Machine learning based prediction of carbon concentration in carburized steel

The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 33678 - 19
Main Authors: Zhang, Yingtao, Tang, Zirong, Yin, Qing, Wang, Yanjie, Nie, Zhenguo
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.09.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration distribution can be calculated using the FEA (Finite Element Analysis) method with an error no greater than 10% for the heat treatment engineer. However, predicting the results using machine learning method is more efficient and easier. In this paper, the carburizing numerical model is established for a 20Cr2Ni4A cylindrical part. The microstructures and hardness gradient were tested to verify the accuracy of the simulation model for the furnace samples after the carburizing process. By establishing an accurate numerical model of the carburizing process, multiple sets of process parameter combinations were designed for three different shapes: square, circle, and trapezoid. Large-scale calculations were performed, resulting in a total of 530,226 sets of samples obtained. Finally, a parameter adaptive BPNN (Backpropagation Neural Network) method based on mean shift clustering and slime mould algorithm is proposed for rapid prediction of carbon concentration distribution on the surface of parts after carburizing. By comparing the prediction accuracy and training time with other methods, the feasibility and effectiveness of the method are verified.
AbstractList The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration distribution can be calculated using the FEA (Finite Element Analysis) method with an error no greater than 10% for the heat treatment engineer. However, predicting the results using machine learning method is more efficient and easier. In this paper, the carburizing numerical model is established for a 20Cr2Ni4A cylindrical part. The microstructures and hardness gradient were tested to verify the accuracy of the simulation model for the furnace samples after the carburizing process. By establishing an accurate numerical model of the carburizing process, multiple sets of process parameter combinations were designed for three different shapes: square, circle, and trapezoid. Large-scale calculations were performed, resulting in a total of 530,226 sets of samples obtained. Finally, a parameter adaptive BPNN (Backpropagation Neural Network) method based on mean shift clustering and slime mould algorithm is proposed for rapid prediction of carbon concentration distribution on the surface of parts after carburizing. By comparing the prediction accuracy and training time with other methods, the feasibility and effectiveness of the method are verified.
Abstract The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration distribution can be calculated using the FEA (Finite Element Analysis) method with an error no greater than 10% for the heat treatment engineer. However, predicting the results using machine learning method is more efficient and easier. In this paper, the carburizing numerical model is established for a 20Cr2Ni4A cylindrical part. The microstructures and hardness gradient were tested to verify the accuracy of the simulation model for the furnace samples after the carburizing process. By establishing an accurate numerical model of the carburizing process, multiple sets of process parameter combinations were designed for three different shapes: square, circle, and trapezoid. Large-scale calculations were performed, resulting in a total of 530,226 sets of samples obtained. Finally, a parameter adaptive BPNN (Backpropagation Neural Network) method based on mean shift clustering and slime mould algorithm is proposed for rapid prediction of carbon concentration distribution on the surface of parts after carburizing. By comparing the prediction accuracy and training time with other methods, the feasibility and effectiveness of the method are verified.
The carbon concentration and hardness of a part's surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration distribution can be calculated using the FEA (Finite Element Analysis) method with an error no greater than 10% for the heat treatment engineer. However, predicting the results using machine learning method is more efficient and easier. In this paper, the carburizing numerical model is established for a 20Cr2Ni4A cylindrical part. The microstructures and hardness gradient were tested to verify the accuracy of the simulation model for the furnace samples after the carburizing process. By establishing an accurate numerical model of the carburizing process, multiple sets of process parameter combinations were designed for three different shapes: square, circle, and trapezoid. Large-scale calculations were performed, resulting in a total of 530,226 sets of samples obtained. Finally, a parameter adaptive BPNN (Backpropagation Neural Network) method based on mean shift clustering and slime mould algorithm is proposed for rapid prediction of carbon concentration distribution on the surface of parts after carburizing. By comparing the prediction accuracy and training time with other methods, the feasibility and effectiveness of the method are verified.The carbon concentration and hardness of a part's surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by the carbon concentration distribution in the surface layer, which directly determines wear resistance and fatigue life. Carbon concentration distribution can be calculated using the FEA (Finite Element Analysis) method with an error no greater than 10% for the heat treatment engineer. However, predicting the results using machine learning method is more efficient and easier. In this paper, the carburizing numerical model is established for a 20Cr2Ni4A cylindrical part. The microstructures and hardness gradient were tested to verify the accuracy of the simulation model for the furnace samples after the carburizing process. By establishing an accurate numerical model of the carburizing process, multiple sets of process parameter combinations were designed for three different shapes: square, circle, and trapezoid. Large-scale calculations were performed, resulting in a total of 530,226 sets of samples obtained. Finally, a parameter adaptive BPNN (Backpropagation Neural Network) method based on mean shift clustering and slime mould algorithm is proposed for rapid prediction of carbon concentration distribution on the surface of parts after carburizing. By comparing the prediction accuracy and training time with other methods, the feasibility and effectiveness of the method are verified.
ArticleNumber 33678
Author Yin, Qing
Zhang, Yingtao
Tang, Zirong
Wang, Yanjie
Nie, Zhenguo
Author_xml – sequence: 1
  givenname: Yingtao
  surname: Zhang
  fullname: Zhang, Yingtao
  organization: College of Mechanical & Electrical Engineering, Hohai University
– sequence: 2
  givenname: Zirong
  surname: Tang
  fullname: Tang, Zirong
  email: tangzirong@hhu.edu.cn
  organization: College of Mechanical & Electrical Engineering, Hohai University
– sequence: 3
  givenname: Qing
  surname: Yin
  fullname: Yin, Qing
  organization: College of Mechanical & Electrical Engineering, Hohai University
– sequence: 4
  givenname: Yanjie
  surname: Wang
  fullname: Wang, Yanjie
  organization: College of Mechanical & Electrical Engineering, Hohai University
– sequence: 5
  givenname: Zhenguo
  surname: Nie
  fullname: Nie, Zhenguo
  email: zhenguonie@tsinghua.edu.cn
  organization: Department of Mechanical Engineering, Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41022993$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PJCEQhonRqDv6BzxsOvHipZWPZhqOxqyuicaLngnQxcikB0boPri_frFb3Y0H4UCl8rxVRb0_0G6IARA6IficYCYuckO4FDWmvCaCM1KLHXRIccNryijd_S8-QMc5r3E5nMqGyH100BBMqZTsEN3fa_vsA1Q96BR8WFVGZ-iqbYLO28HHUEVXWZ1MiWwMFsKQ9JT3YcqPyf8pgjwA9Edoz-k-w_H7u0BP178er37Xdw83t1eXd7VtmBhqA7Qh3VIASIFbI81ScGugs0stGZPMEGco465cXqC2kVIwwy0WmhsmHFug27luF_VabZPf6PSqovZqSsS0UjoN3vagZOkoyq64w6RpNdHOYilky1vrHDG41Dqba21TfBkhD2rjs4W-1wHimBWjnLdStpQW9PQLuo5jCuWnE7XEAlNSqJ_v1Gg20H2O97H0AtAZsCnmnMB9IgSrN3PVbK4q5qrJXCWKiM2iXOCwgvSv9zeqv-XupGc
Cites_doi 10.1016/j.jnca.2020.102854
10.1016/j.future.2020.03.055
10.1007/s11665-023-08510-3
10.1016/j.petrol.2019.06.014
10.1109/ULTSYM.2019.8926078
10.1007/s11665-021-06035-1
10.2320/matertrans.M2016361
10.1007/s11665-017-2729-0
10.1115/PVP2018-84226
10.1007/s11665-009-9476-9
10.1108/IJSI-06-2023-0048
10.1115/1.4050560
10.1016/j.triboint.2022.107576
10.1007/s00521-015-1920-1
10.3390/f14010051
10.1016/j.cma.2022.115499
10.1109/TNNLS.2016.2634548
10.1111/ffe.13541
10.3390/coatings11081003
10.1016/j.cma.2021.114218
10.1098/rsta.2022.0406
10.1142/S0217984917400802
10.1016/j.ijfatigue.2022.106938
10.1109/ACCESS.2019.2948475
10.1098/rsta.2022.0386
10.1108/ILT-10-2023-0328
10.3390/ijerph20021043
10.1016/j.ijfatigue.2019.105432
10.1007/s11665-021-06236-8
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-18531-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_943884155f0147a1afc0989757cff1b0
41022993
10_1038_s41598_025_18531_8
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52475185
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52475185
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-be241d68ee9807b9b685cbedc6a93393b1fb235f5f558ee749983b5c08a5b38f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586174900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:21:21 EDT 2025
Tue Sep 30 19:06:47 EDT 2025
Tue Oct 07 09:16:55 EDT 2025
Sat Oct 04 02:10:23 EDT 2025
Sat Nov 29 07:25:40 EST 2025
Tue Sep 30 01:10:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 20Cr2Ni4A
Mean shift clustering
Carburizing
Numerical calculation
Slime mould algorithm
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-be241d68ee9807b9b685cbedc6a93393b1fb235f5f558ee749983b5c08a5b38f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/943884155f0147a1afc0989757cff1b0
PMID 41022993
PQID 3255608021
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_943884155f0147a1afc0989757cff1b0
proquest_miscellaneous_3255799722
proquest_journals_3255608021
pubmed_primary_41022993
crossref_primary_10_1038_s41598_025_18531_8
springer_journals_10_1038_s41598_025_18531_8
PublicationCentury 2000
PublicationDate 2025-09-29
PublicationDateYYYYMMDD 2025-09-29
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References E Emary (18531_CR27) 2018; 29
LW Xu (18531_CR24) 2019; 7
BT Li (18531_CR21) 2020; 173
W Wang (18531_CR2) 2021; 44
CQ Luo (18531_CR30) 2022; 388
SP Zhu (18531_CR15) 2023; 14
IJ Hong (18531_CR1) 2020; 143
YJ Wang (18531_CR31) 2021; 30
18531_CR12
JY Guo (18531_CR17) 2021; 11
JP Zhang (18531_CR18) 2024; 76
18531_CR9
R Xue (18531_CR19) 2024; 24
CQ Luo (18531_CR16) 2022; 400
N Zhang (18531_CR4) 2022; 161
HK Kim (18531_CR6) 2017; 58
JW Rui (18531_CR28) 2019; 180
LM Shen (18531_CR10) 2010; 33
HL Deng (18531_CR7) 2022; 31
SP Zhu (18531_CR14) 2023; 381
CX Li (18531_CR23) 2021; 68
S Mirjalili (18531_CR26) 2016; 27
18531_CR29
L Shi (18531_CR8) 2022; 171
18531_CR22
YT Zhang (18531_CR5) 2017; 26
LY Wang (18531_CR13) 2023; 381
A Sugianto (18531_CR32) 2010; 19
L Bonaiti (18531_CR3) 2021; 143
J Chen (18531_CR11) 2023; 20
SM Li (18531_CR25) 2020; 111
BH Zheng (18531_CR20) 2017; 31
References_xml – volume: 68
  start-page: 1987
  year: 2021
  ident: 18531_CR23
  publication-title: IEEE Trans. Circuits Syst. II Exp. Briefs
– volume: 173
  start-page: 102854
  year: 2020
  ident: 18531_CR21
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2020.102854
– volume: 111
  start-page: 300
  year: 2020
  ident: 18531_CR25
  publication-title: Future Gener Comput Syst Int J eScience
  doi: 10.1016/j.future.2020.03.055
– ident: 18531_CR12
  doi: 10.1007/s11665-023-08510-3
– volume: 180
  start-page: 699
  year: 2019
  ident: 18531_CR28
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2019.06.014
– ident: 18531_CR22
  doi: 10.1109/ULTSYM.2019.8926078
– volume: 30
  start-page: 8040
  year: 2021
  ident: 18531_CR31
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-021-06035-1
– volume: 58
  start-page: 592
  year: 2017
  ident: 18531_CR6
  publication-title: Mater Trans
  doi: 10.2320/matertrans.M2016361
– volume: 26
  start-page: 3043
  year: 2017
  ident: 18531_CR5
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-017-2729-0
– ident: 18531_CR9
  doi: 10.1115/PVP2018-84226
– volume: 19
  start-page: 194
  year: 2010
  ident: 18531_CR32
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-009-9476-9
– volume: 14
  start-page: 1000
  year: 2023
  ident: 18531_CR15
  publication-title: Int J Struct Integr
  doi: 10.1108/IJSI-06-2023-0048
– volume: 143
  start-page: 103402
  year: 2021
  ident: 18531_CR3
  publication-title: J Mech Des
  doi: 10.1115/1.4050560
– volume: 171
  start-page: 107576
  year: 2022
  ident: 18531_CR8
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2022.107576
– volume: 27
  start-page: 1053
  year: 2016
  ident: 18531_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– ident: 18531_CR29
  doi: 10.3390/f14010051
– volume: 24
  start-page: 1253
  year: 2024
  ident: 18531_CR19
  publication-title: J. Comput. Methods Sci. Eng.
– volume: 400
  start-page: 115499
  year: 2022
  ident: 18531_CR16
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115499
– volume: 33
  start-page: 142
  year: 2010
  ident: 18531_CR10
  publication-title: Rev Adv Mater
– volume: 29
  start-page: 681
  year: 2018
  ident: 18531_CR27
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2634548
– volume: 44
  start-page: 2736
  year: 2021
  ident: 18531_CR2
  publication-title: Eng Mater Struct
  doi: 10.1111/ffe.13541
– volume: 11
  start-page: 1003
  year: 2021
  ident: 18531_CR17
  publication-title: Coat
  doi: 10.3390/coatings11081003
– volume: 388
  start-page: 114218
  year: 2022
  ident: 18531_CR30
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2021.114218
– volume: 381
  start-page: 20220406
  year: 2023
  ident: 18531_CR14
  publication-title: Phil Trans R Soc
  doi: 10.1098/rsta.2022.0406
– volume: 31
  start-page: 19
  year: 2017
  ident: 18531_CR20
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984917400802
– volume: 161
  start-page: 106938
  year: 2022
  ident: 18531_CR4
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.106938
– volume: 7
  start-page: 152690
  year: 2019
  ident: 18531_CR24
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2948475
– volume: 381
  start-page: 20220386
  year: 2023
  ident: 18531_CR13
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2022.0386
– volume: 76
  start-page: 345
  year: 2024
  ident: 18531_CR18
  publication-title: Ind. Lubr Tribol
  doi: 10.1108/ILT-10-2023-0328
– volume: 20
  start-page: 1043
  year: 2023
  ident: 18531_CR11
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph20021043
– volume: 143
  start-page: 105432
  year: 2020
  ident: 18531_CR1
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.105432
– volume: 31
  start-page: 882
  year: 2022
  ident: 18531_CR7
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-021-06236-8
SSID ssj0000529419
Score 2.460403
Snippet The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by...
The carbon concentration and hardness of a part's surface can be enhanced through the carburizing-quenching process. The mechanical properties are affected by...
Abstract The carbon concentration and hardness of a part’s surface can be enhanced through the carburizing-quenching process. The mechanical properties are...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 33678
SubjectTerms 20Cr2Ni4A
639/166
639/301
Accuracy
Algorithms
Carbon
Carburizing
Datasets
Finite element method
Hardness
Heat treating
Heat treatment
Heat treatments
Heuristic
Humanities and Social Sciences
Learning algorithms
Machine learning
Mathematical models
Mean shift clustering
Mechanical properties
multidisciplinary
Neural networks
Numerical calculation
Optimization
Predictions
Science
Science (multidisciplinary)
Simulation
Slime molds
Slime mould algorithm
Titanium alloys
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDLZgAYkL70dhQUXiBtE2TdskJwSIFQdmtQdAe4uSNFmNhNqhM4MEvx47zcwK8bigXqo0rZx-TmzHsQ3wvJKx9l3DWSe8Z42wkrm-V6wKDu0Rpx1P4dGfP8iTE3V2pk_zhts6H6vcrYlpoe5HT3vkR4JyZVFgKH-1-sqoahR5V3MJjctwBTUbTke6FvXpfo-FvFgN1zlWphLqaI3yimLK6paRoOJM_SKPUtr-P-mav_lJk_g5vvm_hN-CG1nxLF_PnHIbLoXhDlybS1F-vwuLRTpVGcpcRuK8JPnWl6uJPDmEXjnG0tvJ4Z2nWMchJ9wtl0Nq307LH_gCck34cg8-Hb_7-PY9y6UWmG-E2jAXUJL3nQpBq0oiRJ1qvQu976wWQgvHo6tFG_FqsZNEO0kJ1_pK2dYJFcV9OBjGITyEsusbp9FKknXbN0pYVDB723ge0XiSVWsLeLH74WY1Z9QwyRMulJnhMQiPSfAYVcAbwmTfk7Jhp4ZxOjd5chmNY1CkGUU0-KTlNvpKKy1b6WPkrirgcAeNyVN0bS5wKeDZ_jFOLvKY2CGM27mPpNDiuoAHMyfsKWnIVkbtroCXO9a4-PjfB_To37Q8hus1cSf5vfQhHGymbXgCV_23zXI9PU3s_RNdR_8W
  priority: 102
  providerName: ProQuest
Title Machine learning based prediction of carbon concentration in carburized steel
URI https://link.springer.com/article/10.1038/s41598-025-18531-8
https://www.ncbi.nlm.nih.gov/pubmed/41022993
https://www.proquest.com/docview/3255608021
https://www.proquest.com/docview/3255799722
https://doaj.org/article/943884155f0147a1afc0989757cff1b0
Volume 15
WOSCitedRecordID wos001586174900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB-8Ow98Eb9Oq-dSwTct1zRNkzx6coeCuxRRWZ9CkiayIN2juyvc_fVOku56onIvUhhKmobkNwkzw2RmAF6W3Fe2qUnRUGuLmmpemK4TRekM2iNGGhLDo7984LOZmM9le63UV7gTltIDJ-BOZE2FCFLPozLPNdHellJIzrj1nphorZdcXjOmUlbvStZEjlEyJRUnKxwjRJNVrAgiihTiN0kUE_b_Tcv8w0MaBc_5Pbg7aoz5mzTT-3DL9Q_gMNWQvHwI02m8Dunysf7DtzwIpi6_GIILJsCeL31u9WDwzYYgxX7MlJsv-ti-GRZX-AOy231_BJ_Pzz69fVeMNRIKi8CsC-NQBHeNcE6KkiO2jWDWuM42WlIqqSHeVJR5fBh24mjgCGqYLYVmhgpPj2C_X_buCeRNVxuJ5g2vWFcLqlEz7HRtiUerh5dMZ_Bqi5e6SKkwVHRhU6ESugrRVRFdJTI4DZDueoY01rEBmatG5qqbmJvB8ZYhajxbK0VD1rQQIkwyeLH7jKciuDp075ab1IeHmOAqg8eJkbuZ1MHIRbUsg9dbzv4a_N8Levo_FvQM7lRhCwa3ljyG_fWwcc_htv2xXqyGCezxOY9UTODg9GzWfpzEfY10WrWBcqQH7ftp-_Unqx73NQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFaTOIntA0K8qlbdXfVQUG-u7TjVSii7ZHdB5UfxG5lxkq0Qj1sPKJfIcSI7_ubl8cwAPEtEnbkyT1nJnWM5N4LZqpIs8RbtEatsGsKjP43EZCKPjtTBBvwYYmHoWOXAEwOjrmaO9si3OeXKosDQ9PX8C6OqUeRdHUpodLDY96ff0GRbvNp7j-v7PMt2Phy-22V9VQHmci6XzHoUWlUpvVcyETiaUhbO-sqVBo17xW1a24wXNV4FdhJoEkhuC5dIU1gua47fvQAXc8osRkcFs4P1ng55zfJU9bE5CZfbC5SPFMOWFYwEY8rkL_IvlAn4k277m182iLud6__bj7oB13rFOn7TUcJN2PDNLbjcldo8vQ3jcTg16uO-TMZJTPK7iucteaoInfGsjp1pLd45iuVs-oTC8bQJ7at2-h1fQKrwn-_Ax3OZy13YbGaNvw9xWeVWoRUosqLKJTeoQFcmd2mNxqFIChPBi2GB9bzLGKKDp59L3cFBIxx0gIOWEbwlDKx7Urbv0DBrT3TPPLTCOUjS_Go0aIVJTe0SJZUohKvr1CYRbA1Q0D0LWugzHETwdP0YmQd5hEzjZ6uuj6DQ6SyCex3y1iPJaS8AtdcIXg5QPPv43yf04N9jeQJXdg_HIz3am-w_hKsZUQb5-NQWbC7blX8El9zX5XTRPg6kFcPxeUP0J0qvXMc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOoC4sC-BAYIEJ7CaxElsHxAChopqplUPgIaTiR17VAmlJW1Bw0_j1_Felo4Qy20OKJfIcSI7_vwWvw3gcSR8YvM0Zjm3lqW8EMyUpWSRM6iPGGXiJjz6w6GYTuXRkZrtwI8-FobcKnua2BDqcmHpjHzIKVcWBYbGQ9-5Rcz2Ry-WXxhVkCJLa19Oo4XIgTv5hurb6vl4H9f6SZKM3rx7_ZZ1FQaYTblcM-OQgZW5dE7JSODIcplZ40qbF6joK25ibxKeebwy7CRQPZDcZDaSRWa49By_ew52USRPkwHszsaT2cftCQ_Z0NJYdZE6EZfDFXJLimhLMkZsMmbyF27YFA34k6T7m5W2YX6jK__zb7sKlzuRO3zZ7pFrsOOq63ChLcJ5cgMmk8af1IVdAY3jkDh7GS5rsmERbsOFD21RG7yzFOVZdamGw3nVtG_q-Xd8AfeL-3wT3p_JXG7BoFpU7g6EeZkahfqhSLIylbxA0bosUht7VBtFlBUBPO0XWy_bXCK68QHgUrfQ0AgN3UBDywBeER62PSkPeNOwqI91R1a0wjlIkgk9qrqiiAtvIyWVyIT1PjZRAHs9LHRHnFb6FBMBPNo-RrJCtqKicotN20dQUHUSwO0WhduRpHRKgHJtAM96WJ5-_O8TuvvvsTyEi4hMfTieHtyDSwltEjL-qT0YrOuNuw_n7df1fFU_6PZZCJ_OGqM_ARuwZxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+prediction+of+carbon+concentration+in+carburized+steel&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Yingtao&rft.au=Tang%2C+Zirong&rft.au=Yin%2C+Qing&rft.au=Wang%2C+Yanjie&rft.date=2025-09-29&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=33678&rft_id=info:doi/10.1038%2Fs41598-025-18531-8&rft_id=info%3Apmid%2F41022993&rft.externalDocID=41022993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon