A Review of Relational Machine Learning for Knowledge Graphs
Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equi...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Ročník 104; číslo 1; s. 11 - 33 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9219, 1558-2256 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination. |
|---|---|
| AbstractList | Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination. |
| Author | Tresp, Volker Gabrilovich, Evgeniy Murphy, Kevin Nickel, Maximilian |
| Author_xml | – sequence: 1 givenname: Maximilian surname: Nickel fullname: Nickel, Maximilian organization: Laboratory for Computational and Statistical Learning (LCSL), Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Kevin surname: Murphy fullname: Murphy, Kevin organization: Google Inc., Mountain View, CA, USA – sequence: 3 givenname: Volker surname: Tresp fullname: Tresp, Volker organization: Siemens AG, Corporate Technology, Munich, Germany – sequence: 4 givenname: Evgeniy surname: Gabrilovich fullname: Gabrilovich, Evgeniy organization: Google Inc., Mountain View, CA, USA |
| BookMark | eNp9kDtPwzAUhS0EEm3hD8ASiYUl5dqOU1tiqSooj6KiCubIcW6KqzQudkrFvyd9iIGB6d7h-450Tpcc165GQi4o9CkFdfP0OpuO-gyo6LNEcqHYEelQIWTMmEiPSQeAylgxqk5JN4QFAHCR8g65HUYz_LK4iVzZfpVurKt1Fb1o82FrjCaofW3reVQ6Hz3XblNhMcdo7PXqI5yRk1JXAc8Pt0fe7-_eRg_xZDp-HA0nsUm4bGLDoBgUJlcF6rQsSso1oFLaUF3mZYtACjkwwTBBmRQIUlGEPGcmZalglPfI9T535d3nGkOTLW0wWFW6RrcOGR0ozpI2YNCiV3_QhVv7ttGWEpQDkzRtKbmnjHcheCwzY5td9cZrW2UUsu2s2W7WbDtrdpi1VdkfdeXtUvvv_6XLvWQR8VcYcCFBAP8B0mmD_g |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1016_j_websem_2017_03_001 crossref_primary_10_3390_info14030154 crossref_primary_10_1007_s10586_021_03361_w crossref_primary_10_3233_SW_233508 crossref_primary_10_3390_math11214486 crossref_primary_10_1007_s10489_021_02220_w crossref_primary_10_1016_j_physa_2022_128428 crossref_primary_10_1016_j_techfore_2023_122732 crossref_primary_10_1145_3604427 crossref_primary_10_7717_peerj_cs_357 crossref_primary_10_1016_j_neucom_2021_02_101 crossref_primary_10_1016_j_eswa_2023_119755 crossref_primary_10_1016_j_eswa_2019_112948 crossref_primary_10_1016_j_neucom_2021_02_100 crossref_primary_10_1109_TCYB_2022_3181810 crossref_primary_10_3389_frai_2024_1247712 crossref_primary_10_1109_TKDE_2019_2941685 crossref_primary_10_1080_24751839_2025_2528363 crossref_primary_10_1016_j_engappai_2024_108818 crossref_primary_10_1109_TKDE_2025_3525490 crossref_primary_10_1109_TKDE_2023_3323499 crossref_primary_10_12688_wellcomeopenres_23599_1 crossref_primary_10_1145_3643806 crossref_primary_10_1007_s13042_023_01995_3 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1145_2978656 crossref_primary_10_3390_s19081774 crossref_primary_10_1145_3395046 crossref_primary_10_1016_j_patrec_2023_02_004 crossref_primary_10_1007_s13740_016_0062_7 crossref_primary_10_1016_j_iswa_2025_200551 crossref_primary_10_3390_land13010009 crossref_primary_10_1007_s13278_022_00880_1 crossref_primary_10_1016_j_jbi_2025_104857 crossref_primary_10_1109_ACCESS_2024_3479774 crossref_primary_10_1016_j_eswa_2025_128923 crossref_primary_10_1109_TPAMI_2021_3080635 crossref_primary_10_1002_asi_24220 crossref_primary_10_1016_j_csbj_2020_05_017 crossref_primary_10_1093_bib_bbac363 crossref_primary_10_1016_j_dsx_2020_05_013 crossref_primary_10_1016_j_artint_2024_104197 crossref_primary_10_1111_tgis_12911 crossref_primary_10_3390_encyclopedia1030061 crossref_primary_10_1017_S135132491700047X crossref_primary_10_1016_j_ins_2019_08_061 crossref_primary_10_1007_s12325_022_02254_7 crossref_primary_10_1186_s40537_023_00774_9 crossref_primary_10_1109_ACCESS_2021_3087185 crossref_primary_10_1016_j_artmed_2025_103275 crossref_primary_10_1007_s12559_018_9565_x crossref_primary_10_1109_ACCESS_2017_2773141 crossref_primary_10_1186_s12859_018_2163_9 crossref_primary_10_1016_j_eswa_2022_117026 crossref_primary_10_1145_3733602 crossref_primary_10_1016_j_jksuci_2023_101571 crossref_primary_10_1038_s41598_023_38857_5 crossref_primary_10_1016_j_neucom_2018_05_084 crossref_primary_10_1007_s12204_020_2179_y crossref_primary_10_1016_j_aei_2025_103490 crossref_primary_10_1109_TBDATA_2018_2805366 crossref_primary_10_1038_s41565_022_01284_0 crossref_primary_10_3390_s23115295 crossref_primary_10_1016_j_neucom_2021_10_013 crossref_primary_10_1109_ACCESS_2020_3004448 crossref_primary_10_7717_peerj_cs_667 crossref_primary_10_1109_ACCESS_2020_3016782 crossref_primary_10_1109_TCSS_2022_3162229 crossref_primary_10_3390_sym16050587 crossref_primary_10_1109_TDSC_2024_3522025 crossref_primary_10_3390_math13111737 crossref_primary_10_1007_s41019_018_0082_4 crossref_primary_10_1016_j_rser_2017_05_134 crossref_primary_10_3390_app122211316 crossref_primary_10_1016_j_patrec_2016_09_005 crossref_primary_10_1111_tgis_12917 crossref_primary_10_1145_3464377 crossref_primary_10_1145_3329781_3332266 crossref_primary_10_1016_j_ifacol_2022_05_018 crossref_primary_10_1007_s41745_019_0103_y crossref_primary_10_1093_bib_bbaa344 crossref_primary_10_3390_app11031251 crossref_primary_10_1016_j_jestch_2024_101782 crossref_primary_10_1038_s41562_020_0889_7 crossref_primary_10_1109_ACCESS_2020_3037118 crossref_primary_10_1016_j_websem_2022_100741 crossref_primary_10_1145_3640347 crossref_primary_10_1049_iet_epa_2020_0123 crossref_primary_10_1016_j_future_2021_11_022 crossref_primary_10_1080_09544828_2024_2311065 crossref_primary_10_1016_j_eswa_2022_119013 crossref_primary_10_1016_j_eswa_2019_112960 crossref_primary_10_1109_TASLP_2023_3297959 crossref_primary_10_1109_ACCESS_2020_2995074 crossref_primary_10_3390_app15116031 crossref_primary_10_3390_app11052045 crossref_primary_10_1038_s41597_025_05200_8 crossref_primary_10_3390_molecules28031490 crossref_primary_10_1146_annurev_biodatasci_010820_091627 crossref_primary_10_1016_j_ifacol_2021_04_172 crossref_primary_10_3390_s22103722 crossref_primary_10_1093_bib_bbaa012 crossref_primary_10_7717_peerj_13061 crossref_primary_10_1016_j_eswa_2022_119122 crossref_primary_10_1016_j_eswa_2020_113235 crossref_primary_10_1371_journal_pone_0290018 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1145_3467982 crossref_primary_10_1016_j_neucom_2021_10_001 crossref_primary_10_1007_s11023_022_09603_z crossref_primary_10_7717_peerj_cs_341 crossref_primary_10_1016_j_ocecoaman_2023_106679 crossref_primary_10_1016_j_asoc_2024_111899 crossref_primary_10_1016_j_datak_2022_102040 crossref_primary_10_1016_j_neucom_2021_04_128 crossref_primary_10_1007_s11023_022_09602_0 crossref_primary_10_1016_j_procs_2022_01_317 crossref_primary_10_3233_JIFS_219087 crossref_primary_10_1007_s13222_020_00341_z crossref_primary_10_1016_j_knosys_2022_109262 crossref_primary_10_7717_peerj_16164 crossref_primary_10_1007_s00799_021_00306_x crossref_primary_10_1016_j_cosrev_2025_100800 crossref_primary_10_1145_3377478 crossref_primary_10_1016_j_culher_2023_08_007 crossref_primary_10_3390_su15086683 crossref_primary_10_1007_s11063_022_10831_8 crossref_primary_10_1016_j_procs_2024_02_005 crossref_primary_10_1145_3105961 crossref_primary_10_1007_s11192_020_03446_0 crossref_primary_10_1147_JRD_2017_2709578 crossref_primary_10_1016_j_ifacol_2017_08_1110 crossref_primary_10_1016_j_ijmecsci_2025_110335 crossref_primary_10_1007_s10462_017_9590_2 crossref_primary_10_1016_j_websem_2019_01_004 crossref_primary_10_3233_SW_210452 crossref_primary_10_3724_2096_7004_di_2024_0023 crossref_primary_10_3390_su13031311 crossref_primary_10_1109_TKDE_2021_3063233 crossref_primary_10_1007_s00170_023_12644_y crossref_primary_10_3390_math13060935 crossref_primary_10_1016_j_patcog_2020_107412 crossref_primary_10_7717_peerj_cs_1542 crossref_primary_10_1016_j_media_2025_103514 crossref_primary_10_1016_j_ins_2022_05_027 crossref_primary_10_1080_0951192X_2025_2544558 crossref_primary_10_1007_s11063_020_10365_x crossref_primary_10_1109_TKDE_2021_3073483 crossref_primary_10_1007_s10115_019_01351_4 crossref_primary_10_1038_s41524_019_0204_1 crossref_primary_10_1038_s41598_022_06940_y crossref_primary_10_1007_s13369_020_04612_5 crossref_primary_10_1016_j_is_2020_101624 crossref_primary_10_1109_ACCESS_2019_2938303 crossref_primary_10_1111_tgis_12629 crossref_primary_10_1007_s43681_025_00697_6 crossref_primary_10_1109_MSP_2016_2617341 crossref_primary_10_1109_ACCESS_2020_3019592 crossref_primary_10_1186_s12911_018_0679_6 crossref_primary_10_3390_e22101168 crossref_primary_10_1016_j_eswa_2023_120325 crossref_primary_10_1109_TII_2023_3337380 crossref_primary_10_1016_j_envsoft_2021_105160 crossref_primary_10_1007_s10489_021_02394_3 crossref_primary_10_3390_app12115718 crossref_primary_10_1016_j_jfranklin_2022_09_045 crossref_primary_10_1007_s10514_023_10099_4 crossref_primary_10_1109_TAES_2024_3414957 crossref_primary_10_1016_j_knosys_2022_109232 crossref_primary_10_3390_info12040147 crossref_primary_10_1186_s40537_020_00295_9 crossref_primary_10_3390_su142316299 crossref_primary_10_1109_ACCESS_2025_3591823 crossref_primary_10_1007_s10489_021_02304_7 crossref_primary_10_1016_j_knosys_2020_106630 crossref_primary_10_1016_j_inffus_2025_103242 crossref_primary_10_1016_j_cosrev_2024_100716 crossref_primary_10_1080_00207543_2021_2014591 crossref_primary_10_1109_ACCESS_2020_2993191 crossref_primary_10_1007_s12652_024_04757_3 crossref_primary_10_1007_s10618_021_00760_w crossref_primary_10_1007_s13042_024_02434_7 crossref_primary_10_1016_j_ipm_2024_103737 crossref_primary_10_1007_s00607_025_01499_8 crossref_primary_10_1016_j_procs_2024_04_178 crossref_primary_10_1109_ACCESS_2024_3351170 crossref_primary_10_1109_TCSS_2020_3029569 crossref_primary_10_1109_ACCESS_2020_2984593 crossref_primary_10_3233_SW_212955 crossref_primary_10_3390_e21111083 crossref_primary_10_1145_3522586 crossref_primary_10_1145_3286488 crossref_primary_10_3389_frai_2024_1388479 crossref_primary_10_1007_s00521_021_05852_8 crossref_primary_10_1007_s00778_021_00690_5 crossref_primary_10_1016_j_crmeth_2023_100413 crossref_primary_10_1088_1755_1315_675_1_012111 crossref_primary_10_1155_2022_7593750 crossref_primary_10_1007_s00521_018_3860_z crossref_primary_10_1049_gtd2_12040 crossref_primary_10_3390_su12083074 crossref_primary_10_1109_ACCESS_2017_2698142 crossref_primary_10_1016_j_knosys_2018_03_030 crossref_primary_10_2514_1_I011416 crossref_primary_10_1186_s12911_020_01134_w crossref_primary_10_3390_app122010226 crossref_primary_10_1093_bib_bbaa417 crossref_primary_10_1016_j_jnca_2021_103076 crossref_primary_10_1016_j_eswa_2023_121211 crossref_primary_10_1109_TCBB_2019_2933825 crossref_primary_10_1038_s41467_022_29993_z crossref_primary_10_1007_s10618_020_00677_w crossref_primary_10_1109_ACCESS_2024_3372188 crossref_primary_10_32604_cmes_2023_031513 crossref_primary_10_1631_FITEE_1700800 crossref_primary_10_1007_s13042_024_02126_2 crossref_primary_10_3390_math13091463 crossref_primary_10_1371_journal_pone_0289568 crossref_primary_10_14778_3407790_3407796 crossref_primary_10_3390_math11224672 crossref_primary_10_3390_sym11091096 crossref_primary_10_1038_s41598_019_57304_y crossref_primary_10_1016_j_eswa_2020_114164 crossref_primary_10_1038_s41598_020_74922_z crossref_primary_10_1016_j_ifacol_2016_07_608 crossref_primary_10_1080_02522667_2022_2133215 crossref_primary_10_1088_1757_899X_1022_1_012038 crossref_primary_10_3389_frobt_2018_00008 crossref_primary_10_3390_info10050172 crossref_primary_10_1016_j_neunet_2025_107679 crossref_primary_10_1007_s10618_021_00806_z crossref_primary_10_1093_bioinformatics_btaf408 crossref_primary_10_1007_s10489_021_03149_w crossref_primary_10_1016_j_ins_2021_11_085 crossref_primary_10_1109_TKDE_2017_2754499 crossref_primary_10_1109_JSTARS_2024_3387744 crossref_primary_10_1007_s10844_019_00592_7 crossref_primary_10_1007_s00521_018_3384_6 crossref_primary_10_1109_TSIPN_2022_3205555 crossref_primary_10_3390_info15080509 crossref_primary_10_3233_SW_190374 crossref_primary_10_1007_s11390_024_2863_8 crossref_primary_10_1145_3485666 crossref_primary_10_1016_j_procs_2022_11_204 crossref_primary_10_1016_j_ejor_2020_05_062 crossref_primary_10_1109_TKDE_2016_2638425 crossref_primary_10_1007_s11831_021_09576_9 crossref_primary_10_1016_j_knosys_2024_111510 crossref_primary_10_1080_00207543_2024_2381145 crossref_primary_10_1016_j_ecoinf_2023_102360 crossref_primary_10_1108_INTR_07_2020_0379 crossref_primary_10_3233_SW_200388 crossref_primary_10_1016_j_jprocont_2022_06_011 crossref_primary_10_1016_j_bdr_2023_100380 crossref_primary_10_1016_j_dss_2025_114485 crossref_primary_10_1016_j_jbi_2023_104403 crossref_primary_10_1177_18724981251321368 crossref_primary_10_3233_SW_180317 crossref_primary_10_1080_19475705_2024_2383768 crossref_primary_10_3233_SW_180318 crossref_primary_10_1109_TNNLS_2020_3015896 crossref_primary_10_1145_3483595 crossref_primary_10_1016_j_neucom_2024_127857 crossref_primary_10_1007_s00778_020_00640_7 crossref_primary_10_1186_s12859_019_2664_1 crossref_primary_10_1016_j_future_2025_108063 crossref_primary_10_1109_TKDE_2021_3063985 crossref_primary_10_1145_3483382_3483393 crossref_primary_10_3233_SW_190359 crossref_primary_10_1007_s10994_024_06528_9 crossref_primary_10_1007_s12136_024_00619_x crossref_primary_10_1162_neco_a_01558 crossref_primary_10_1002_widm_1389 crossref_primary_10_1007_s10489_022_03601_5 crossref_primary_10_1109_ACCESS_2019_2915987 crossref_primary_10_1155_2017_2858423 crossref_primary_10_1007_s41651_021_00097_4 crossref_primary_10_1016_j_neucom_2024_128721 crossref_primary_10_1016_j_knosys_2022_109083 crossref_primary_10_1016_j_knosys_2017_08_014 crossref_primary_10_1016_j_jprocont_2024_103342 crossref_primary_10_1109_ACCESS_2019_2926753 crossref_primary_10_1016_j_cageo_2022_105082 crossref_primary_10_1016_j_neucom_2020_12_012 crossref_primary_10_1145_3331166 crossref_primary_10_1016_j_asoc_2025_113268 crossref_primary_10_1007_s11257_025_09432_6 crossref_primary_10_1080_1206212X_2022_2133805 crossref_primary_10_1109_TEMC_2020_3019801 crossref_primary_10_1016_j_ejsobi_2023_103497 crossref_primary_10_1016_j_fmre_2021_08_013 crossref_primary_10_1186_s12859_023_05373_2 crossref_primary_10_1093_jcde_qwae108 crossref_primary_10_1016_j_ins_2024_120477 crossref_primary_10_3390_ijgi14080295 crossref_primary_10_1093_jcde_qwad013 crossref_primary_10_1098_rsos_191928 crossref_primary_10_1155_2020_4741963 crossref_primary_10_1016_j_mfglet_2023_08_086 crossref_primary_10_1016_j_robot_2022_104294 crossref_primary_10_3390_app10113964 crossref_primary_10_1007_s00500_021_05756_8 crossref_primary_10_1016_j_ijar_2021_06_003 crossref_primary_10_1016_j_neunet_2024_106219 crossref_primary_10_1016_j_asoc_2023_110235 crossref_primary_10_1371_journal_pcbi_1007578 crossref_primary_10_1016_j_knosys_2024_111554 crossref_primary_10_1007_s12530_024_09616_2 crossref_primary_10_1007_s11257_019_09250_7 crossref_primary_10_1016_j_engappai_2018_09_013 crossref_primary_10_7717_peerj_cs_1073 crossref_primary_10_1016_j_jhydrol_2022_128970 crossref_primary_10_1145_3656580 crossref_primary_10_1016_j_aci_2018_10_001 crossref_primary_10_1109_TWC_2024_3520661 crossref_primary_10_1109_MWC_001_1900264 crossref_primary_10_1109_TKDE_2022_3150080 crossref_primary_10_3390_jmse10101352 crossref_primary_10_1080_10447318_2024_2348229 crossref_primary_10_1007_s11280_023_01167_x crossref_primary_10_1016_j_csbj_2023_05_001 crossref_primary_10_1016_j_is_2019_07_001 crossref_primary_10_1016_j_neucom_2023_126390 crossref_primary_10_1016_j_neunet_2023_01_004 crossref_primary_10_3390_ijerph182010692 crossref_primary_10_3390_s23104936 crossref_primary_10_7717_peerj_14843 crossref_primary_10_1007_s10845_020_01646_2 crossref_primary_10_1145_3746658 crossref_primary_10_7717_peerj_15815 crossref_primary_10_1109_ACCESS_2020_3030076 crossref_primary_10_1145_3672615 crossref_primary_10_1016_j_procs_2020_09_045 crossref_primary_10_1016_j_eswa_2022_118969 crossref_primary_10_1016_j_ijar_2024_109183 crossref_primary_10_1016_j_inffus_2024_102249 crossref_primary_10_3233_SW_200369 crossref_primary_10_2174_1574893618666230224142324 crossref_primary_10_1007_s00146_018_0867_z crossref_primary_10_3233_JIFS_189835 crossref_primary_10_3390_app9204399 crossref_primary_10_1109_TITS_2022_3158045 crossref_primary_10_1007_s10994_022_06130_x crossref_primary_10_3390_app131910660 crossref_primary_10_1007_s00500_021_06043_2 crossref_primary_10_1109_JBHI_2022_3233498 crossref_primary_10_1016_j_neucom_2021_02_099 crossref_primary_10_1109_JBHI_2020_3008493 crossref_primary_10_1016_j_tcs_2021_01_013 crossref_primary_10_3390_a12010012 crossref_primary_10_1016_j_ipm_2025_104159 crossref_primary_10_1109_LRA_2024_3367271 crossref_primary_10_1145_3373464_3373473 crossref_primary_10_1007_s11280_021_00972_6 crossref_primary_10_1109_TIE_2019_2893839 crossref_primary_10_1109_TPAMI_2021_3121646 crossref_primary_10_1109_ACCESS_2019_2934633 crossref_primary_10_1007_s11633_023_1440_x crossref_primary_10_1109_TKDE_2021_3136482 crossref_primary_10_1016_j_knosys_2024_111591 crossref_primary_10_1287_ijoc_2022_1251 crossref_primary_10_1109_ACCESS_2019_2931361 crossref_primary_10_1080_17517575_2019_1709663 crossref_primary_10_1109_TCSS_2024_3355300 crossref_primary_10_1007_s10489_020_01648_w crossref_primary_10_1093_bib_bbae119 crossref_primary_10_1016_j_knosys_2016_04_015 crossref_primary_10_1016_j_micpro_2021_104335 crossref_primary_10_1109_TLT_2018_2808187 crossref_primary_10_1109_TPAMI_2021_3124805 crossref_primary_10_1145_3424672 crossref_primary_10_1109_ACCESS_2024_3501735 crossref_primary_10_1109_TAI_2021_3076021 crossref_primary_10_1108_LHT_11_2022_0538 crossref_primary_10_3390_app10082651 crossref_primary_10_1109_LRA_2021_3056071 crossref_primary_10_1111_tgis_13012 crossref_primary_10_1016_j_ifacol_2020_11_039 crossref_primary_10_1109_TKDE_2022_3154792 crossref_primary_10_1111_exsy_12984 crossref_primary_10_1063_5_0206258 crossref_primary_10_1007_s10994_024_06610_2 crossref_primary_10_1088_1742_6596_2846_1_012026 crossref_primary_10_1093_bioadv_vbae036 crossref_primary_10_1109_TKDE_2023_3304137 crossref_primary_10_1109_TKDE_2020_2970044 crossref_primary_10_1111_tgis_13166 crossref_primary_10_1016_j_websem_2020_100590 crossref_primary_10_1016_j_procs_2021_04_110 crossref_primary_10_1186_s13326_023_00301_y crossref_primary_10_1080_01621459_2024_2441525 crossref_primary_10_1002_widm_1537 crossref_primary_10_1016_j_eswa_2025_128095 crossref_primary_10_1016_j_ipm_2021_102618 crossref_primary_10_1109_JIOT_2017_2666798 crossref_primary_10_1007_s10878_021_00815_0 crossref_primary_10_1016_j_neucom_2025_130666 crossref_primary_10_1016_j_jfranklin_2024_107055 crossref_primary_10_1109_MIC_2019_2928449 crossref_primary_10_1016_j_nlp_2023_100021 crossref_primary_10_1017_S1471068417000023 crossref_primary_10_1016_j_aei_2021_101505 crossref_primary_10_3389_fpubh_2025_1540946 crossref_primary_10_3390_genes10010018 crossref_primary_10_1007_s11265_020_01592_5 crossref_primary_10_1162_tacl_a_00015 crossref_primary_10_1007_s11280_019_00711_y crossref_primary_10_1007_s13735_022_00256_3 crossref_primary_10_1007_s13755_023_00250_x crossref_primary_10_1007_s13222_023_00463_0 crossref_primary_10_1093_bib_bbaa199 crossref_primary_10_1007_s11518_025_5647_y crossref_primary_10_1016_j_eswa_2022_117361 crossref_primary_10_1016_j_neucom_2020_12_037 crossref_primary_10_1016_j_artint_2023_104062 crossref_primary_10_1016_j_jksuci_2022_04_007 crossref_primary_10_1093_bib_bbab159 crossref_primary_10_1525_elementa_418 crossref_primary_10_1007_s10618_023_00918_8 crossref_primary_10_1109_ACCESS_2023_3322204 crossref_primary_10_1007_s00146_020_01043_6 crossref_primary_10_1109_TMI_2023_3299518 crossref_primary_10_1088_1742_6596_887_1_012042 crossref_primary_10_1109_JAS_2022_105677 crossref_primary_10_1109_TASLP_2016_2585863 crossref_primary_10_1109_TPAMI_2022_3157321 crossref_primary_10_1109_JIOT_2021_3089334 crossref_primary_10_1557_s43578_025_01652_1 crossref_primary_10_1016_j_physa_2019_121319 crossref_primary_10_1016_j_ymssp_2020_107142 crossref_primary_10_3390_s23031223 crossref_primary_10_1109_ACCESS_2021_3070395 crossref_primary_10_3390_app14209333 crossref_primary_10_1007_s00287_015_0913_x crossref_primary_10_1007_s10922_025_09953_w crossref_primary_10_1007_s11467_020_1041_x crossref_primary_10_1016_j_asoc_2022_108604 crossref_primary_10_1016_j_cad_2022_103372 crossref_primary_10_1155_2022_9772539 crossref_primary_10_1038_s41587_021_01145_6 crossref_primary_10_1109_TKDE_2021_3075070 crossref_primary_10_1109_TNNLS_2021_3070843 crossref_primary_10_1109_ACCESS_2019_2932149 crossref_primary_10_1007_s11042_023_16271_3 crossref_primary_10_1145_3477141 crossref_primary_10_1007_s10472_021_09767_x crossref_primary_10_1109_ACCESS_2020_3013108 |
| Cites_doi | 10.1609/aimag.v36i1.2568 10.1016/j.jbi.2008.03.004 10.14778/1453856.1453896 10.1609/aimag.v31i3.2303 10.1007/s007780100057 10.4018/jswis.2012070103 10.1016/j.artint.2012.06.001 10.1007/978-3-540-68856-3 10.14778/2777598.2777603 10.2200/S00433ED1V01Y201207DMK005 10.1145/2463676.2463702 10.1145/1641309.1641322 10.1002/asi.20591 10.1016/0004-3702(90)90007-M 10.1093/bib/bbp004 10.1007/s10618-012-0253-2 10.1145/1718487.1718498 10.1016/S0378-8733(03)00009-1 10.1109/TPAMI.2014.2334607 10.1145/2488388.2488425 10.1016/0378-8733(92)90017-2 10.1145/2505515.2507846 10.1016/S0306-4379(01)00042-4 10.1007/978-3-642-40994-3_40 10.1007/978-3-540-76298-0_52 10.1145/1935826.1935869 10.1016/S0893-6080(05)80023-1 10.1209/0295-5075/89/58007 10.1007/BF00117105 10.1145/1401890.1401944 10.1145/2629489 10.1198/016214502388618906 10.1007/BF02289026 10.1007/978-3-031-01879-4 10.1007/BF03037227 10.5220/0005187303170324 10.3115/v1/D14-1165 10.1126/science.130.3381.954 10.1145/1456650.1456651 10.1137/07070111X 10.1016/j.physrep.2009.11.002 10.1145/219717.219748 10.1016/0004-3702(91)90055-O 10.1007/978-3-642-04930-9_14 10.1017/S0140525X98001769 10.1002/0470018860.s00065 10.14778/2732951.2732962 10.1007/BF03037089 10.18653/v1/W15-4007 10.1145/2245276.2245341 10.1145/1099554.1099615 10.1145/2623330.2623623 10.1007/s10994-006-5833-1 10.1145/2487788.2487935 10.1109/ICDE.2012.119 10.1126/science.286.5439.509 10.1109/ICDM.2011.28 10.1007/s10994-010-5205-8 10.14778/2535573.2488340 10.1016/0378-8733(83)90021-7 10.1109/ICDM.2005.77 10.1016/j.physa.2010.11.027 10.7551/mitpress/7432.001.0001 10.1145/219717.219745 10.1145/1242572.1242667 10.1145/2168752.2168771 10.1007/978-3-662-04599-2 10.1145/1376616.1376746 10.4018/jswis.2009081901 10.1007/978-3-642-30284-8_16 10.1145/1807085.1807097 10.1093/nar/gkh061 10.1145/1217299.1217304 10.1145/1273496.1273551 10.14778/2535568.2448943 10.1007/s00778-015-0394-1 10.1109/MC.2009.263 10.1073/pnas.98.2.404 10.1145/1117454.1117456 10.1103/PhysRevE.73.026120 10.1145/2187836.2187874 10.1016/S0169-7552(98)00110-X 10.1145/2566486.2568032 10.1145/1143844.1143874 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 |
| DOI | 10.1109/JPROC.2015.2483592 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 33 |
| ExternalDocumentID | 3903443161 10_1109_JPROC_2015_2483592 7358050 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: German Federal Ministry for Economic Affairs and Energy grantid: 01MT14001 – fundername: Center for Brains, Minds and Machines (CBMM) under NSF STC award grantid: CCF-1231216 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M F28 FR3 |
| ID | FETCH-LOGICAL-c438t-c20d7dcb9dea6fdf13a0e99ac1afbf438060b0252e4e84de0891e0bb2c6265213 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 937 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367250300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Thu Sep 04 19:29:13 EDT 2025 Sun Nov 09 06:10:29 EST 2025 Tue Nov 18 22:23:51 EST 2025 Sat Nov 29 07:50:24 EST 2025 Wed Aug 27 02:43:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | statistical relational learning Graph-based models knowledge graphs latent feature models knowledge extraction |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-c20d7dcb9dea6fdf13a0e99ac1afbf438060b0252e4e84de0891e0bb2c6265213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/1721.1/100193 |
| PQID | 1751302816 |
| PQPubID | 85453 |
| PageCount | 23 |
| ParticipantIDs | crossref_primary_10_1109_JPROC_2015_2483592 ieee_primary_7358050 proquest_miscellaneous_1793242527 crossref_citationtrail_10_1109_JPROC_2015_2483592 proquest_journals_1751302816 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Jan. 2016-1-00 20160101 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref59 ref58 xu (ref71) 0 fader (ref32) 0 ref53 momtchev (ref43) 0 ref52 ref55 ref54 klyne (ref17) 2004 jiang (ref84) 0; 919 nickel (ref118) 2014 auer (ref5) 2007; 4825 lü and t zhou (ref97) 2011; 390 fan (ref34) 0 ji (ref136) 2013 ref50 mcguinness (ref137) 2004; 10 ref46 ref48 suciu (ref141) 2011 ref42 quinlan (ref105) 1991; 8 ref41 lehmann (ref111) 2009; 10 ref49 yang (ref95) 2014; abs 1412 6575 poon (ref128) 0 ref7 ref9 ref4 ref100 ref101 barabási (ref99) 1999; 286 sutskever (ref73) 2009; 22 ref35 ref36 ref31 jenatton (ref81) 2012 huang (ref87) 2013 ref30 riedel (ref85) 0 ref146 ref147 ref38 lao (ref116) 0 neville (ref133) 2007; 8 singla (ref51) 0 ref24 ref23 angeli (ref44) 0 ref26 ref25 ref22 ref21 newcombe (ref47) 1959; 130 ref28 singhal (ref8) 2012 ref27 koller (ref125) 2009 bleiholder (ref143) 2009; 41 fan (ref10) 2012 ferrucci (ref40) 2010; 31 globerson (ref129) 0 nakashole (ref29) 0 kimmig (ref131) 0 bach (ref130) 2015 nickel (ref65) 2013 ref12 ref126 ref127 ref96 ref124 ref98 ref16 nickel (ref75) 0 de raedt (ref3) 2008 pujara (ref132) 2015 hogan (ref138) 0 jensen (ref57) 0 murphy (ref123) 2012 ref89 bottou (ref122) 0 qian (ref39) 2013 brachman (ref19) 2004 taskar (ref45) 2004; 16 ref135 platt (ref61) 1999 ref88 lisi (ref109) 2010; 10 berners-lee (ref15) 2006 cyganiak (ref18) 2014 ref144 ref82 ref145 ref142 carlson (ref6) 0 ref83 halpin (ref139) 0 ref80 ref79 ref108 davis (ref11) 1993; 14 ref78 ref106 ref107 hoff (ref60) 2008 ref104 ref77 ref102 tresp (ref86) 2009; 2009 ref76 ref103 ref2 mikolov (ref91) 0 krompaß (ref140) 0 etzioni (ref37) 0; 1 minervini (ref114) 0 ref70 ref112 schmitz (ref33) 0 nickel (ref63) 0 socher (ref92) 2013 kemp (ref72) 0; 3 ref119 ref67 bordes (ref93) 0 ref117 ref69 ref64 ref115 ref66 ref113 getoor (ref1) 2007 bordes (ref94) 2013 plate (ref90) 1997 berners-lee (ref14) 2001 krompaß (ref74) 0 nickel (ref68) 0 minsky (ref13) 1974 d'amato (ref110) 0 ref62 ref120 ref121 sowa (ref20) 2000 krompaß (ref134) 0 |
| References_xml | – year: 0 ident: ref129 article-title: Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations publication-title: NIPS – year: 2015 ident: ref132 article-title: Using semantics and statistics to turn data into knowledge publication-title: AI Mag doi: 10.1609/aimag.v36i1.2568 – ident: ref41 doi: 10.1016/j.jbi.2008.03.004 – ident: ref142 doi: 10.14778/1453856.1453896 – volume: 31 start-page: 59 year: 2010 ident: ref40 article-title: Building Watson: An overview of the DeepQA project publication-title: AI Mag doi: 10.1609/aimag.v31i3.2303 – ident: ref49 doi: 10.1007/s007780100057 – year: 2009 ident: ref125 publication-title: Probabilistic Graphical Models Principles and Techniques – ident: ref31 doi: 10.4018/jswis.2012070103 – start-page: 114 year: 0 ident: ref140 article-title: Querying factorized probabilistic triple databases publication-title: Proc Semant Web – year: 2013 ident: ref65 publication-title: Tensor Factorization for Relational Learning – start-page: 15 year: 1997 ident: ref90 article-title: A common framework for distributed representation schemes for compositional structure publication-title: Connect Syst Knowl Represent Deduct – year: 0 ident: ref43 article-title: Expanding the pathway and interaction knowledge in linked life data publication-title: Proceedings of International Semantic Web Challenge – ident: ref27 doi: 10.1016/j.artint.2012.06.001 – year: 2008 ident: ref3 publication-title: Logical and Relational Learning doi: 10.1007/978-3-540-68856-3 – ident: ref146 doi: 10.14778/2777598.2777603 – start-page: 1135 year: 0 ident: ref29 article-title: PATTY: A taxonomy of relational patterns with semantic types publication-title: Proc Joint Conf Empirical Methods in Natural Language Processing and Computational Natural Language Learning – ident: ref21 doi: 10.2200/S00433ED1V01Y201207DMK005 – volume: 22 start-page: 1821 year: 2009 ident: ref73 article-title: Modelling relational data using Bayesian clustered tensor factorization publication-title: Adv Neural Inf Process Syst – year: 2012 ident: ref123 publication-title: Machine Learning A Probabilistic Perspective – year: 2014 ident: ref18 publication-title: RDF 1 1 Concepts and Abstract Syntax – ident: ref127 doi: 10.1145/2463676.2463702 – ident: ref35 doi: 10.1145/1641309.1641322 – ident: ref56 doi: 10.1002/asi.20591 – volume: 10 start-page: 331 year: 2010 ident: ref109 article-title: Inductive logic programming in databases: From datalog to dl+log publication-title: TPLP – year: 2013 ident: ref87 article-title: A scalable approach for statistical learning in semantic graphs publication-title: Journal of Web Semanticsi – ident: ref88 doi: 10.1016/0004-3702(90)90007-M – volume: 3 start-page: 5 year: 0 ident: ref72 article-title: Learning systems of concepts with an infinite relational model publication-title: Proc 21st Nat Conf Artif Intell – ident: ref42 doi: 10.1093/bib/bbp004 – ident: ref112 doi: 10.1007/s10618-012-0253-2 – start-page: 572 year: 0 ident: ref51 article-title: Entity resolution with Markov logic publication-title: Proc 6th Int Conf Data Mining – ident: ref79 doi: 10.1145/1718487.1718498 – ident: ref98 doi: 10.1016/S0378-8733(03)00009-1 – ident: ref62 doi: 10.1109/TPAMI.2014.2334607 – start-page: 926 year: 2013 ident: ref92 article-title: Reasoning with neural tensor networks for knowledge base completion publication-title: Advances in Neural Information Processing Systems 26 – ident: ref107 doi: 10.1145/2488388.2488425 – ident: ref59 doi: 10.1016/0378-8733(92)90017-2 – ident: ref83 doi: 10.1145/2505515.2507846 – ident: ref48 doi: 10.1016/S0306-4379(01)00042-4 – ident: ref147 doi: 10.1007/978-3-642-40994-3_40 – volume: 1 start-page: 3 year: 0 ident: ref37 article-title: Open information extraction: The second generation publication-title: Proc 22nd Int Joint Conf Artif Intell – volume: 4825 start-page: 722 year: 2007 ident: ref5 article-title: DBpedia: A nucleus for a web of open data publication-title: The Semantic Web doi: 10.1007/978-3-540-76298-0_52 – volume: 14 start-page: 17 year: 1993 ident: ref11 article-title: What is a knowledge representation? publication-title: AI Mag – year: 2004 ident: ref19 publication-title: Knowledge Representation and Reasoning – volume: 2009 year: 2009 ident: ref86 article-title: Materializing and querying learned knowledge publication-title: Proc IRMLeS – ident: ref30 doi: 10.1145/1935826.1935869 – year: 0 ident: ref74 article-title: Large-scale factorization of type-constrained multi-relational data publication-title: Proc Int Conf Data Sci Adv Anal – ident: ref121 doi: 10.1016/S0893-6080(05)80023-1 – volume: 16 year: 2004 ident: ref45 article-title: Link prediction in relational data publication-title: Adv Neural Inf Process Syst – start-page: 13 year: 0 ident: ref114 article-title: Learning to propagate knowledge in web ontologies publication-title: Proc 4th Int Workshop Uncertain Reason Semantic Web – volume: 919 start-page: 1 year: 0 ident: ref84 article-title: Link prediction in multi-relational graphs using additive models publication-title: Proc Int Workshop Semant Technol Recomm Sys Big Data ISWC – ident: ref103 doi: 10.1209/0295-5075/89/58007 – ident: ref106 doi: 10.1007/BF00117105 – year: 1974 ident: ref13 article-title: A framework for representing knowledge publication-title: MIT-AI Laboratory Memo 306 – ident: ref119 doi: 10.1145/1401890.1401944 – ident: ref26 doi: 10.1145/2629489 – start-page: 259 year: 0 ident: ref57 article-title: Linkage and autocorrelation cause feature selection bias in relational learning publication-title: Proc 19th Int Conf Mach Learn – ident: ref96 doi: 10.1198/016214502388618906 – ident: ref100 doi: 10.1007/BF02289026 – year: 2011 ident: ref141 publication-title: Probabilistic Databases doi: 10.1007/978-3-031-01879-4 – start-page: 61 year: 1999 ident: ref61 article-title: Probabilities for SV machines publication-title: Advances in Large Margin Classifiers – ident: ref104 doi: 10.1007/BF03037227 – start-page: 3167 year: 2012 ident: ref81 article-title: A latent factor model for highly multi-relational data publication-title: Advances in Neural Information Processing Systems 25 – year: 0 ident: ref75 article-title: Learning taxonomies from multi-relational data via hierarchical link-based clustering publication-title: Proc Learn Semant Workshop – ident: ref135 doi: 10.5220/0005187303170324 – ident: ref69 doi: 10.3115/v1/D14-1165 – volume: 130 start-page: 954 year: 1959 ident: ref47 article-title: Automatic linkage of vital records computers can be used to extract "follow-up" statistics of families from files of routine records publication-title: Science doi: 10.1126/science.130.3381.954 – year: 0 ident: ref85 article-title: Relation extraction with matrix factorization and universal schemas publication-title: Joint Human Language Technol Conf /Annu Meet North Amer Chapter Assoc Comput Linguistics – year: 2013 ident: ref39 publication-title: Understand your world with Bing – year: 0 ident: ref138 article-title: Weaving the pedantic web publication-title: Proc 3rd Int Workshop Linked Data Web (LDOW2010)/19th Int World Wide Web Conf – volume: 41 start-page: 1:1 year: 2009 ident: ref143 article-title: Data fusion publication-title: ACM Comput Surv doi: 10.1145/1456650.1456651 – year: 2012 ident: ref10 publication-title: AKBC-WEKEX 2012 The knowledge extraction workshop at NAACL-HLT – ident: ref67 doi: 10.1137/07070111X – ident: ref54 doi: 10.1016/j.physrep.2009.11.002 – start-page: 544 year: 0 ident: ref71 article-title: Infinite hidden relational models publication-title: Proc 22nd Int Conf Uncertainty Artif Intell – ident: ref24 doi: 10.1145/219717.219748 – start-page: 133 year: 0 ident: ref44 article-title: Philosophers are mortal: Inferring the truth of unseen facts publication-title: Proc Conf Computational Natural Language Learning – ident: ref38 doi: 10.1016/0004-3702(91)90055-O – ident: ref77 doi: 10.1007/978-3-642-04930-9_14 – start-page: 122 year: 0 ident: ref34 article-title: Prismatic: Inducing knowledge from a large scale lexicalized relation resource publication-title: Proc NAACL HLT 1st Int Workshop Formalisms Method Learning Reading – ident: ref89 doi: 10.1017/S0140525X98001769 – ident: ref12 doi: 10.1002/0470018860.s00065 – ident: ref145 doi: 10.14778/2732951.2732962 – volume: 8 start-page: 295 year: 1991 ident: ref105 article-title: Inductive logic programming publication-title: New Gener Comput doi: 10.1007/BF03037089 – ident: ref117 doi: 10.18653/v1/W15-4007 – ident: ref78 doi: 10.1145/2245276.2245341 – start-page: 177 year: 0 ident: ref122 article-title: Large-scale machine learning with stochastic gradient descent publication-title: Proc COMPSTAT – ident: ref50 doi: 10.1145/1099554.1099615 – start-page: 657 year: 2008 ident: ref60 article-title: Modeling homophily and stochastic equivalence in symmetric relational data publication-title: Advances in Neural Information Processing Systems 20 – ident: ref28 doi: 10.1145/2623330.2623623 – start-page: 2787 year: 2013 ident: ref94 article-title: Translating embeddings for modeling multi-relational data publication-title: Advances in Neural Information Processing Systems 26 – ident: ref126 doi: 10.1007/s10994-006-5833-1 – ident: ref36 doi: 10.1145/2487788.2487935 – ident: ref53 doi: 10.1109/ICDE.2012.119 – start-page: 523 year: 0 ident: ref33 article-title: Open language learning for information extraction publication-title: Proc Joint Conf Empirical Methods in Natural Language Processing and Computational Natural Language Learning – volume: 286 start-page: 509 year: 1999 ident: ref99 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – ident: ref82 doi: 10.1109/ICDM.2011.28 – start-page: 529 year: 0 ident: ref116 article-title: Random walk inference and learning in a large scale knowledge base publication-title: Proc Conf Empir Meth Nat Lang Process – ident: ref115 doi: 10.1007/s10994-010-5205-8 – volume: 10 start-page: 2639 year: 2009 ident: ref111 article-title: DL-learner: Learning concepts in description logics publication-title: J Mach Learn Res – year: 2000 ident: ref20 publication-title: Knowledge Representation Logical Philosophical and Computational Foundations – ident: ref80 doi: 10.14778/2535573.2488340 – ident: ref58 doi: 10.1016/0378-8733(83)90021-7 – ident: ref76 doi: 10.1109/ICDM.2005.77 – year: 0 ident: ref110 article-title: Reasoning by analogy in description logics through instance-based learning publication-title: Proc Semant Web Appl Perspect – volume: 390 start-page: 1150 year: 2011 ident: ref97 article-title: Link prediction in complex networks: A survey publication-title: Physica A Stat Mechan Appl doi: 10.1016/j.physa.2010.11.027 – year: 2007 ident: ref1 publication-title: Introduction to Statistical Relational Learning doi: 10.7551/mitpress/7432.001.0001 – ident: ref23 doi: 10.1145/219717.219745 – year: 2006 ident: ref15 publication-title: Linked data-Design issues – ident: ref4 doi: 10.1145/1242572.1242667 – start-page: 1535 year: 0 ident: ref32 article-title: Identifying relations for open information extraction publication-title: Proc Conf Empir Meth Natural Language Process – year: 2012 ident: ref8 publication-title: Introducing the Knowledge Graph Things Not Strings – ident: ref120 doi: 10.1145/2168752.2168771 – year: 0 ident: ref93 article-title: Learning structured embeddings of knowledge bases publication-title: Proc 25th AAAI Conf Artif Intell – ident: ref2 doi: 10.1007/978-3-662-04599-2 – ident: ref7 doi: 10.1145/1376616.1376746 – ident: ref16 doi: 10.4018/jswis.2009081901 – start-page: 1306 year: 0 ident: ref6 article-title: Toward an architecture for never-ending language learning publication-title: Proc 24th Conf Artif Intell – volume: abs 1412 6575 year: 2014 ident: ref95 article-title: Embedding entities and relations for learning and inference in knowledge bases publication-title: CoRR – ident: ref113 doi: 10.1007/978-3-642-30284-8_16 – ident: ref9 doi: 10.1145/1807085.1807097 – ident: ref25 doi: 10.1093/nar/gkh061 – ident: ref52 doi: 10.1145/1217299.1217304 – ident: ref70 doi: 10.1145/1273496.1273551 – ident: ref144 doi: 10.14778/2535568.2448943 – start-page: 305 year: 0 ident: ref139 article-title: When owl: SameAs isn't the same: An analysis of identity in linked data publication-title: Proc Semant Web – year: 0 ident: ref134 article-title: Probabilistic latent-factor database models publication-title: Proc 1st Workshop Linked Data Knowl Discovery European Conf Mach Learn Principles Practice Knowl Discovery Databases – start-page: 809 year: 0 ident: ref63 article-title: A three-way model for collective learning on multi-relational data publication-title: Proc 28th Int Conf Mach Learn – ident: ref108 doi: 10.1007/s00778-015-0394-1 – year: 2004 ident: ref17 publication-title: Resource Description Framework (RDF) Concepts and Abstract Syntax – ident: ref66 doi: 10.1109/MC.2009.263 – start-page: 1 year: 2013 ident: ref136 article-title: Tackling representation, annotation and classification challenges for temporal knowledge base population publication-title: Knowl Inf Syst – ident: ref55 doi: 10.1073/pnas.98.2.404 – year: 2015 ident: ref130 article-title: Hinge-loss Markov random fields and probabilistic soft logic publication-title: arXiv 1505 04406 – ident: ref46 doi: 10.1145/1117454.1117456 – ident: ref101 doi: 10.1103/PhysRevE.73.026120 – ident: ref64 doi: 10.1145/2187836.2187874 – year: 2001 ident: ref14 publication-title: The Semantic Web – year: 0 ident: ref131 article-title: A short introduction to probabilistic soft logic publication-title: Proc NIPS Workshop Probab Programming Found Appl – volume: 10 start-page: 2004 year: 2004 ident: ref137 article-title: OWL web ontology language overview publication-title: W3C Recommend – year: 0 ident: ref68 article-title: Logistic tensor-factorization for multi-relational data publication-title: Proc Structured Learn Inferring Graphs Structured Unstructured Inputs (SLG 2013) Workshop – year: 0 ident: ref128 article-title: Sound and efficient inference with probabilistic and deterministic dependencies publication-title: Proc AAAI – ident: ref102 doi: 10.1016/S0169-7552(98)00110-X – start-page: 1179 year: 2014 ident: ref118 article-title: Reducing the rank in relational factorization models by including observable patterns publication-title: Advances in Neural IInformation Processing Systems – ident: ref22 doi: 10.1145/2566486.2568032 – year: 0 ident: ref91 article-title: Efficient estimation of word representations in vector space publication-title: Proc ICLR Workshop – ident: ref124 doi: 10.1145/1143844.1143874 – volume: 8 start-page: 637 year: 2007 ident: ref133 article-title: Relational dependency networks publication-title: J Mach Learn Res |
| SSID | ssj0003563 |
| Score | 2.6819253 |
| SecondaryResourceType | review_article |
| Snippet | Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | Big data Biological system modeling Computational efficiency Computer graphs Data mining Equivalence Factorization Graph-based models Graphs Knowledge based systems knowledge extraction knowledge graphs latent feature models Machine learning Mathematical models Neural networks Predictive models Resource description framework Statistical analysis statistical relational learning |
| Title | A Review of Relational Machine Learning for Knowledge Graphs |
| URI | https://ieeexplore.ieee.org/document/7358050 https://www.proquest.com/docview/1751302816 https://www.proquest.com/docview/1793242527 |
| Volume | 104 |
| WOSCitedRecordID | wos000367250300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiWCN-2Wdm3TgJchTlGcQxR2K03yIoJssg__fpMsLYoieCv0JS0vecnvfQOcMi1RUM0Cszli62ZMA6G5CIRIZaKM2lJg7JpNsMEgG434sAbnVS4MIrrgM2zbR-fLVxO5sKayDrM-O6ugrzCWLnO1qlO3m_iuaaERYCOGZYIM5Z3b4ePDpY3iStpRbBAHj75dQq6ryo-j2N0v_c3__dkWbHgcSXrLhd-GGo53YP1LdcEGXPTI0vJPJpqUQW9mzL2Ln0TiS6u-EINbyV1pWyPXtoT1bBee-1dPlzeBb5YQyLibzQMZUcWUFFxhkWqlw25BkfNChoUW2taVT6kwACfCGLNYIc14iFSISBqVxtzh3T2ojydj3AeiaBoh1VyiwRdGnnnBUGVcCTMqociaEJbcy6WvJG4bWrzlTqOgPHcczy3Hc8_xJpxVY96XdTT-pG5YHleUnr1NaJWLlHtRm-UG_1jnaxamTTipXhshsZ6PYoyThaXhFjgmETv4feZDWDPf97aVFtTn0wUewar8mL_Opsdup30CGiPPsg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5KFdQHb7FaNYJvum12u1fAlyLWerSKVPBt2SQTEaSVHv5-kzS7KIrg28JOQphkMt8cmQE4SZRATlXi6cMRmjBj7HHFuMd5LCKpzZYcQ9tsIun30-dn9lCBs_ItDCLa5DNsmE8by5cjMTOusmZiYnbGQF-IwjCg89da5b3bilzfNF-LsBbE4okMZc2bh8f7C5PHFTWCUGMOFnxTQ7avyo_L2GqYztr_1rYOqw5JkvZ86zeggsNNWPlSX3ALzttk7vsnI0WKtDc9pmczKJG44qovRCNXclt418iVKWI92YanzuXgouu5dgmeCFvp1BMBlYkUnEnMYyWV38opMpYLP1dcmcryMeUa4gQYYhpKpCnzkXIeCG3UaC3e2oHqcDTEXSCSxgFSxQRqhKElmuUJypRJrkdFFJMa-AX3MuFqiZuWFm-ZtSkoyyzHM8PxzHG8BqflmPd5JY0_qbcMj0tKx94a1ItNypywTTKNgEz4NfXjGhyXv7WYmNhHPsTRzNAwAx2jINn7feYjWOoOenfZ3XX_dh-W9Vqcp6UO1el4hgewKD6mr5PxoT11nxLm0vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Relational+Machine+Learning+for+Knowledge+Graphs&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Nickel%2C+Maximilian&rft.au=Murphy%2C+Kevin&rft.au=Tresp%2C+Volker&rft.au=Gabrilovich%2C+Evgeniy&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=104&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1109%2FJPROC.2015.2483592&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3903443161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |