkgpYvuCcGb38do1XpvjtYd47b63XEVp2geE8U_v_6h-Aawapfc |
| Cites_doi | 10.1016/j.ejor.2017.02.039 10.1007/978-0-387-73003-5_196 10.1504/IJMME.2020.111929 10.1016/j.icte.2021.01.005 10.1016/j.rser.2023.113942 10.1111/j.2517-6161.1977.tb01600.x 10.1109/MWSCAS.2017.8053243 10.1016/j.chemolab.2025.105341 10.1016/j.cie.2011.05.022 10.1177/25726668231222998 10.1016/j.resourpol.2022.103155 10.1080/17480930.2017.1336607 10.1016/j.autcon.2024.105308 10.3390/sym14102069 10.1016/j.conengprac.2024.106163 10.1142/S0950609898000092 10.1007/s11063-024-11611-2 10.1016/j.cor.2024.106815 10.1080/17480930.2022.2067709 10.1007/s11432-023-3906-3 10.1287/inte.2020.1047 10.1109/BIGDATA50022.2020.9378191 10.1016/j.swevo.2024.101778 10.1155/2015/745378 10.1016/j.egypro.2015.07.469 10.1016/j.asoc.2022.109556 10.1016/j.ejor.2023.11.038 10.1016/j.jvcir.2018.08.016 10.1016/j.neucom.2023.127191 10.1109/ICPR.1996.547438 10.1609/aaai.v30i1.10295 10.1109/TITS.2020.3008612 10.1016/j.ins.2024.121025 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-16347-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_f7ac25e2b3aa4d10b60e96df41633cce 41057413 10_1038_s41598_025_16347_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-ca613a835179818eeda7be7ee1a00ad58bc2c4a2f8d9ba4ab1ffd5e683c4461d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589752300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Oct 13 19:20:48 EDT 2025 Thu Oct 09 00:14:11 EDT 2025 Wed Oct 08 08:10:59 EDT 2025 Sat Oct 11 06:59:12 EDT 2025 Sat Nov 29 07:14:50 EST 2025 Wed Oct 08 03:49:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Truck scheduling Multi-agent deep reinforcement learning algorithm QMIX Gaussian mixture model Open-pit mining |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ca613a835179818eeda7be7ee1a00ad58bc2c4a2f8d9ba4ab1ffd5e683c4461d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f7ac25e2b3aa4d10b60e96df41633cce |
| PMID | 41057413 |
| PQID | 3258273505 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7ac25e2b3aa4d10b60e96df41633cce proquest_miscellaneous_3258568860 proquest_journals_3258273505 pubmed_primary_41057413 crossref_primary_10_1038_s41598_025_16347_0 springer_journals_10_1038_s41598_025_16347_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-07 |
| PublicationDateYYYYMMDD | 2025-10-07 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | A Moradi Afrapoli (16347_CR10) 2019; 33 X Zhou (16347_CR24) 2024; 67 WJ Yun (16347_CR22) 2021; 7 X Qiu (16347_CR29) 2025; 154 AP Dempster (16347_CR39) 1977; 39 J Yu (16347_CR32) 2011; 61 R Noriega (16347_CR18) 2025; 173 16347_CR34 Y Huang (16347_CR1) 2025; 92 16347_CR13 16347_CR35 LY Zhao (16347_CR21) 2024; 56 16347_CR33 M Mohtasham (16347_CR11) 2022; 36 16347_CR27 P Chaowasakoo (16347_CR2) 2017; 261 16347_CR28 A Hazrathosseini (16347_CR4) 2024; 133 J Jin (16347_CR17) 2024; 315 Q Wang (16347_CR3) 2024; 189 Q Chen (16347_CR31) 2018; 55 W Guo (16347_CR26) 2024; 572 G Yuan (16347_CR25) 2024; 678 16347_CR23 Z Chen (16347_CR15) 2024; 160 16347_CR38 L Zhang (16347_CR5) 2015; 75 16347_CR36 A Moradi-Afrapoli (16347_CR9) 2020; 11 J Lee (16347_CR14) 2022; 129 16347_CR37 T Rashid (16347_CR20) 2020; 21 A Haydari (16347_CR16) 2022; 23 16347_CR19 SP Upadhyay (16347_CR8) 2016; 125 A Kartakoullis (16347_CR30) 2025; 259 16347_CR6 A Hazrathosseini (16347_CR12) 2023; 80 16347_CR7 |
| References_xml | – volume: 21 start-page: 1 year: 2020 ident: 16347_CR20 publication-title: Journal of Machine Learning Research – volume: 261 start-page: 1052 year: 2017 ident: 16347_CR2 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.02.039 – ident: 16347_CR28 doi: 10.1007/978-0-387-73003-5_196 – volume: 11 start-page: 257 year: 2020 ident: 16347_CR9 publication-title: Int J Min Miner Eng doi: 10.1504/IJMME.2020.111929 – volume: 7 start-page: 1 year: 2021 ident: 16347_CR22 publication-title: ICT Express doi: 10.1016/j.icte.2021.01.005 – volume: 189 start-page: 113942 year: 2024 ident: 16347_CR3 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2023.113942 – volume: 39 start-page: 1 year: 1977 ident: 16347_CR39 publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 16347_CR33 – ident: 16347_CR35 doi: 10.1109/MWSCAS.2017.8053243 – volume: 259 start-page: 105341 year: 2025 ident: 16347_CR30 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2025.105341 – volume: 61 start-page: 881 year: 2011 ident: 16347_CR32 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2011.05.022 – volume: 133 start-page: 50 year: 2024 ident: 16347_CR4 publication-title: Mining Technology: Transactions of the Institutions of Mining and Metallurgy doi: 10.1177/25726668231222998 – ident: 16347_CR27 – volume: 80 start-page: 103155 year: 2023 ident: 16347_CR12 publication-title: Resources Policy doi: 10.1016/j.resourpol.2022.103155 – volume: 33 start-page: 42 year: 2019 ident: 16347_CR10 publication-title: Int J Min Reclam Environ doi: 10.1080/17480930.2017.1336607 – volume: 160 start-page: 105308 year: 2024 ident: 16347_CR15 publication-title: Autom Constr doi: 10.1016/j.autcon.2024.105308 – ident: 16347_CR23 doi: 10.3390/sym14102069 – volume: 154 start-page: 106163 year: 2025 ident: 16347_CR29 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2024.106163 – ident: 16347_CR7 doi: 10.1142/S0950609898000092 – volume: 56 start-page: 1 year: 2024 ident: 16347_CR21 publication-title: Neural Process Lett doi: 10.1007/s11063-024-11611-2 – volume: 173 start-page: 106815 year: 2025 ident: 16347_CR18 publication-title: Comput Oper Res doi: 10.1016/j.cor.2024.106815 – volume: 36 start-page: 461 year: 2022 ident: 16347_CR11 publication-title: Int J Min Reclam Environ doi: 10.1080/17480930.2022.2067709 – volume: 67 start-page: 1 year: 2024 ident: 16347_CR24 publication-title: Science China Information Sciences doi: 10.1007/s11432-023-3906-3 – ident: 16347_CR37 – ident: 16347_CR13 doi: 10.1287/inte.2020.1047 – ident: 16347_CR19 doi: 10.1109/BIGDATA50022.2020.9378191 – volume: 92 start-page: 101778 year: 2025 ident: 16347_CR1 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101778 – ident: 16347_CR36 – ident: 16347_CR6 doi: 10.1155/2015/745378 – volume: 75 start-page: 1779 year: 2015 ident: 16347_CR5 publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.469 – volume: 129 start-page: 109556 year: 2022 ident: 16347_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109556 – volume: 315 start-page: 161 year: 2024 ident: 16347_CR17 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2023.11.038 – volume: 55 start-page: 795 year: 2018 ident: 16347_CR31 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.08.016 – volume: 572 start-page: 127191 year: 2024 ident: 16347_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127191 – ident: 16347_CR34 doi: 10.1109/ICPR.1996.547438 – ident: 16347_CR38 doi: 10.1609/aaai.v30i1.10295 – volume: 23 start-page: 11 year: 2022 ident: 16347_CR16 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.3008612 – volume: 125 start-page: 82 year: 2016 ident: 16347_CR8 publication-title: Mining Technology – volume: 678 start-page: 121025 year: 2024 ident: 16347_CR25 publication-title: Inf Sci (N Y) doi: 10.1016/j.ins.2024.121025 |
| SSID | ssj0000529419 |
| Score | 2.4609168 |
| Snippet | This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian Mixture... Abstract This paper proposes an innovative approach that combines a QMIX algorithm (a multi-agent deep reinforcement learning algorithm, MADRL) with a Gaussian... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 34875 |
| SubjectTerms | 639/166 639/166/988 Algorithms Anniversaries Automation Collaboration Decision making Deep learning Efficiency Gaussian mixture model Humanities and Social Sciences Linear programming Mining Multi-agent deep reinforcement learning algorithm multidisciplinary Network management systems Open-pit mining QMIX Queuing theory Reinforcement Scheduling Science Science (multidisciplinary) Traffic congestion Truck scheduling Trucks |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaggNQLOyW0ICNxA6ve4tinaqioOLSlQoB6s7yWijIzdKZI_fc8O8lUFcuFaxJFL3nP_j6_FaFX3GceZUxEKwkHlMgVMSF7kp2XKamWqeqH_LLfHR7q42NzNDjcFkNa5bgn1o06zkLxkW8L3mqAWgDsnfkPUqZGlejqMELjJroFzIaVlK4DfrTysZQolmRmqJWhQm8vAK9KTRlvCRAR2RF6DY9q2_4_cc3f4qQVfvbu_a_g99HdgXjiSW8pD9CNNH2I7vSjKC8foQ8T_PWyVG_hg8nHfRzOLkoHBRAF5zF9CwO_xcAxz3AZSI_L3C08P13i70BUcWlD-w3DURmgq1S4P0af99592n1PhmELJEihlyQ4AHYHfKx0MGMaoNN1PnUpMUepi632gQfpeNbReCedZznHNiktApwoWRRP0Np0Nk1PEY7AObJ3rIvKyDZkQ7PpaFIm-CAE9Q16Pf5yO-97atgaCxfa9gqyoCBbFWRpg94WrayeLP2w64XZ-YkdlpfNnQu8TdwL52Rk1CuajIq50E0RQmrQ1qgcOyzShb3STINerm7D8ioxEzdNs4v-mVZprUCOjd4WVpKUDFkgZKJBb0bjuHr53z_o2b9l2UTrvNonJbTbQmugv_Qc3Q4_l6eL8xfVwH8BRh8B4w priority: 102 providerName: ProQuest |
| Title | A hybrid MARL clustering framework for real time open pit mine truck scheduling |
| URI | https://link.springer.com/article/10.1038/s41598-025-16347-0 https://www.ncbi.nlm.nih.gov/pubmed/41057413 https://www.proquest.com/docview/3258273505 https://www.proquest.com/docview/3258568860 https://doaj.org/article/f7ac25e2b3aa4d10b60e96df41633cce |
| Volume | 15 |
| WOSCitedRecordID | wos001589752300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviHcDZWUkbhDVsR0_jlvUCqTusqoALSfLT1FRthW7Req_Z5xklyJAXLjMIXEie8bOfBN7vgF4wXxmUcRUaykwQIlM1iZkX2fnRUqybWT3H_LjsZpO9XxuZtdKfZUzYT09cK-4_axcYG1injsnYkO9pMnImAuQ4CGk8vWlylwLpnpWb2ZEY4YsGcr1_hI9VckmY22NTwpV0188UUfY_yeU-dsOaed4ju7CnQExknHf03twIy3uw-2-huTVA3g3Jp-vStoVmYxPjkk4uyzUB_gmktfnrggCU4Lg8IyUSvKkFMwiF6cr8hURJin8sV8Ixrjoc0pq-kP4cHT4_vWbeqiSUAfB9aoODj2yQyBVqMcajT7PKZ9USo2j1MVW-8CCcCzraLwTzjc5xzZJzQOGgk3kj2Brcb5Iu0AigoXsXaOiNKIN2dBsFE3SBB84p76Cl2uN2YueDMN2m9hc216_FvVrO_1aWsFBUeqmZSGy7i6gee1gXvsv81awtzaJHVbX0nLWaoRdCN4qeL65jeuibHa4RTq_7Nu0UmuJ_Xjcm3LTk3K0FZEUr-DV2rY_X_73AT35HwN6Cjusm4S0pmoPttDK6RncCt9Xp8tvI7ip5qqTegTbB4fT2cmom9koJ2xWpEK5PXs7mX36AXNg--U |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQQX9iVQwEhwglE9tsfjOSAUlqpV01ChgnozXktEm4ROCsqf4jfyPJNJhVhuPXAdW5Y9_vzeZ78N4AmzkXnhQ6akwAuKZzKrXLRZNFaEIItcNu-QHwflcKj296vdFfjRxcIkt8pOJjaC2k9ceiNf56xQqGpRYb-cfs1S1ahkXe1KaLSw2A7z73hlq19svcH9fcrYxtu915vZoqpA5gRXs8wZ1GAGiUdK1ZUr1BGmtKEMITeUGl8o65gThkXlK2uEsXmMvghScYdXp9xzHPccnBcps1hyFWS7yzedZDUTebWIzaFcrdeoH1MMGysyJD6izOgv-q8pE_AnbvubXbZRdxtX_7cfdQ2uLIg16bcn4TqshPENuNiW2pzfhHd98nmeotPITv_9gLjDk5QhApdOYueeRpC_E-TQh2Q2Ogok1RUj09GMHCERJynN7hdSI8R98t0_uAUfzmQ1t2F1PBmHu0A8cqpoTV56WYnCxYrGqqRBVs46zqntwbNui_W0zRmiG1s_V7oFhEZA6AYQmvbgVULBsmfK9918mBwf6IX40LE0jhWBWW6M8Dm1koZK-pjoNHcu9GCtA4NeCKFanyKhB4-XzSg-kk3IjMPkpO1TSKUkzuNOi73lTJIHMBJO3oPnHRhPB__7gu79ey6P4NLm3s5AD7aG2_fhMmvOBs1ouQaruJfhAVxw32aj-vhhc7gIfDprkP4ES8ZhyA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKCogL-xIoYCQ4wSge2-PxHBAKlIioaYgQVOVkvJaINgmdFJS_xq_jeZZUiOXWA9cZy_Ly-b3PfhtCj6kJ1HHnEyk4XFAcFUlhg0mCNtx7kaWieofcG-XjsdzfLyYb6EcbCxPdKluZWAlqN7fxjbzHaCZB1YLC7oXGLWKyPXix-JrEClLR0tqW06ghsuNX3-H6Vj4fbsNeP6F08Pr9qzdJU2EgsZzJZWI1aDMNJCSm7Uol6AudG597n2pCtMuksdRyTYN0hdFcmzQEl3khmYVrVOoY9HsObQIl57SDNifD3cnH9QtPtKHxtGgidQiTvRK0ZYxoo1kCNIjnCflFG1ZFA_7EdH-z0lbKb3Dlf162q-hyQ7lxvz4j19CGn11HF-oinKsb6G0ff17FuDW82383wvbwJOaOgGXAoXVcw8DsMbDrQ7ycHnkcK47hxXSJj4Ci45iA9wsuAfwuevUf3EQfzmQ2t1BnNp_5Owg7YFvB6DR3ouCZDQUJRU68KKyxjBHTRU_b7VaLOpuIqrwAmFQ1OBSAQ1XgUKSLXkZErFvGTODVh_nxgWoEiwq5tjTz1DCtuUuJEcQXwoVItJm1vou2WmCoRjyV6hQVXfRo_RsES7QW6Zmfn9RtMiGlgHHcrnG4Hkn0DQYqyrroWQvM087_PqG7_x7LQ3QRsKlGw_HOPXSJVseEJCTfQh3YSn8fnbffltPy-EFz0jD6dNYo_QlKN2wR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+MARL+clustering+framework+for+real+time+open+pit+mine+truck+scheduling&rft.jtitle=Scientific+reports&rft.au=Xiang%2C+Xiaolei&rft.au=Lin%2C+Wei&rft.au=Li%2C+Danqi&rft.date=2025-10-07&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-16347-0&rft.externalDocID=10_1038_s41598_025_16347_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |