A Review of Relational Machine Learning for Knowledge Graphs

Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 104; číslo 1; s. 11 - 33
Hlavní autoři: Nickel, Maximilian, Murphy, Kevin, Tresp, Volker, Gabrilovich, Evgeniy
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9219, 1558-2256
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination.
AbstractList Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination.
Author Tresp, Volker
Gabrilovich, Evgeniy
Murphy, Kevin
Nickel, Maximilian
Author_xml – sequence: 1
  givenname: Maximilian
  surname: Nickel
  fullname: Nickel, Maximilian
  organization: Laboratory for Computational and Statistical Learning (LCSL), Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Kevin
  surname: Murphy
  fullname: Murphy, Kevin
  organization: Google Inc., Mountain View, CA, USA
– sequence: 3
  givenname: Volker
  surname: Tresp
  fullname: Tresp, Volker
  organization: Siemens AG, Corporate Technology, Munich, Germany
– sequence: 4
  givenname: Evgeniy
  surname: Gabrilovich
  fullname: Gabrilovich, Evgeniy
  organization: Google Inc., Mountain View, CA, USA
BookMark eNp9kDtPwzAUhS0EEm3hD8ASiYUl5dqOU1tiqSooj6KiCubIcW6KqzQudkrFvyd9iIGB6d7h-450Tpcc165GQi4o9CkFdfP0OpuO-gyo6LNEcqHYEelQIWTMmEiPSQeAylgxqk5JN4QFAHCR8g65HUYz_LK4iVzZfpVurKt1Fb1o82FrjCaofW3reVQ6Hz3XblNhMcdo7PXqI5yRk1JXAc8Pt0fe7-_eRg_xZDp-HA0nsUm4bGLDoBgUJlcF6rQsSso1oFLaUF3mZYtACjkwwTBBmRQIUlGEPGcmZalglPfI9T535d3nGkOTLW0wWFW6RrcOGR0ozpI2YNCiV3_QhVv7ttGWEpQDkzRtKbmnjHcheCwzY5td9cZrW2UUsu2s2W7WbDtrdpi1VdkfdeXtUvvv_6XLvWQR8VcYcCFBAP8B0mmD_g
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_websem_2017_03_001
crossref_primary_10_3390_info14030154
crossref_primary_10_1007_s10586_021_03361_w
crossref_primary_10_3233_SW_233508
crossref_primary_10_3390_math11214486
crossref_primary_10_1007_s10489_021_02220_w
crossref_primary_10_1016_j_physa_2022_128428
crossref_primary_10_1016_j_techfore_2023_122732
crossref_primary_10_1145_3604427
crossref_primary_10_7717_peerj_cs_357
crossref_primary_10_1016_j_neucom_2021_02_101
crossref_primary_10_1016_j_eswa_2023_119755
crossref_primary_10_1016_j_eswa_2019_112948
crossref_primary_10_1016_j_neucom_2021_02_100
crossref_primary_10_1109_TCYB_2022_3181810
crossref_primary_10_3389_frai_2024_1247712
crossref_primary_10_1109_TKDE_2019_2941685
crossref_primary_10_1080_24751839_2025_2528363
crossref_primary_10_1016_j_engappai_2024_108818
crossref_primary_10_1109_TKDE_2025_3525490
crossref_primary_10_1109_TKDE_2023_3323499
crossref_primary_10_12688_wellcomeopenres_23599_1
crossref_primary_10_1145_3643806
crossref_primary_10_1007_s13042_023_01995_3
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1145_2978656
crossref_primary_10_3390_s19081774
crossref_primary_10_1145_3395046
crossref_primary_10_1016_j_patrec_2023_02_004
crossref_primary_10_1007_s13740_016_0062_7
crossref_primary_10_1016_j_iswa_2025_200551
crossref_primary_10_3390_land13010009
crossref_primary_10_1007_s13278_022_00880_1
crossref_primary_10_1016_j_jbi_2025_104857
crossref_primary_10_1109_ACCESS_2024_3479774
crossref_primary_10_1016_j_eswa_2025_128923
crossref_primary_10_1109_TPAMI_2021_3080635
crossref_primary_10_1002_asi_24220
crossref_primary_10_1016_j_csbj_2020_05_017
crossref_primary_10_1093_bib_bbac363
crossref_primary_10_1016_j_dsx_2020_05_013
crossref_primary_10_1016_j_artint_2024_104197
crossref_primary_10_1111_tgis_12911
crossref_primary_10_3390_encyclopedia1030061
crossref_primary_10_1017_S135132491700047X
crossref_primary_10_1016_j_ins_2019_08_061
crossref_primary_10_1007_s12325_022_02254_7
crossref_primary_10_1186_s40537_023_00774_9
crossref_primary_10_1109_ACCESS_2021_3087185
crossref_primary_10_1016_j_artmed_2025_103275
crossref_primary_10_1007_s12559_018_9565_x
crossref_primary_10_1109_ACCESS_2017_2773141
crossref_primary_10_1186_s12859_018_2163_9
crossref_primary_10_1016_j_eswa_2022_117026
crossref_primary_10_1145_3733602
crossref_primary_10_1016_j_jksuci_2023_101571
crossref_primary_10_1038_s41598_023_38857_5
crossref_primary_10_1016_j_neucom_2018_05_084
crossref_primary_10_1007_s12204_020_2179_y
crossref_primary_10_1016_j_aei_2025_103490
crossref_primary_10_1109_TBDATA_2018_2805366
crossref_primary_10_1038_s41565_022_01284_0
crossref_primary_10_3390_s23115295
crossref_primary_10_1016_j_neucom_2021_10_013
crossref_primary_10_1109_ACCESS_2020_3004448
crossref_primary_10_7717_peerj_cs_667
crossref_primary_10_1109_ACCESS_2020_3016782
crossref_primary_10_1109_TCSS_2022_3162229
crossref_primary_10_3390_sym16050587
crossref_primary_10_1109_TDSC_2024_3522025
crossref_primary_10_3390_math13111737
crossref_primary_10_1007_s41019_018_0082_4
crossref_primary_10_1016_j_rser_2017_05_134
crossref_primary_10_3390_app122211316
crossref_primary_10_1016_j_patrec_2016_09_005
crossref_primary_10_1111_tgis_12917
crossref_primary_10_1145_3464377
crossref_primary_10_1145_3329781_3332266
crossref_primary_10_1016_j_ifacol_2022_05_018
crossref_primary_10_1007_s41745_019_0103_y
crossref_primary_10_1093_bib_bbaa344
crossref_primary_10_3390_app11031251
crossref_primary_10_1016_j_jestch_2024_101782
crossref_primary_10_1038_s41562_020_0889_7
crossref_primary_10_1109_ACCESS_2020_3037118
crossref_primary_10_1016_j_websem_2022_100741
crossref_primary_10_1145_3640347
crossref_primary_10_1049_iet_epa_2020_0123
crossref_primary_10_1016_j_future_2021_11_022
crossref_primary_10_1080_09544828_2024_2311065
crossref_primary_10_1016_j_eswa_2022_119013
crossref_primary_10_1016_j_eswa_2019_112960
crossref_primary_10_1109_TASLP_2023_3297959
crossref_primary_10_1109_ACCESS_2020_2995074
crossref_primary_10_3390_app15116031
crossref_primary_10_3390_app11052045
crossref_primary_10_1038_s41597_025_05200_8
crossref_primary_10_3390_molecules28031490
crossref_primary_10_1146_annurev_biodatasci_010820_091627
crossref_primary_10_1016_j_ifacol_2021_04_172
crossref_primary_10_3390_s22103722
crossref_primary_10_1093_bib_bbaa012
crossref_primary_10_7717_peerj_13061
crossref_primary_10_1016_j_eswa_2022_119122
crossref_primary_10_1016_j_eswa_2020_113235
crossref_primary_10_1371_journal_pone_0290018
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1145_3467982
crossref_primary_10_1016_j_neucom_2021_10_001
crossref_primary_10_1007_s11023_022_09603_z
crossref_primary_10_7717_peerj_cs_341
crossref_primary_10_1016_j_ocecoaman_2023_106679
crossref_primary_10_1016_j_asoc_2024_111899
crossref_primary_10_1016_j_datak_2022_102040
crossref_primary_10_1016_j_neucom_2021_04_128
crossref_primary_10_1007_s11023_022_09602_0
crossref_primary_10_1016_j_procs_2022_01_317
crossref_primary_10_3233_JIFS_219087
crossref_primary_10_1007_s13222_020_00341_z
crossref_primary_10_1016_j_knosys_2022_109262
crossref_primary_10_7717_peerj_16164
crossref_primary_10_1007_s00799_021_00306_x
crossref_primary_10_1016_j_cosrev_2025_100800
crossref_primary_10_1145_3377478
crossref_primary_10_1016_j_culher_2023_08_007
crossref_primary_10_3390_su15086683
crossref_primary_10_1007_s11063_022_10831_8
crossref_primary_10_1016_j_procs_2024_02_005
crossref_primary_10_1145_3105961
crossref_primary_10_1007_s11192_020_03446_0
crossref_primary_10_1147_JRD_2017_2709578
crossref_primary_10_1016_j_ifacol_2017_08_1110
crossref_primary_10_1016_j_ijmecsci_2025_110335
crossref_primary_10_1007_s10462_017_9590_2
crossref_primary_10_1016_j_websem_2019_01_004
crossref_primary_10_3233_SW_210452
crossref_primary_10_3724_2096_7004_di_2024_0023
crossref_primary_10_3390_su13031311
crossref_primary_10_1109_TKDE_2021_3063233
crossref_primary_10_1007_s00170_023_12644_y
crossref_primary_10_3390_math13060935
crossref_primary_10_1016_j_patcog_2020_107412
crossref_primary_10_7717_peerj_cs_1542
crossref_primary_10_1016_j_media_2025_103514
crossref_primary_10_1016_j_ins_2022_05_027
crossref_primary_10_1080_0951192X_2025_2544558
crossref_primary_10_1007_s11063_020_10365_x
crossref_primary_10_1109_TKDE_2021_3073483
crossref_primary_10_1007_s10115_019_01351_4
crossref_primary_10_1038_s41524_019_0204_1
crossref_primary_10_1038_s41598_022_06940_y
crossref_primary_10_1007_s13369_020_04612_5
crossref_primary_10_1016_j_is_2020_101624
crossref_primary_10_1109_ACCESS_2019_2938303
crossref_primary_10_1111_tgis_12629
crossref_primary_10_1007_s43681_025_00697_6
crossref_primary_10_1109_MSP_2016_2617341
crossref_primary_10_1109_ACCESS_2020_3019592
crossref_primary_10_1186_s12911_018_0679_6
crossref_primary_10_3390_e22101168
crossref_primary_10_1016_j_eswa_2023_120325
crossref_primary_10_1109_TII_2023_3337380
crossref_primary_10_1016_j_envsoft_2021_105160
crossref_primary_10_1007_s10489_021_02394_3
crossref_primary_10_3390_app12115718
crossref_primary_10_1016_j_jfranklin_2022_09_045
crossref_primary_10_1007_s10514_023_10099_4
crossref_primary_10_1109_TAES_2024_3414957
crossref_primary_10_1016_j_knosys_2022_109232
crossref_primary_10_3390_info12040147
crossref_primary_10_1186_s40537_020_00295_9
crossref_primary_10_3390_su142316299
crossref_primary_10_1109_ACCESS_2025_3591823
crossref_primary_10_1007_s10489_021_02304_7
crossref_primary_10_1016_j_knosys_2020_106630
crossref_primary_10_1016_j_inffus_2025_103242
crossref_primary_10_1016_j_cosrev_2024_100716
crossref_primary_10_1080_00207543_2021_2014591
crossref_primary_10_1109_ACCESS_2020_2993191
crossref_primary_10_1007_s12652_024_04757_3
crossref_primary_10_1007_s10618_021_00760_w
crossref_primary_10_1007_s13042_024_02434_7
crossref_primary_10_1016_j_ipm_2024_103737
crossref_primary_10_1007_s00607_025_01499_8
crossref_primary_10_1016_j_procs_2024_04_178
crossref_primary_10_1109_ACCESS_2024_3351170
crossref_primary_10_1109_TCSS_2020_3029569
crossref_primary_10_1109_ACCESS_2020_2984593
crossref_primary_10_3233_SW_212955
crossref_primary_10_3390_e21111083
crossref_primary_10_1145_3522586
crossref_primary_10_1145_3286488
crossref_primary_10_3389_frai_2024_1388479
crossref_primary_10_1007_s00521_021_05852_8
crossref_primary_10_1007_s00778_021_00690_5
crossref_primary_10_1016_j_crmeth_2023_100413
crossref_primary_10_1088_1755_1315_675_1_012111
crossref_primary_10_1155_2022_7593750
crossref_primary_10_1007_s00521_018_3860_z
crossref_primary_10_1049_gtd2_12040
crossref_primary_10_3390_su12083074
crossref_primary_10_1109_ACCESS_2017_2698142
crossref_primary_10_1016_j_knosys_2018_03_030
crossref_primary_10_2514_1_I011416
crossref_primary_10_1186_s12911_020_01134_w
crossref_primary_10_3390_app122010226
crossref_primary_10_1093_bib_bbaa417
crossref_primary_10_1016_j_jnca_2021_103076
crossref_primary_10_1016_j_eswa_2023_121211
crossref_primary_10_1109_TCBB_2019_2933825
crossref_primary_10_1038_s41467_022_29993_z
crossref_primary_10_1007_s10618_020_00677_w
crossref_primary_10_1109_ACCESS_2024_3372188
crossref_primary_10_32604_cmes_2023_031513
crossref_primary_10_1631_FITEE_1700800
crossref_primary_10_1007_s13042_024_02126_2
crossref_primary_10_3390_math13091463
crossref_primary_10_1371_journal_pone_0289568
crossref_primary_10_14778_3407790_3407796
crossref_primary_10_3390_math11224672
crossref_primary_10_3390_sym11091096
crossref_primary_10_1038_s41598_019_57304_y
crossref_primary_10_1016_j_eswa_2020_114164
crossref_primary_10_1038_s41598_020_74922_z
crossref_primary_10_1016_j_ifacol_2016_07_608
crossref_primary_10_1080_02522667_2022_2133215
crossref_primary_10_1088_1757_899X_1022_1_012038
crossref_primary_10_3389_frobt_2018_00008
crossref_primary_10_3390_info10050172
crossref_primary_10_1016_j_neunet_2025_107679
crossref_primary_10_1007_s10618_021_00806_z
crossref_primary_10_1093_bioinformatics_btaf408
crossref_primary_10_1007_s10489_021_03149_w
crossref_primary_10_1016_j_ins_2021_11_085
crossref_primary_10_1109_TKDE_2017_2754499
crossref_primary_10_1109_JSTARS_2024_3387744
crossref_primary_10_1007_s10844_019_00592_7
crossref_primary_10_1007_s00521_018_3384_6
crossref_primary_10_1109_TSIPN_2022_3205555
crossref_primary_10_3390_info15080509
crossref_primary_10_3233_SW_190374
crossref_primary_10_1007_s11390_024_2863_8
crossref_primary_10_1145_3485666
crossref_primary_10_1016_j_procs_2022_11_204
crossref_primary_10_1016_j_ejor_2020_05_062
crossref_primary_10_1109_TKDE_2016_2638425
crossref_primary_10_1007_s11831_021_09576_9
crossref_primary_10_1016_j_knosys_2024_111510
crossref_primary_10_1080_00207543_2024_2381145
crossref_primary_10_1016_j_ecoinf_2023_102360
crossref_primary_10_1108_INTR_07_2020_0379
crossref_primary_10_3233_SW_200388
crossref_primary_10_1016_j_jprocont_2022_06_011
crossref_primary_10_1016_j_bdr_2023_100380
crossref_primary_10_1016_j_dss_2025_114485
crossref_primary_10_1016_j_jbi_2023_104403
crossref_primary_10_1177_18724981251321368
crossref_primary_10_3233_SW_180317
crossref_primary_10_1080_19475705_2024_2383768
crossref_primary_10_3233_SW_180318
crossref_primary_10_1109_TNNLS_2020_3015896
crossref_primary_10_1145_3483595
crossref_primary_10_1016_j_neucom_2024_127857
crossref_primary_10_1007_s00778_020_00640_7
crossref_primary_10_1186_s12859_019_2664_1
crossref_primary_10_1016_j_future_2025_108063
crossref_primary_10_1109_TKDE_2021_3063985
crossref_primary_10_1145_3483382_3483393
crossref_primary_10_3233_SW_190359
crossref_primary_10_1007_s10994_024_06528_9
crossref_primary_10_1007_s12136_024_00619_x
crossref_primary_10_1162_neco_a_01558
crossref_primary_10_1002_widm_1389
crossref_primary_10_1007_s10489_022_03601_5
crossref_primary_10_1109_ACCESS_2019_2915987
crossref_primary_10_1155_2017_2858423
crossref_primary_10_1007_s41651_021_00097_4
crossref_primary_10_1016_j_neucom_2024_128721
crossref_primary_10_1016_j_knosys_2022_109083
crossref_primary_10_1016_j_knosys_2017_08_014
crossref_primary_10_1016_j_jprocont_2024_103342
crossref_primary_10_1109_ACCESS_2019_2926753
crossref_primary_10_1016_j_cageo_2022_105082
crossref_primary_10_1016_j_neucom_2020_12_012
crossref_primary_10_1145_3331166
crossref_primary_10_1016_j_asoc_2025_113268
crossref_primary_10_1007_s11257_025_09432_6
crossref_primary_10_1080_1206212X_2022_2133805
crossref_primary_10_1109_TEMC_2020_3019801
crossref_primary_10_1016_j_ejsobi_2023_103497
crossref_primary_10_1016_j_fmre_2021_08_013
crossref_primary_10_1186_s12859_023_05373_2
crossref_primary_10_1093_jcde_qwae108
crossref_primary_10_1016_j_ins_2024_120477
crossref_primary_10_3390_ijgi14080295
crossref_primary_10_1093_jcde_qwad013
crossref_primary_10_1098_rsos_191928
crossref_primary_10_1155_2020_4741963
crossref_primary_10_1016_j_mfglet_2023_08_086
crossref_primary_10_1016_j_robot_2022_104294
crossref_primary_10_3390_app10113964
crossref_primary_10_1007_s00500_021_05756_8
crossref_primary_10_1016_j_ijar_2021_06_003
crossref_primary_10_1016_j_neunet_2024_106219
crossref_primary_10_1016_j_asoc_2023_110235
crossref_primary_10_1371_journal_pcbi_1007578
crossref_primary_10_1016_j_knosys_2024_111554
crossref_primary_10_1007_s12530_024_09616_2
crossref_primary_10_1007_s11257_019_09250_7
crossref_primary_10_1016_j_engappai_2018_09_013
crossref_primary_10_7717_peerj_cs_1073
crossref_primary_10_1016_j_jhydrol_2022_128970
crossref_primary_10_1145_3656580
crossref_primary_10_1016_j_aci_2018_10_001
crossref_primary_10_1109_TWC_2024_3520661
crossref_primary_10_1109_MWC_001_1900264
crossref_primary_10_1109_TKDE_2022_3150080
crossref_primary_10_3390_jmse10101352
crossref_primary_10_1080_10447318_2024_2348229
crossref_primary_10_1007_s11280_023_01167_x
crossref_primary_10_1016_j_csbj_2023_05_001
crossref_primary_10_1016_j_is_2019_07_001
crossref_primary_10_1016_j_neucom_2023_126390
crossref_primary_10_1016_j_neunet_2023_01_004
crossref_primary_10_3390_ijerph182010692
crossref_primary_10_3390_s23104936
crossref_primary_10_7717_peerj_14843
crossref_primary_10_1007_s10845_020_01646_2
crossref_primary_10_1145_3746658
crossref_primary_10_7717_peerj_15815
crossref_primary_10_1109_ACCESS_2020_3030076
crossref_primary_10_1145_3672615
crossref_primary_10_1016_j_procs_2020_09_045
crossref_primary_10_1016_j_eswa_2022_118969
crossref_primary_10_1016_j_ijar_2024_109183
crossref_primary_10_1016_j_inffus_2024_102249
crossref_primary_10_3233_SW_200369
crossref_primary_10_2174_1574893618666230224142324
crossref_primary_10_1007_s00146_018_0867_z
crossref_primary_10_3233_JIFS_189835
crossref_primary_10_3390_app9204399
crossref_primary_10_1109_TITS_2022_3158045
crossref_primary_10_1007_s10994_022_06130_x
crossref_primary_10_3390_app131910660
crossref_primary_10_1007_s00500_021_06043_2
crossref_primary_10_1109_JBHI_2022_3233498
crossref_primary_10_1016_j_neucom_2021_02_099
crossref_primary_10_1109_JBHI_2020_3008493
crossref_primary_10_1016_j_tcs_2021_01_013
crossref_primary_10_3390_a12010012
crossref_primary_10_1016_j_ipm_2025_104159
crossref_primary_10_1109_LRA_2024_3367271
crossref_primary_10_1145_3373464_3373473
crossref_primary_10_1007_s11280_021_00972_6
crossref_primary_10_1109_TIE_2019_2893839
crossref_primary_10_1109_TPAMI_2021_3121646
crossref_primary_10_1109_ACCESS_2019_2934633
crossref_primary_10_1007_s11633_023_1440_x
crossref_primary_10_1109_TKDE_2021_3136482
crossref_primary_10_1016_j_knosys_2024_111591
crossref_primary_10_1287_ijoc_2022_1251
crossref_primary_10_1109_ACCESS_2019_2931361
crossref_primary_10_1080_17517575_2019_1709663
crossref_primary_10_1109_TCSS_2024_3355300
crossref_primary_10_1007_s10489_020_01648_w
crossref_primary_10_1093_bib_bbae119
crossref_primary_10_1016_j_knosys_2016_04_015
crossref_primary_10_1016_j_micpro_2021_104335
crossref_primary_10_1109_TLT_2018_2808187
crossref_primary_10_1109_TPAMI_2021_3124805
crossref_primary_10_1145_3424672
crossref_primary_10_1109_ACCESS_2024_3501735
crossref_primary_10_1109_TAI_2021_3076021
crossref_primary_10_1108_LHT_11_2022_0538
crossref_primary_10_3390_app10082651
crossref_primary_10_1109_LRA_2021_3056071
crossref_primary_10_1111_tgis_13012
crossref_primary_10_1016_j_ifacol_2020_11_039
crossref_primary_10_1109_TKDE_2022_3154792
crossref_primary_10_1111_exsy_12984
crossref_primary_10_1063_5_0206258
crossref_primary_10_1007_s10994_024_06610_2
crossref_primary_10_1088_1742_6596_2846_1_012026
crossref_primary_10_1093_bioadv_vbae036
crossref_primary_10_1109_TKDE_2023_3304137
crossref_primary_10_1109_TKDE_2020_2970044
crossref_primary_10_1111_tgis_13166
crossref_primary_10_1016_j_websem_2020_100590
crossref_primary_10_1016_j_procs_2021_04_110
crossref_primary_10_1186_s13326_023_00301_y
crossref_primary_10_1080_01621459_2024_2441525
crossref_primary_10_1002_widm_1537
crossref_primary_10_1016_j_eswa_2025_128095
crossref_primary_10_1016_j_ipm_2021_102618
crossref_primary_10_1109_JIOT_2017_2666798
crossref_primary_10_1007_s10878_021_00815_0
crossref_primary_10_1016_j_neucom_2025_130666
crossref_primary_10_1016_j_jfranklin_2024_107055
crossref_primary_10_1109_MIC_2019_2928449
crossref_primary_10_1016_j_nlp_2023_100021
crossref_primary_10_1017_S1471068417000023
crossref_primary_10_1016_j_aei_2021_101505
crossref_primary_10_3389_fpubh_2025_1540946
crossref_primary_10_3390_genes10010018
crossref_primary_10_1007_s11265_020_01592_5
crossref_primary_10_1162_tacl_a_00015
crossref_primary_10_1007_s11280_019_00711_y
crossref_primary_10_1007_s13735_022_00256_3
crossref_primary_10_1007_s13755_023_00250_x
crossref_primary_10_1007_s13222_023_00463_0
crossref_primary_10_1093_bib_bbaa199
crossref_primary_10_1007_s11518_025_5647_y
crossref_primary_10_1016_j_eswa_2022_117361
crossref_primary_10_1016_j_neucom_2020_12_037
crossref_primary_10_1016_j_artint_2023_104062
crossref_primary_10_1016_j_jksuci_2022_04_007
crossref_primary_10_1093_bib_bbab159
crossref_primary_10_1525_elementa_418
crossref_primary_10_1007_s10618_023_00918_8
crossref_primary_10_1109_ACCESS_2023_3322204
crossref_primary_10_1007_s00146_020_01043_6
crossref_primary_10_1109_TMI_2023_3299518
crossref_primary_10_1088_1742_6596_887_1_012042
crossref_primary_10_1109_JAS_2022_105677
crossref_primary_10_1109_TASLP_2016_2585863
crossref_primary_10_1109_TPAMI_2022_3157321
crossref_primary_10_1109_JIOT_2021_3089334
crossref_primary_10_1557_s43578_025_01652_1
crossref_primary_10_1016_j_physa_2019_121319
crossref_primary_10_1016_j_ymssp_2020_107142
crossref_primary_10_3390_s23031223
crossref_primary_10_1109_ACCESS_2021_3070395
crossref_primary_10_3390_app14209333
crossref_primary_10_1007_s00287_015_0913_x
crossref_primary_10_1007_s10922_025_09953_w
crossref_primary_10_1007_s11467_020_1041_x
crossref_primary_10_1016_j_asoc_2022_108604
crossref_primary_10_1016_j_cad_2022_103372
crossref_primary_10_1155_2022_9772539
crossref_primary_10_1038_s41587_021_01145_6
crossref_primary_10_1109_TKDE_2021_3075070
crossref_primary_10_1109_TNNLS_2021_3070843
crossref_primary_10_1109_ACCESS_2019_2932149
crossref_primary_10_1007_s11042_023_16271_3
crossref_primary_10_1145_3477141
crossref_primary_10_1007_s10472_021_09767_x
crossref_primary_10_1109_ACCESS_2020_3013108
Cites_doi 10.1609/aimag.v36i1.2568
10.1016/j.jbi.2008.03.004
10.14778/1453856.1453896
10.1609/aimag.v31i3.2303
10.1007/s007780100057
10.4018/jswis.2012070103
10.1016/j.artint.2012.06.001
10.1007/978-3-540-68856-3
10.14778/2777598.2777603
10.2200/S00433ED1V01Y201207DMK005
10.1145/2463676.2463702
10.1145/1641309.1641322
10.1002/asi.20591
10.1016/0004-3702(90)90007-M
10.1093/bib/bbp004
10.1007/s10618-012-0253-2
10.1145/1718487.1718498
10.1016/S0378-8733(03)00009-1
10.1109/TPAMI.2014.2334607
10.1145/2488388.2488425
10.1016/0378-8733(92)90017-2
10.1145/2505515.2507846
10.1016/S0306-4379(01)00042-4
10.1007/978-3-642-40994-3_40
10.1007/978-3-540-76298-0_52
10.1145/1935826.1935869
10.1016/S0893-6080(05)80023-1
10.1209/0295-5075/89/58007
10.1007/BF00117105
10.1145/1401890.1401944
10.1145/2629489
10.1198/016214502388618906
10.1007/BF02289026
10.1007/978-3-031-01879-4
10.1007/BF03037227
10.5220/0005187303170324
10.3115/v1/D14-1165
10.1126/science.130.3381.954
10.1145/1456650.1456651
10.1137/07070111X
10.1016/j.physrep.2009.11.002
10.1145/219717.219748
10.1016/0004-3702(91)90055-O
10.1007/978-3-642-04930-9_14
10.1017/S0140525X98001769
10.1002/0470018860.s00065
10.14778/2732951.2732962
10.1007/BF03037089
10.18653/v1/W15-4007
10.1145/2245276.2245341
10.1145/1099554.1099615
10.1145/2623330.2623623
10.1007/s10994-006-5833-1
10.1145/2487788.2487935
10.1109/ICDE.2012.119
10.1126/science.286.5439.509
10.1109/ICDM.2011.28
10.1007/s10994-010-5205-8
10.14778/2535573.2488340
10.1016/0378-8733(83)90021-7
10.1109/ICDM.2005.77
10.1016/j.physa.2010.11.027
10.7551/mitpress/7432.001.0001
10.1145/219717.219745
10.1145/1242572.1242667
10.1145/2168752.2168771
10.1007/978-3-662-04599-2
10.1145/1376616.1376746
10.4018/jswis.2009081901
10.1007/978-3-642-30284-8_16
10.1145/1807085.1807097
10.1093/nar/gkh061
10.1145/1217299.1217304
10.1145/1273496.1273551
10.14778/2535568.2448943
10.1007/s00778-015-0394-1
10.1109/MC.2009.263
10.1073/pnas.98.2.404
10.1145/1117454.1117456
10.1103/PhysRevE.73.026120
10.1145/2187836.2187874
10.1016/S0169-7552(98)00110-X
10.1145/2566486.2568032
10.1145/1143844.1143874
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/JPROC.2015.2483592
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 33
ExternalDocumentID 3903443161
10_1109_JPROC_2015_2483592
7358050
Genre orig-research
GrantInformation_xml – fundername: German Federal Ministry for Economic Affairs and Energy
  grantid: 01MT14001
– fundername: Center for Brains, Minds and Machines (CBMM) under NSF STC award
  grantid: CCF-1231216
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c438t-c20d7dcb9dea6fdf13a0e99ac1afbf438060b0252e4e84de0891e0bb2c6265213
IEDL.DBID RIE
ISICitedReferencesCount 937
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367250300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Thu Sep 04 19:29:13 EDT 2025
Sun Nov 09 06:10:29 EST 2025
Tue Nov 18 22:23:51 EST 2025
Sat Nov 29 07:50:24 EST 2025
Wed Aug 27 02:43:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords statistical relational learning
Graph-based models
knowledge graphs
latent feature models
knowledge extraction
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c20d7dcb9dea6fdf13a0e99ac1afbf438060b0252e4e84de0891e0bb2c6265213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/1721.1/100193
PQID 1751302816
PQPubID 85453
PageCount 23
ParticipantIDs crossref_primary_10_1109_JPROC_2015_2483592
ieee_primary_7358050
proquest_miscellaneous_1793242527
crossref_citationtrail_10_1109_JPROC_2015_2483592
proquest_journals_1751302816
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref58
xu (ref71) 0
fader (ref32) 0
ref53
momtchev (ref43) 0
ref52
ref55
ref54
klyne (ref17) 2004
jiang (ref84) 0; 919
nickel (ref118) 2014
auer (ref5) 2007; 4825
lü and t zhou (ref97) 2011; 390
fan (ref34) 0
ji (ref136) 2013
ref50
mcguinness (ref137) 2004; 10
ref46
ref48
suciu (ref141) 2011
ref42
quinlan (ref105) 1991; 8
ref41
lehmann (ref111) 2009; 10
ref49
yang (ref95) 2014; abs 1412 6575
poon (ref128) 0
ref7
ref9
ref4
ref100
ref101
barabási (ref99) 1999; 286
sutskever (ref73) 2009; 22
ref35
ref36
ref31
jenatton (ref81) 2012
huang (ref87) 2013
ref30
riedel (ref85) 0
ref146
ref147
ref38
lao (ref116) 0
neville (ref133) 2007; 8
singla (ref51) 0
ref24
ref23
angeli (ref44) 0
ref26
ref25
ref22
ref21
newcombe (ref47) 1959; 130
ref28
singhal (ref8) 2012
ref27
koller (ref125) 2009
bleiholder (ref143) 2009; 41
fan (ref10) 2012
ferrucci (ref40) 2010; 31
globerson (ref129) 0
nakashole (ref29) 0
kimmig (ref131) 0
bach (ref130) 2015
nickel (ref65) 2013
ref12
ref126
ref127
ref96
ref124
ref98
ref16
nickel (ref75) 0
de raedt (ref3) 2008
pujara (ref132) 2015
hogan (ref138) 0
jensen (ref57) 0
murphy (ref123) 2012
ref89
bottou (ref122) 0
qian (ref39) 2013
brachman (ref19) 2004
taskar (ref45) 2004; 16
ref135
platt (ref61) 1999
ref88
lisi (ref109) 2010; 10
berners-lee (ref15) 2006
cyganiak (ref18) 2014
ref144
ref82
ref145
ref142
carlson (ref6) 0
ref83
halpin (ref139) 0
ref80
ref79
ref108
davis (ref11) 1993; 14
ref78
ref106
ref107
hoff (ref60) 2008
ref104
ref77
ref102
tresp (ref86) 2009; 2009
ref76
ref103
ref2
mikolov (ref91) 0
krompaß (ref140) 0
etzioni (ref37) 0; 1
minervini (ref114) 0
ref70
ref112
schmitz (ref33) 0
nickel (ref63) 0
socher (ref92) 2013
kemp (ref72) 0; 3
ref119
ref67
bordes (ref93) 0
ref117
ref69
ref64
ref115
ref66
ref113
getoor (ref1) 2007
bordes (ref94) 2013
plate (ref90) 1997
berners-lee (ref14) 2001
krompaß (ref74) 0
nickel (ref68) 0
minsky (ref13) 1974
d'amato (ref110) 0
ref62
ref120
ref121
sowa (ref20) 2000
krompaß (ref134) 0
References_xml – year: 0
  ident: ref129
  article-title: Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations
  publication-title: NIPS
– year: 2015
  ident: ref132
  article-title: Using semantics and statistics to turn data into knowledge
  publication-title: AI Mag
  doi: 10.1609/aimag.v36i1.2568
– ident: ref41
  doi: 10.1016/j.jbi.2008.03.004
– ident: ref142
  doi: 10.14778/1453856.1453896
– volume: 31
  start-page: 59
  year: 2010
  ident: ref40
  article-title: Building Watson: An overview of the DeepQA project
  publication-title: AI Mag
  doi: 10.1609/aimag.v31i3.2303
– ident: ref49
  doi: 10.1007/s007780100057
– year: 2009
  ident: ref125
  publication-title: Probabilistic Graphical Models Principles and Techniques
– ident: ref31
  doi: 10.4018/jswis.2012070103
– start-page: 114
  year: 0
  ident: ref140
  article-title: Querying factorized probabilistic triple databases
  publication-title: Proc Semant Web
– year: 2013
  ident: ref65
  publication-title: Tensor Factorization for Relational Learning
– start-page: 15
  year: 1997
  ident: ref90
  article-title: A common framework for distributed representation schemes for compositional structure
  publication-title: Connect Syst Knowl Represent Deduct
– year: 0
  ident: ref43
  article-title: Expanding the pathway and interaction knowledge in linked life data
  publication-title: Proceedings of International Semantic Web Challenge
– ident: ref27
  doi: 10.1016/j.artint.2012.06.001
– year: 2008
  ident: ref3
  publication-title: Logical and Relational Learning
  doi: 10.1007/978-3-540-68856-3
– ident: ref146
  doi: 10.14778/2777598.2777603
– start-page: 1135
  year: 0
  ident: ref29
  article-title: PATTY: A taxonomy of relational patterns with semantic types
  publication-title: Proc Joint Conf Empirical Methods in Natural Language Processing and Computational Natural Language Learning
– ident: ref21
  doi: 10.2200/S00433ED1V01Y201207DMK005
– volume: 22
  start-page: 1821
  year: 2009
  ident: ref73
  article-title: Modelling relational data using Bayesian clustered tensor factorization
  publication-title: Adv Neural Inf Process Syst
– year: 2012
  ident: ref123
  publication-title: Machine Learning A Probabilistic Perspective
– year: 2014
  ident: ref18
  publication-title: RDF 1 1 Concepts and Abstract Syntax
– ident: ref127
  doi: 10.1145/2463676.2463702
– ident: ref35
  doi: 10.1145/1641309.1641322
– ident: ref56
  doi: 10.1002/asi.20591
– volume: 10
  start-page: 331
  year: 2010
  ident: ref109
  article-title: Inductive logic programming in databases: From datalog to dl+log
  publication-title: TPLP
– year: 2013
  ident: ref87
  article-title: A scalable approach for statistical learning in semantic graphs
  publication-title: Journal of Web Semanticsi
– ident: ref88
  doi: 10.1016/0004-3702(90)90007-M
– volume: 3
  start-page: 5
  year: 0
  ident: ref72
  article-title: Learning systems of concepts with an infinite relational model
  publication-title: Proc 21st Nat Conf Artif Intell
– ident: ref42
  doi: 10.1093/bib/bbp004
– ident: ref112
  doi: 10.1007/s10618-012-0253-2
– start-page: 572
  year: 0
  ident: ref51
  article-title: Entity resolution with Markov logic
  publication-title: Proc 6th Int Conf Data Mining
– ident: ref79
  doi: 10.1145/1718487.1718498
– ident: ref98
  doi: 10.1016/S0378-8733(03)00009-1
– ident: ref62
  doi: 10.1109/TPAMI.2014.2334607
– start-page: 926
  year: 2013
  ident: ref92
  article-title: Reasoning with neural tensor networks for knowledge base completion
  publication-title: Advances in Neural Information Processing Systems 26
– ident: ref107
  doi: 10.1145/2488388.2488425
– ident: ref59
  doi: 10.1016/0378-8733(92)90017-2
– ident: ref83
  doi: 10.1145/2505515.2507846
– ident: ref48
  doi: 10.1016/S0306-4379(01)00042-4
– ident: ref147
  doi: 10.1007/978-3-642-40994-3_40
– volume: 1
  start-page: 3
  year: 0
  ident: ref37
  article-title: Open information extraction: The second generation
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– volume: 4825
  start-page: 722
  year: 2007
  ident: ref5
  article-title: DBpedia: A nucleus for a web of open data
  publication-title: The Semantic Web
  doi: 10.1007/978-3-540-76298-0_52
– volume: 14
  start-page: 17
  year: 1993
  ident: ref11
  article-title: What is a knowledge representation?
  publication-title: AI Mag
– year: 2004
  ident: ref19
  publication-title: Knowledge Representation and Reasoning
– volume: 2009
  year: 2009
  ident: ref86
  article-title: Materializing and querying learned knowledge
  publication-title: Proc IRMLeS
– ident: ref30
  doi: 10.1145/1935826.1935869
– year: 0
  ident: ref74
  article-title: Large-scale factorization of type-constrained multi-relational data
  publication-title: Proc Int Conf Data Sci Adv Anal
– ident: ref121
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 16
  year: 2004
  ident: ref45
  article-title: Link prediction in relational data
  publication-title: Adv Neural Inf Process Syst
– start-page: 13
  year: 0
  ident: ref114
  article-title: Learning to propagate knowledge in web ontologies
  publication-title: Proc 4th Int Workshop Uncertain Reason Semantic Web
– volume: 919
  start-page: 1
  year: 0
  ident: ref84
  article-title: Link prediction in multi-relational graphs using additive models
  publication-title: Proc Int Workshop Semant Technol Recomm Sys Big Data ISWC
– ident: ref103
  doi: 10.1209/0295-5075/89/58007
– ident: ref106
  doi: 10.1007/BF00117105
– year: 1974
  ident: ref13
  article-title: A framework for representing knowledge
  publication-title: MIT-AI Laboratory Memo 306
– ident: ref119
  doi: 10.1145/1401890.1401944
– ident: ref26
  doi: 10.1145/2629489
– start-page: 259
  year: 0
  ident: ref57
  article-title: Linkage and autocorrelation cause feature selection bias in relational learning
  publication-title: Proc 19th Int Conf Mach Learn
– ident: ref96
  doi: 10.1198/016214502388618906
– ident: ref100
  doi: 10.1007/BF02289026
– year: 2011
  ident: ref141
  publication-title: Probabilistic Databases
  doi: 10.1007/978-3-031-01879-4
– start-page: 61
  year: 1999
  ident: ref61
  article-title: Probabilities for SV machines
  publication-title: Advances in Large Margin Classifiers
– ident: ref104
  doi: 10.1007/BF03037227
– start-page: 3167
  year: 2012
  ident: ref81
  article-title: A latent factor model for highly multi-relational data
  publication-title: Advances in Neural Information Processing Systems 25
– year: 0
  ident: ref75
  article-title: Learning taxonomies from multi-relational data via hierarchical link-based clustering
  publication-title: Proc Learn Semant Workshop
– ident: ref135
  doi: 10.5220/0005187303170324
– ident: ref69
  doi: 10.3115/v1/D14-1165
– volume: 130
  start-page: 954
  year: 1959
  ident: ref47
  article-title: Automatic linkage of vital records computers can be used to extract "follow-up" statistics of families from files of routine records
  publication-title: Science
  doi: 10.1126/science.130.3381.954
– year: 0
  ident: ref85
  article-title: Relation extraction with matrix factorization and universal schemas
  publication-title: Joint Human Language Technol Conf /Annu Meet North Amer Chapter Assoc Comput Linguistics
– year: 2013
  ident: ref39
  publication-title: Understand your world with Bing
– year: 0
  ident: ref138
  article-title: Weaving the pedantic web
  publication-title: Proc 3rd Int Workshop Linked Data Web (LDOW2010)/19th Int World Wide Web Conf
– volume: 41
  start-page: 1:1
  year: 2009
  ident: ref143
  article-title: Data fusion
  publication-title: ACM Comput Surv
  doi: 10.1145/1456650.1456651
– year: 2012
  ident: ref10
  publication-title: AKBC-WEKEX 2012 The knowledge extraction workshop at NAACL-HLT
– ident: ref67
  doi: 10.1137/07070111X
– ident: ref54
  doi: 10.1016/j.physrep.2009.11.002
– start-page: 544
  year: 0
  ident: ref71
  article-title: Infinite hidden relational models
  publication-title: Proc 22nd Int Conf Uncertainty Artif Intell
– ident: ref24
  doi: 10.1145/219717.219748
– start-page: 133
  year: 0
  ident: ref44
  article-title: Philosophers are mortal: Inferring the truth of unseen facts
  publication-title: Proc Conf Computational Natural Language Learning
– ident: ref38
  doi: 10.1016/0004-3702(91)90055-O
– ident: ref77
  doi: 10.1007/978-3-642-04930-9_14
– start-page: 122
  year: 0
  ident: ref34
  article-title: Prismatic: Inducing knowledge from a large scale lexicalized relation resource
  publication-title: Proc NAACL HLT 1st Int Workshop Formalisms Method Learning Reading
– ident: ref89
  doi: 10.1017/S0140525X98001769
– ident: ref12
  doi: 10.1002/0470018860.s00065
– ident: ref145
  doi: 10.14778/2732951.2732962
– volume: 8
  start-page: 295
  year: 1991
  ident: ref105
  article-title: Inductive logic programming
  publication-title: New Gener Comput
  doi: 10.1007/BF03037089
– ident: ref117
  doi: 10.18653/v1/W15-4007
– ident: ref78
  doi: 10.1145/2245276.2245341
– start-page: 177
  year: 0
  ident: ref122
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proc COMPSTAT
– ident: ref50
  doi: 10.1145/1099554.1099615
– start-page: 657
  year: 2008
  ident: ref60
  article-title: Modeling homophily and stochastic equivalence in symmetric relational data
  publication-title: Advances in Neural Information Processing Systems 20
– ident: ref28
  doi: 10.1145/2623330.2623623
– start-page: 2787
  year: 2013
  ident: ref94
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Advances in Neural Information Processing Systems 26
– ident: ref126
  doi: 10.1007/s10994-006-5833-1
– ident: ref36
  doi: 10.1145/2487788.2487935
– ident: ref53
  doi: 10.1109/ICDE.2012.119
– start-page: 523
  year: 0
  ident: ref33
  article-title: Open language learning for information extraction
  publication-title: Proc Joint Conf Empirical Methods in Natural Language Processing and Computational Natural Language Learning
– volume: 286
  start-page: 509
  year: 1999
  ident: ref99
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– ident: ref82
  doi: 10.1109/ICDM.2011.28
– start-page: 529
  year: 0
  ident: ref116
  article-title: Random walk inference and learning in a large scale knowledge base
  publication-title: Proc Conf Empir Meth Nat Lang Process
– ident: ref115
  doi: 10.1007/s10994-010-5205-8
– volume: 10
  start-page: 2639
  year: 2009
  ident: ref111
  article-title: DL-learner: Learning concepts in description logics
  publication-title: J Mach Learn Res
– year: 2000
  ident: ref20
  publication-title: Knowledge Representation Logical Philosophical and Computational Foundations
– ident: ref80
  doi: 10.14778/2535573.2488340
– ident: ref58
  doi: 10.1016/0378-8733(83)90021-7
– ident: ref76
  doi: 10.1109/ICDM.2005.77
– year: 0
  ident: ref110
  article-title: Reasoning by analogy in description logics through instance-based learning
  publication-title: Proc Semant Web Appl Perspect
– volume: 390
  start-page: 1150
  year: 2011
  ident: ref97
  article-title: Link prediction in complex networks: A survey
  publication-title: Physica A Stat Mechan Appl
  doi: 10.1016/j.physa.2010.11.027
– year: 2007
  ident: ref1
  publication-title: Introduction to Statistical Relational Learning
  doi: 10.7551/mitpress/7432.001.0001
– ident: ref23
  doi: 10.1145/219717.219745
– year: 2006
  ident: ref15
  publication-title: Linked data-Design issues
– ident: ref4
  doi: 10.1145/1242572.1242667
– start-page: 1535
  year: 0
  ident: ref32
  article-title: Identifying relations for open information extraction
  publication-title: Proc Conf Empir Meth Natural Language Process
– year: 2012
  ident: ref8
  publication-title: Introducing the Knowledge Graph Things Not Strings
– ident: ref120
  doi: 10.1145/2168752.2168771
– year: 0
  ident: ref93
  article-title: Learning structured embeddings of knowledge bases
  publication-title: Proc 25th AAAI Conf Artif Intell
– ident: ref2
  doi: 10.1007/978-3-662-04599-2
– ident: ref7
  doi: 10.1145/1376616.1376746
– ident: ref16
  doi: 10.4018/jswis.2009081901
– start-page: 1306
  year: 0
  ident: ref6
  article-title: Toward an architecture for never-ending language learning
  publication-title: Proc 24th Conf Artif Intell
– volume: abs 1412 6575
  year: 2014
  ident: ref95
  article-title: Embedding entities and relations for learning and inference in knowledge bases
  publication-title: CoRR
– ident: ref113
  doi: 10.1007/978-3-642-30284-8_16
– ident: ref9
  doi: 10.1145/1807085.1807097
– ident: ref25
  doi: 10.1093/nar/gkh061
– ident: ref52
  doi: 10.1145/1217299.1217304
– ident: ref70
  doi: 10.1145/1273496.1273551
– ident: ref144
  doi: 10.14778/2535568.2448943
– start-page: 305
  year: 0
  ident: ref139
  article-title: When owl: SameAs isn't the same: An analysis of identity in linked data
  publication-title: Proc Semant Web
– year: 0
  ident: ref134
  article-title: Probabilistic latent-factor database models
  publication-title: Proc 1st Workshop Linked Data Knowl Discovery European Conf Mach Learn Principles Practice Knowl Discovery Databases
– start-page: 809
  year: 0
  ident: ref63
  article-title: A three-way model for collective learning on multi-relational data
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref108
  doi: 10.1007/s00778-015-0394-1
– year: 2004
  ident: ref17
  publication-title: Resource Description Framework (RDF) Concepts and Abstract Syntax
– ident: ref66
  doi: 10.1109/MC.2009.263
– start-page: 1
  year: 2013
  ident: ref136
  article-title: Tackling representation, annotation and classification challenges for temporal knowledge base population
  publication-title: Knowl Inf Syst
– ident: ref55
  doi: 10.1073/pnas.98.2.404
– year: 2015
  ident: ref130
  article-title: Hinge-loss Markov random fields and probabilistic soft logic
  publication-title: arXiv 1505 04406
– ident: ref46
  doi: 10.1145/1117454.1117456
– ident: ref101
  doi: 10.1103/PhysRevE.73.026120
– ident: ref64
  doi: 10.1145/2187836.2187874
– year: 2001
  ident: ref14
  publication-title: The Semantic Web
– year: 0
  ident: ref131
  article-title: A short introduction to probabilistic soft logic
  publication-title: Proc NIPS Workshop Probab Programming Found Appl
– volume: 10
  start-page: 2004
  year: 2004
  ident: ref137
  article-title: OWL web ontology language overview
  publication-title: W3C Recommend
– year: 0
  ident: ref68
  article-title: Logistic tensor-factorization for multi-relational data
  publication-title: Proc Structured Learn Inferring Graphs Structured Unstructured Inputs (SLG 2013) Workshop
– year: 0
  ident: ref128
  article-title: Sound and efficient inference with probabilistic and deterministic dependencies
  publication-title: Proc AAAI
– ident: ref102
  doi: 10.1016/S0169-7552(98)00110-X
– start-page: 1179
  year: 2014
  ident: ref118
  article-title: Reducing the rank in relational factorization models by including observable patterns
  publication-title: Advances in Neural IInformation Processing Systems
– ident: ref22
  doi: 10.1145/2566486.2568032
– year: 0
  ident: ref91
  article-title: Efficient estimation of word representations in vector space
  publication-title: Proc ICLR Workshop
– ident: ref124
  doi: 10.1145/1143844.1143874
– volume: 8
  start-page: 637
  year: 2007
  ident: ref133
  article-title: Relational dependency networks
  publication-title: J Mach Learn Res
SSID ssj0003563
Score 2.6819253
SecondaryResourceType review_article
Snippet Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Big data
Biological system modeling
Computational efficiency
Computer graphs
Data mining
Equivalence
Factorization
Graph-based models
Graphs
Knowledge based systems
knowledge extraction
knowledge graphs
latent feature models
Machine learning
Mathematical models
Neural networks
Predictive models
Resource description framework
Statistical analysis
statistical relational learning
Title A Review of Relational Machine Learning for Knowledge Graphs
URI https://ieeexplore.ieee.org/document/7358050
https://www.proquest.com/docview/1751302816
https://www.proquest.com/docview/1793242527
Volume 104
WOSCitedRecordID wos000367250300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiWCN-2Wdm3TgJchTlGcQxR2K03yIoJssg__fpMsLYoieCv0JS0vecnvfQOcMi1RUM0Cszli62ZMA6G5CIRIZaKM2lJg7JpNsMEgG434sAbnVS4MIrrgM2zbR-fLVxO5sKayDrM-O6ugrzCWLnO1qlO3m_iuaaERYCOGZYIM5Z3b4ePDpY3iStpRbBAHj75dQq6ryo-j2N0v_c3__dkWbHgcSXrLhd-GGo53YP1LdcEGXPTI0vJPJpqUQW9mzL2Ln0TiS6u-EINbyV1pWyPXtoT1bBee-1dPlzeBb5YQyLibzQMZUcWUFFxhkWqlw25BkfNChoUW2taVT6kwACfCGLNYIc14iFSISBqVxtzh3T2ojydj3AeiaBoh1VyiwRdGnnnBUGVcCTMqociaEJbcy6WvJG4bWrzlTqOgPHcczy3Hc8_xJpxVY96XdTT-pG5YHleUnr1NaJWLlHtRm-UG_1jnaxamTTipXhshsZ6PYoyThaXhFjgmETv4feZDWDPf97aVFtTn0wUewar8mL_Opsdup30CGiPPsg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5KFdQHb7FaNYJvum12u1fAlyLWerSKVPBt2SQTEaSVHv5-kzS7KIrg28JOQphkMt8cmQE4SZRATlXi6cMRmjBj7HHFuMd5LCKpzZYcQ9tsIun30-dn9lCBs_ItDCLa5DNsmE8by5cjMTOusmZiYnbGQF-IwjCg89da5b3bilzfNF-LsBbE4okMZc2bh8f7C5PHFTWCUGMOFnxTQ7avyo_L2GqYztr_1rYOqw5JkvZ86zeggsNNWPlSX3ALzttk7vsnI0WKtDc9pmczKJG44qovRCNXclt418iVKWI92YanzuXgouu5dgmeCFvp1BMBlYkUnEnMYyWV38opMpYLP1dcmcryMeUa4gQYYhpKpCnzkXIeCG3UaC3e2oHqcDTEXSCSxgFSxQRqhKElmuUJypRJrkdFFJMa-AX3MuFqiZuWFm-ZtSkoyyzHM8PxzHG8BqflmPd5JY0_qbcMj0tKx94a1ItNypywTTKNgEz4NfXjGhyXv7WYmNhHPsTRzNAwAx2jINn7feYjWOoOenfZ3XX_dh-W9Vqcp6UO1el4hgewKD6mr5PxoT11nxLm0vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Relational+Machine+Learning+for+Knowledge+Graphs&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Nickel%2C+Maximilian&rft.au=Murphy%2C+Kevin&rft.au=Tresp%2C+Volker&rft.au=Gabrilovich%2C+Evgeniy&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=104&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1109%2FJPROC.2015.2483592&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3903443161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon