Deep transfer learning based feature fusion model with Bonobo optimization algorithm for enhanced brain tumor segmentation and classification through biomedical imaging

The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessme...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 34030 - 22
Main Authors: Gurunathan, Pradeep, Srinivasan, Preethi Saroj, S, Ravimaran
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.09.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.
AbstractList The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients' quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients' quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.
The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.
Abstract The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.
ArticleNumber 34030
Author Srinivasan, Preethi Saroj
Gurunathan, Pradeep
S, Ravimaran
Author_xml – sequence: 1
  givenname: Pradeep
  surname: Gurunathan
  fullname: Gurunathan, Pradeep
  organization: School of Computing, Sastra Deemed to be University
– sequence: 2
  givenname: Preethi Saroj
  surname: Srinivasan
  fullname: Srinivasan, Preethi Saroj
  email: preethisaroj@gmail.com
  organization: Department of Artificial Intelligence and Data Science, Saranathan College of Engineering
– sequence: 3
  givenname: Ravimaran
  surname: S
  fullname: S, Ravimaran
  organization: Department of Artificial Intelligence and Data Science, Saranathan College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41028788$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhiNUREvpC3BAlrhwCTiOHdtHKAUqVeICZ2viTLJeJfZiJ1qVJ-Ix690sBXHAF1v_fPPP2J7nxZkPHoviZUXfVrRW7xKvhFYlZaKsmJZ1uX9SXDDKRclqxs7-Op8XVyltaV6CaV7pZ8U5ryhTUqmL4tdHxB2ZI_jUYyQjQvTOD6SFhB3pEeYlIumX5IInU-hwJHs3b8iH4EMbSNjNbnI_YT6EYRxCzMGJ9CES9BvwNpu0EZwn8zJlMeEwoZ9PvO-IHSEl1zu7SvMmhmXYkNaFCbusjsRNMOSOXhRPexgTXp32y-L7p5tv11_Ku6-fb6_f35WW12oura6ZFhosb1jTtwqlrDS3yjYaqELRt1JJIXSFaDkDJuuOVaxugQHXspP1ZXG7-nYBtmYXc_l4bwI4cxRCHAzE2dkRDQjLheo070Hkg26p1oIxpihvgLU6e71ZvXYx_FgwzWZyyeI4gsewJFMz0VRUNs0Bff0Pug1L9PmmR4rSmkqRqVcnamnz-zy29_s_M8BWwMaQUsT-EamoOcyNWefG5Lkxx7kx-5xUr0kpw37A-Kf2f7IeACn0x2o
Cites_doi 10.1016/j.bbe.2020.06.001
10.1038/s41598-024-57970-7
10.1109/ACCESS.2024.3394541
10.1007/s42979-024-03558-x
10.1155/2022/1465173
10.1016/j.jfca.2025.107355
10.2174/1573409920666230816090626
10.3390/bdcc3020027
10.1016/j.mehy.2019.109531
10.1109/ACCESS.2024.3379136
10.3390/app14052210
10.4236/jbise.2020.136010
10.54216/JNFS.010106
10.1016/j.bspc.2017.07.007
10.3390/app14167281
10.1109/ACCESS.2024.3456599
10.1002/ima.22750
10.3390/app15031005
10.1007/s10586-024-04969-4
10.1007/s00521-022-07204-6
10.1371/journal.pone.0316081
10.1016/j.nhres.2024.12.003
10.1109/ACCESS.2023.3325294
10.1109/TCE.2025.3527061
10.1117/12.3031821
10.1016/j.future.2018.04.065
10.11591/eei.v14i2.8730
10.1007/s00521-025-11078-9
10.3390/life15030327
10.1016/j.bspc.2024.106872
10.1016/j.bspc.2024.107387
10.1016/j.bspc.2025.108040
10.1016/j.heliyon.2025.e41835
10.35882/jeeemi.v7i1.582
10.1007/s11042-024-20443-0
10.1109/RBME.2019.2946868
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-12973-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_a5c458d94fa54589b09952228046a2b9
41028788
10_1038_s41598_025_12973_w
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-c932959ac4626fb8e77194c8c69a08e5fb7875591eec42a273d2123ba2a497d73
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586153600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:35:28 EST 2025
Mon Oct 06 16:26:57 EDT 2025
Mon Oct 06 17:22:44 EDT 2025
Sun Oct 05 01:50:28 EDT 2025
Sat Nov 29 07:28:06 EST 2025
Wed Oct 01 06:55:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain tumor segmentation
Feature model fusion
Image Pre-processing
Bonobo optimization algorithm
Biomedical imaging
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c932959ac4626fb8e77194c8c69a08e5fb7875591eec42a273d2123ba2a497d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3256003075?pq-origsite=%requestingapplication%
PMID 41028788
PQID 3256003075
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_a5c458d94fa54589b09952228046a2b9
proquest_miscellaneous_3256107669
proquest_journals_3256003075
pubmed_primary_41028788
crossref_primary_10_1038_s41598_025_12973_w
springer_journals_10_1038_s41598_025_12973_w
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References NN Mostafa (12973_CR1) 2021; 1
Z Mansur (12973_CR13) 2025; 6
S Banerjee (12973_CR34) 2025; 141
12973_CR18
M Nawaz (12973_CR23) 2022; 32
RG Tiwari (12973_CR17) 2025; 103
MI Sharif (12973_CR19) 2024; 36
NN Mostafa (12973_CR10) 2021; 1
M Korkmaz (12973_CR32) 2025; 15
J Amin (12973_CR8) 2018; 87
Z Schwehr (12973_CR15) 2025
12973_CR40
MS Mithun (12973_CR38) 2024; 17
B Kuntiyellannagari (12973_CR31) 2025; 14
AM Sarhan (12973_CR2) 2020; 13
12973_CR26
12973_CR25
12973_CR24
12973_CR22
R Zheng (12973_CR35) 2025; 28
12973_CR21
12973_CR20
K Lata (12973_CR14) 2024; 12
12973_CR29
12973_CR28
S Natha (12973_CR16) 2024; 14
AA Asiri (12973_CR27) 2024; 12
R Hashemzehi (12973_CR4) 2020; 40
G Mohan (12973_CR5) 2018; 39
M Ghaffari (12973_CR3) 2019; 13
U Amjad (12973_CR37) 2025; 11
A Chattopadhyay (12973_CR9) 2022; 2
N Butt (12973_CR33) 2025; 20
SM Alqhtani (12973_CR39) 2024; 12
AA Sundaresan (12973_CR30) 2024
M Toğaçar (12973_CR6) 2020; 134
12973_CR36
MS Alam (12973_CR7) 2019; 3
12973_CR11
M Ashimgaliyev (12973_CR12) 2024; 14
References_xml – volume: 40
  start-page: 1225
  year: 2020
  ident: 12973_CR4
  publication-title: Biocybernetics Biomedical Eng.
  doi: 10.1016/j.bbe.2020.06.001
– ident: 12973_CR25
  doi: 10.1038/s41598-024-57970-7
– volume: 12
  start-page: 61312
  year: 2024
  ident: 12973_CR39
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3394541
– volume: 6
  start-page: 42
  year: 2025
  ident: 12973_CR13
  publication-title: SN COMPUT. SCI.
  doi: 10.1007/s42979-024-03558-x
– ident: 12973_CR21
  doi: 10.1155/2022/1465173
– volume: 141
  start-page: 107355
  year: 2025
  ident: 12973_CR34
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2025.107355
– ident: 12973_CR11
  doi: 10.2174/1573409920666230816090626
– volume: 3
  start-page: 27
  year: 2019
  ident: 12973_CR7
  publication-title: BDCC
  doi: 10.3390/bdcc3020027
– volume: 134
  start-page: 109531
  year: 2020
  ident: 12973_CR6
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 12
  start-page: 42868
  year: 2024
  ident: 12973_CR27
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3379136
– volume: 14
  start-page: 2210
  year: 2024
  ident: 12973_CR16
  publication-title: Appl. Sci.
  doi: 10.3390/app14052210
– volume: 13
  start-page: 102
  year: 2020
  ident: 12973_CR2
  publication-title: JBiS
  doi: 10.4236/jbise.2020.136010
– volume: 1
  start-page: 50
  year: 2021
  ident: 12973_CR10
  publication-title: JNFS
  doi: 10.54216/JNFS.010106
– volume: 39
  start-page: 139
  year: 2018
  ident: 12973_CR5
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.007
– volume: 14
  start-page: 7281
  year: 2024
  ident: 12973_CR12
  publication-title: Appl. Sci.
  doi: 10.3390/app14167281
– volume: 12
  start-page: 140722
  year: 2024
  ident: 12973_CR14
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3456599
– volume: 32
  start-page: 2137
  issue: 6
  year: 2022
  ident: 12973_CR23
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22750
– volume: 1
  start-page: 55
  issue: 1
  year: 2021
  ident: 12973_CR1
  publication-title: J. Neutrosophic Fuzzy Syst.
  doi: 10.54216/JNFS.010106
– volume: 15
  start-page: 1005
  year: 2025
  ident: 12973_CR32
  publication-title: Appl. Sci.
  doi: 10.3390/app15031005
– volume: 28
  start-page: 167
  year: 2025
  ident: 12973_CR35
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-024-04969-4
– volume: 36
  start-page: 95
  issue: 1
  year: 2024
  ident: 12973_CR19
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07204-6
– volume: 20
  start-page: e0316081
  year: 2025
  ident: 12973_CR33
  publication-title: PloS One
  doi: 10.1371/journal.pone.0316081
– year: 2024
  ident: 12973_CR30
  publication-title: Nat. Hazards Res.
  doi: 10.1016/j.nhres.2024.12.003
– ident: 12973_CR40
  doi: 10.1109/ACCESS.2023.3325294
– ident: 12973_CR26
  doi: 10.1109/TCE.2025.3527061
– ident: 12973_CR18
  doi: 10.1117/12.3031821
– volume: 87
  start-page: 290
  year: 2018
  ident: 12973_CR8
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2018.04.065
– volume: 14
  start-page: 1447
  year: 2025
  ident: 12973_CR31
  publication-title: Bull. EEI
  doi: 10.11591/eei.v14i2.8730
– ident: 12973_CR28
  doi: 10.1007/s00521-025-11078-9
– ident: 12973_CR22
  doi: 10.3390/life15030327
– ident: 12973_CR24
  doi: 10.1016/j.bspc.2024.106872
– volume: 103
  start-page: 107387
  year: 2025
  ident: 12973_CR17
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.107387
– ident: 12973_CR36
– ident: 12973_CR20
  doi: 10.1016/j.bspc.2025.108040
– volume: 11
  start-page: e41835
  year: 2025
  ident: 12973_CR37
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2025.e41835
– ident: 12973_CR29
  doi: 10.35882/jeeemi.v7i1.582
– volume: 17
  start-page: 101113
  year: 2024
  ident: 12973_CR38
  publication-title: J. Radiation Res. Appl. Sci.
– year: 2025
  ident: 12973_CR15
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-024-20443-0
– volume: 13
  start-page: 156
  year: 2019
  ident: 12973_CR3
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2019.2946868
– volume: 2
  start-page: 100060
  year: 2022
  ident: 12973_CR9
  publication-title: Neurosci. Inf.
SSID ssj0000529419
Score 2.4605784
Snippet The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main...
Abstract The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 34030
SubjectTerms 631/67
692/699
Accuracy
Algorithms
Artificial intelligence
Biomedical imaging
Bonobo optimization algorithm
Brain cancer
Brain Neoplasms - classification
Brain Neoplasms - diagnostic imaging
Brain tumor segmentation
Brain tumors
Classification
Computed tomography
Deep Learning
Diagnosis
Efficiency
Feature model fusion
Humanities and Social Sciences
Humans
Identification
Image Pre-processing
Image Processing, Computer-Assisted - methods
Life expectancy
Life span
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
multidisciplinary
Neuroimaging
Noninvasive evaluation
Optimization techniques
Quality of life
Science
Science (multidisciplinary)
Segmentation
Tomography, X-Ray Computed - methods
Transfer learning
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAiwaJG0TNw07sI22pOKCKA0i9WX5lqUSSajfbqv-oP7MzdnYpAsSFq21ZTmbs-cbjmY-xt5XnzoqGstu7Jucl9zmiEJ4XrVd1KNHddrFk_uf25ESenqovt6i-6E1YKg-cfty-EY4L6RXvDMV4lEVII-jaAh07U9mYule06pYzlap6V4qXas6SKWq5v0JLRdlklchL4mvKL3-xRLFg_59Q5m8R0mh4jh-yBzNihA9ppY_YnTA8ZvcSh-TVE3Z9FMI5TBF_hiXMLBALIPPkoQuxcCd0a7oVg8h7A3T3CgfjMNoRRjwy-jkXE8yPxbjEzh4QykIYvsfnAWCJRgKmdY-Nq7Do53QlHD94cAS_6b1Rapp5fyCl9ZMGwFkfmZCesm_HH78efspn-oXc8VpOuUNop4QyjqPT01kZ2rZU3EnXKFPIIDqLmx0dkjIExyuDOMiTHbSmMly1vq2fsZ1hHMILBl7YqiE51i1CgsobWTcmeBEQTIquLDL2biMKfZ6qbOgYHa-lToLTKDgdBacvM3ZA0tqOpArZsQH1Rs96o_-lNxnb3chaz9t2pesIAPHYExl7s-3GDUdRFDOEcZ3GoM_cNDjF86Qj25VwgmutlBl7v1Gan5P__YNe_o8PesXuV6Td8S3LLtuZluuwx-66i-lstXwdt8cNDYoSSg
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep transfer learning based feature fusion model with Bonobo optimization algorithm for enhanced brain tumor segmentation and classification through biomedical imaging
URI https://link.springer.com/article/10.1038/s41598-025-12973-w
https://www.ncbi.nlm.nih.gov/pubmed/41028788
https://www.proquest.com/docview/3256003075
https://www.proquest.com/docview/3256107669
https://doaj.org/article/a5c458d94fa54589b09952228046a2b9
Volume 15
WOSCitedRecordID wos001586153600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoFyQuvKGBsjISN4iahxPbJ8RCK5DoKkIgLafIsZ1tJZJsN1kq_hE_kxnHuxXiceHig2Mljmbs-TzjmY-Q54lhuspyzG6v85DFzISAQlgYcSNTG8NxW7uS-R_4fC4WC1l4h1vvr1Vu90S3UZtOo4_8KHW2GTQye7W6CJE1CqOrnkJjj0wA2cR4pes0KXY-FoxisVj6XJkoFUc92CvMKUuyMEbWpvDyF3vkyvb_CWv-Fid15ufk9v9O_A655YEnfT1qyl1yzbb3yI2RivL7ffLjrbUrOjgYa9fUk0ksKVo5Q2vr6n_SeoPONerocyi6cOmsa7uqox3sPI1P6aTq6xImMJw1FBAxte2Zu2VAK2SjoMOmgc7eLhuf9QTjW0M1oni8tjR2efogOlYHQEWi540jVHpAPp8cf3rzLvQsDqFmqRhCDQhRZlJpBmenuhKW81gyLXQuVSRsVlewZ8C5JrZWs0QBnDJoTiuVKCa54elDst92rT0g1GRVkmuM9HJAFolRIs2VNZkFTJrVcRSQF1tZlquxWEfpguypKEfJlyD50km-vAzIDMW9G4mFtl1Ht16Wft2WKsPvGclqhSFGWQGiztBrFrFcJZUMyOFW6qVf_X15JfKAPNs9hnWLwRjV2m4zjoGjd57DKx6NSrabCUPUx4UIyMut1l29_O8_9Pjfc3lCbiao-O6yyyHZH9Yb-5Rc19-G8349JXt8wV0rpmQyO54XH6fOQTF1awpbDu2keH9afPkJiFYohQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFETx3kdEKKUqlWXVQ9F6s04trOtRJLtbpZV_xEnfiMzTrIV4nHrgas38ubxeeaz5_EBvORG6CJOqLq9THwRCuMjCxF-kJo8siFut7VrmT9Kx-Ps-Dg_XIMfQy0MpVUONtEZatNoOiPfipxvRkTG76ZnPqlGUXR1kNDoYHFgz5e4ZZu_3d_B7_uK892PRx_2_F5VwNciylpfI2PJ41xpgVy-LDKbpriR15lOchVkNi4LxDDy7NBaLbhC927IvBeKK5GnJo1w3itwVVBnMUoV5IerMx2Kmokw72tzgijbmqN_pBo2HvshqUT5y1_8n5MJ-BO3_S0u69zd7u3_7UXdgVs9sWbvu5VwF9ZsfQ-ud1Kb5_fh-461U9Y6mm5nrBfLmDDy4oaV1vU3ZeWCDg-ZkwdidETNtpu6KRrWoGWt-pJVpr5O8IHbk4oh42e2PnFZFKwgtQ3WLiocnNtJ1Vd14fW1YZp2KZSW1Q318kis635AC4WdVk4w6gF8vpTX9BDW66a2j4CZuOCJpkh2isyJG5VFibImtsi54zIMPHg9YEdOu2Yk0iURRJnskCYRadIhTS492CZ4ra6kRuJuoJlNZG-XpIrp_0wuSkUh1LzAHUNMp4KBSBQvcg82B5TJ3rrN5QXEPHix-hntEgWbVG2bRXdNGKRJglNsdKBe3YkgVptmmQdvBpRfTP73B3r873t5Djf2jj6N5Gh_fPAEbnJadC6xZxPW29nCPoVr-lt7Op89c6uWwZfLRv9PBU58yg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JjhMxEC0NGUBc2JfAAEaCE7TSi3s7IMQQIqIZohxAGk7GbbszI5HukHSI5o_4Br6OKrc7I8RymwNXp-X08lz1ylXlB_A01FwVcULd7WXi8YBrD1kI9_xU55EJMNxW9sj8w3QyyY6O8ukO_Oh6YaissrOJ1lDrWtEe-SCyvhkRGQ9KVxYxHY5eLb56pCBFmdZOTqOFyIE53WD4tno5HuK3fhaGo7cf3rzznMKAp3iUNZ5C9pLHuVQceX1ZZCZNMahXmUpy6WcmLgvEM3LuwBjFQ4muXpOpL2QoeZ7qNMJ5L8AuUnIe9mB3On4__bTd4aEcGg9y16njR9lghd6SOtrC2AtIM8rb_OINrWjAn5jub1la6_xG1_7n13YdrjrKzV63a-QG7JjqJlxqRThPb8H3oTEL1lgCb5bMyWjMGPl3zUpjTz5l5Zq2FZkVDmK0ec3266oualajzZ27ZlYmv8zwgZvjOcNYgJnq2NZXsIJ0OFiznuPgyszmrt8Lr680UxS_UMFWO-SEk1h7LgItIXYyt1JSt-HjubymO9Cr6srcA6bjIkwU5bhT5FShllmUSKNjg2w8LgO_D887HIlFe0yJsOUFUSZa1AlEnbCoE5s-7BPUtlfSEeN2oF7OhLNYQsb0fzrnpaTkal5gLBHTfqHPExkWeR_2OsQJZ_dW4gxufXiy_RktFqWhZGXqdXtN4KdJglPcbQG-vRNOfDfNsj686BB_NvnfH-j-v-_lMVxG0IvD8eTgAVwJaf3Zip896DXLtXkIF9W35mS1fOSWMIPP5w3_n1-YhxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+transfer+learning+based+feature+fusion+model+with+Bonobo+optimization+algorithm+for+enhanced+brain+tumor+segmentation+and+classification+through+biomedical+imaging&rft.jtitle=Scientific+reports&rft.au=Gurunathan%2C+Pradeep&rft.au=Srinivasan%2C+Preethi+Saroj&rft.au=S%2C+Ravimaran&rft.date=2025-09-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-12973-w&rft.externalDocID=10_1038_s41598_025_12973_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon