Self-consistent gravity model for inferring node mass in flow networks
The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables l...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 18839 - 10 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
29.05.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design. |
|---|---|
| AbstractList | The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country's economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country's intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country's economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country's intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design. Abstract The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design. The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design. |
| ArticleNumber | 18839 |
| Author | Cho, Wonguk Kim, Gunn Kim, Heetae Lee, Daekyung Kim, Beom Jun Jeong, Hyeong-Chai |
| Author_xml | – sequence: 1 givenname: Daekyung surname: Lee fullname: Lee, Daekyung organization: Department of Energy Engineering, Korea Institute of Energy Technology, Supply Chain Intelligence Institute Austria – sequence: 2 givenname: Wonguk surname: Cho fullname: Cho, Wonguk organization: Graduate School of Data Science, Seoul National University – sequence: 3 givenname: Heetae surname: Kim fullname: Kim, Heetae organization: Department of Energy Engineering, Korea Institute of Energy Technology – sequence: 4 givenname: Gunn surname: Kim fullname: Kim, Gunn email: gunnkim@sejong.ac.kr organization: Department of Physics and Astronomy and Institute for Fundamental Physics, Sejong University – sequence: 5 givenname: Hyeong-Chai surname: Jeong fullname: Jeong, Hyeong-Chai organization: Department of Physics and Astronomy and Institute for Fundamental Physics, Sejong University, School of Computational Sciences, Korea Institute for Advanced Study – sequence: 6 givenname: Beom Jun surname: Kim fullname: Kim, Beom Jun email: beomjun@skku.edu organization: Department of Physics, Sungkyunkwan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40442287$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1O3DAUha0KVCjlBbqoInXDJsW-_om9rBBQJKQuoGvLcW5GmSb21M6AeHs8BChiUW9sHX3n2L7nE9kLMSAhXxj9zijXp1kwaXRNQdaUKyXq5gM5BCpkDRxg7835gBznvKZlSTCCmY_kQFAhAHRzSC5ucOxrH0Me8oxhrlbJ3Q3zQzXFDseqj6kaQo8pDWFVhaJVk8u5aFU_xvsq4Hwf05_8mez3bsx4_Lwfkd8X57dnP-vrX5dXZz-uay-4nuu2BdMJ2gI0uum01hTAgPAeJe208OCU4hKQyUa1jFFUuqHCedUa8L0AfkSultwuurXdpGFy6cFGN9gnIaaVdWke_IhWKceASgmNkaJD0NwJNBw0440uIyxZJ0vWJsW_W8yznYbscRxdwLjNlgMTnCpqVEG_vUPXcZtC-emO4kobA7RQX5-pbTth9_q8l2kXABbAp5hzwv4VYdTuWrVLq7a0ap9atTsTX0x5sysB07-7_-N6BEpin7o |
| Cites_doi | 10.3386/w12516 10.1007/978-3-319-54241-6_4 10.1016/j.joep.2008.12.001 10.1002/ijfe.2168 10.1111/1468-0262.00352 10.1177/2277978721989922 10.1177/030913257900300218 10.3141/2430-08 10.1016/j.tust.2022.104842 10.1162/rest.90.3.538 10.1038/srep02983 10.1007/s11079-021-09619-5 10.1016/j.strueco.2020.08.004 10.3390/su15076099 10.1257/000282803321455214 10.2139/ssrn.1994500 10.1016/j.physa.2016.06.055 10.1155/2019/6509726 10.1016/0041-1647(70)90072-9 10.1038/nature10856 10.1177/00157325221140154 10.1016/B978-0-444-54314-1.00003-3 10.3390/ijerph8083134 10.2307/1925976 10.1016/j.jimonfin.2017.07.001 10.1038/s41598-023-32686-2 10.2307/2785468 10.1162/qjec.2008.123.2.441 10.1177/0972150914553523 10.1016/j.physa.2012.03.031 10.1103/PhysRevE.103.012312 10.1016/j.jinteco.2004.05.002 10.1109/ACCESS.2024.3363635 10.1162/rest.88.4.641 10.1146/annurev-economics-111809-125114 10.1038/srep00902 10.1088/1742-5468/2009/07/L07003 10.1016/j.jimonfin.2007.03.002 10.1038/s41598-019-44930-9 10.1016/j.ins.2021.08.026 10.1016/j.jinteco.2009.01.003 10.1209/0295-5075/81/48005 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-03664-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Economics |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_66a1205527954de283a4e93281378103 40442287 10_1038_s41598_025_03664_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2022R1C1C1005856; NRF-2022R1C1C1005856; NRF-2021R1F1A1063238; 2019R1A2C2089463 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea grantid: NRF-2021R1F1A1063238 – fundername: National Research Foundation of Korea grantid: NRF-2022R1C1C1005856 – fundername: National Research Foundation of Korea grantid: 2019R1A2C2089463 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c438t-bb29d40b22787d888022924cce50d84c2a66352e1576b110e68704ac6b92cf423 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499336200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:30:38 EST 2025 Fri Sep 05 15:57:39 EDT 2025 Tue Oct 07 08:08:09 EDT 2025 Mon Jun 02 02:23:32 EDT 2025 Sat Nov 29 07:51:40 EST 2025 Fri May 30 10:54:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gravity model Data-driven analysis Trade flow Inference algorithm |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-bb29d40b22787d888022924cce50d84c2a66352e1576b110e68704ac6b92cf423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3213689920?pq-origsite=%requestingapplication% |
| PMID | 40442287 |
| PQID | 3213689920 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_66a1205527954de283a4e93281378103 proquest_miscellaneous_3214306096 proquest_journals_3213689920 pubmed_primary_40442287 crossref_primary_10_1038_s41598_025_03664_7 springer_journals_10_1038_s41598_025_03664_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-29 |
| PublicationDateYYYYMMDD | 2025-05-29 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Tinbergen (3664_CR1) 1962 K Head (3664_CR7) 2014; 4 E Helpman (3664_CR5) 2008; 123 AV Deardorff (3664_CR18) 1998; 5377 X Liang (3664_CR28) 2013; 3 3664_CR43 S Cevik (3664_CR22) 2022; 33 S Li (3664_CR41) 2021; 578 3664_CR44 3664_CR46 PR Lane (3664_CR33) 2008; 90 JE Anderson (3664_CR16) 2003; 93 I-H Cheng (3664_CR4) 2005; 87 PJ Jin (3664_CR38) 2014; 2430 Q Sun (3664_CR42) 2019; 2019 J Song (3664_CR31) 2023; 131 JQ Stewart (3664_CR19) 1948; 11 R Cazabet (3664_CR47) 2017 R Li (3664_CR30) 2021; 103 AK Mishra (3664_CR3) 2015; 16 R Portes (3664_CR32) 2005; 65 M Fidora (3664_CR34) 2007; 26 L Mazur (3664_CR37) 2022; 27 JMCS Silva (3664_CR8) 2006; 88 C Hellmanzik (3664_CR36) 2017; 77 G Krings (3664_CR27) 2009; 2009 S Jadhav (3664_CR13) 2024; 59 X Li (3664_CR21) 2011; 8 I Pal (3664_CR11) 2021; 10 AW Evans (3664_CR15) 1970; 4 ML Senior (3664_CR14) 1979; 3 F Simini (3664_CR23) 2012; 484 O Kwon (3664_CR29) 2012; 391 JE Anderson (3664_CR2) 2011; 3 JCJM van den Bergh (3664_CR24) 2009; 30 JH Bergstrand (3664_CR9) 1985; 67 I Hong (3664_CR26) 2016; 462 RK Pan (3664_CR20) 2012; 2 I Savin (3664_CR10) 2020; 55 W Cho (3664_CR45) 2023; 13 J Eaton (3664_CR6) 2002; 70 N Coeurdacier (3664_CR35) 2009; 77 Z Li (3664_CR39) 2019; 9 G Aksenov (3664_CR12) 2023 3664_CR17 H Singh (3664_CR40) 2024; 12 W-S Jung (3664_CR25) 2008; 81 |
| References_xml | – ident: 3664_CR17 doi: 10.3386/w12516 – start-page: 47 volume-title: Complex Networks VIII year: 2017 ident: 3664_CR47 doi: 10.1007/978-3-319-54241-6_4 – volume: 30 start-page: 117 issue: 2 year: 2009 ident: 3664_CR24 publication-title: J. Econ. Psychol. doi: 10.1016/j.joep.2008.12.001 – volume: 27 start-page: 554 issue: 1 year: 2022 ident: 3664_CR37 publication-title: Int. J. Financ. Econ. doi: 10.1002/ijfe.2168 – volume: 70 start-page: 1741 issue: 5 year: 2002 ident: 3664_CR6 publication-title: Econometrica doi: 10.1111/1468-0262.00352 – volume: 10 start-page: 72 issue: 1 year: 2021 ident: 3664_CR11 publication-title: South Asian J. Macroecon. Public Finance doi: 10.1177/2277978721989922 – volume: 3 start-page: 175 issue: 2 year: 1979 ident: 3664_CR14 publication-title: Prog. Hum. Geogr. doi: 10.1177/030913257900300218 – volume: 2430 start-page: 72 issue: 1 year: 2014 ident: 3664_CR38 publication-title: Transp. Res. Rec. doi: 10.3141/2430-08 – volume: 131 year: 2023 ident: 3664_CR31 publication-title: Tunn Undergr Space doi: 10.1016/j.tust.2022.104842 – volume: 90 start-page: 538 issue: 3 year: 2008 ident: 3664_CR33 publication-title: Rev. Econ. Stat. doi: 10.1162/rest.90.3.538 – volume: 3 start-page: 2983 issue: 1 year: 2013 ident: 3664_CR28 publication-title: Sci. Rep. doi: 10.1038/srep02983 – volume: 33 start-page: 141 issue: 1 year: 2022 ident: 3664_CR22 publication-title: Open Econ. Rev. doi: 10.1007/s11079-021-09619-5 – volume: 55 start-page: 119 year: 2020 ident: 3664_CR10 publication-title: Struct. Change Econ. Dyn. doi: 10.1016/j.strueco.2020.08.004 – year: 2023 ident: 3664_CR12 publication-title: Sustainability doi: 10.3390/su15076099 – volume: 87 start-page: 49 year: 2005 ident: 3664_CR4 publication-title: Fed. Reserve Bank St. Louis Rev. – volume: 93 start-page: 170 issue: 1 year: 2003 ident: 3664_CR16 publication-title: Am. Econ. Rev. doi: 10.1257/000282803321455214 – ident: 3664_CR44 doi: 10.2139/ssrn.1994500 – ident: 3664_CR43 – volume: 462 start-page: 48 year: 2016 ident: 3664_CR26 publication-title: Physica A doi: 10.1016/j.physa.2016.06.055 – volume: 2019 start-page: 6509726 year: 2019 ident: 3664_CR42 publication-title: Math. Probl. Eng. doi: 10.1155/2019/6509726 – volume: 4 start-page: 19 issue: 1 year: 1970 ident: 3664_CR15 publication-title: Transp. Res. doi: 10.1016/0041-1647(70)90072-9 – volume: 484 start-page: 96 issue: 7392 year: 2012 ident: 3664_CR23 publication-title: Nature doi: 10.1038/nature10856 – volume: 59 start-page: 26 issue: 1 year: 2024 ident: 3664_CR13 publication-title: Foreign Trade Rev. doi: 10.1177/00157325221140154 – volume: 4 start-page: 131 year: 2014 ident: 3664_CR7 publication-title: Handb. Int. Econ. doi: 10.1016/B978-0-444-54314-1.00003-3 – volume: 8 start-page: 3134 issue: 8 year: 2011 ident: 3664_CR21 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph8083134 – volume: 67 start-page: 474 issue: 3 year: 1985 ident: 3664_CR9 publication-title: Rev. Econ. Stat. doi: 10.2307/1925976 – volume: 77 start-page: 164 year: 2017 ident: 3664_CR36 publication-title: J. Int. Money Finance doi: 10.1016/j.jimonfin.2017.07.001 – volume: 13 start-page: 5721 issue: 1 year: 2023 ident: 3664_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-023-32686-2 – volume: 11 start-page: 31 issue: 1/2 year: 1948 ident: 3664_CR19 publication-title: Sociometry doi: 10.2307/2785468 – volume: 123 start-page: 441 issue: 2 year: 2008 ident: 3664_CR5 publication-title: Q. J. Econ. doi: 10.1162/qjec.2008.123.2.441 – volume: 16 start-page: 107 issue: 1 year: 2015 ident: 3664_CR3 publication-title: Glob. Bus. Rev. doi: 10.1177/0972150914553523 – volume: 391 start-page: 4261 issue: 17 year: 2012 ident: 3664_CR29 publication-title: Physica A doi: 10.1016/j.physa.2012.03.031 – volume: 5377 start-page: 7 year: 1998 ident: 3664_CR18 publication-title: Natl. Bur. Econ. Res. – volume: 103 year: 2021 ident: 3664_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.012312 – volume: 65 start-page: 269 issue: 2 year: 2005 ident: 3664_CR32 publication-title: J. Int. Econ. doi: 10.1016/j.jinteco.2004.05.002 – volume: 12 start-page: 23163 year: 2024 ident: 3664_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3363635 – volume: 88 start-page: 641 issue: 4 year: 2006 ident: 3664_CR8 publication-title: Rev. Econ. Stat. doi: 10.1162/rest.88.4.641 – volume: 3 start-page: 133 year: 2011 ident: 3664_CR2 publication-title: Annu. Rev. Econ. doi: 10.1146/annurev-economics-111809-125114 – volume: 2 start-page: 902 issue: 1 year: 2012 ident: 3664_CR20 publication-title: Sci. Rep. doi: 10.1038/srep00902 – volume-title: Shaping the World Economy: Suggestions for an International Economic Policy. Twentieth Century Fund study year: 1962 ident: 3664_CR1 – volume: 2009 start-page: 07003 issue: 07 year: 2009 ident: 3664_CR27 publication-title: J. Stat. Mech J. Theory Exp. doi: 10.1088/1742-5468/2009/07/L07003 – volume: 26 start-page: 631 issue: 4 year: 2007 ident: 3664_CR34 publication-title: J. Int. Money Financ. doi: 10.1016/j.jimonfin.2007.03.002 – volume: 9 start-page: 8387 issue: 1 year: 2019 ident: 3664_CR39 publication-title: Sci. Rep. doi: 10.1038/s41598-019-44930-9 – ident: 3664_CR46 – volume: 578 start-page: 725 year: 2021 ident: 3664_CR41 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.08.026 – volume: 77 start-page: 195 issue: 2 year: 2009 ident: 3664_CR35 publication-title: J. Int. Econ. doi: 10.1016/j.jinteco.2009.01.003 – volume: 81 start-page: 48005 issue: 4 year: 2008 ident: 3664_CR25 publication-title: EPL doi: 10.1209/0295-5075/81/48005 |
| SSID | ssj0000529419 |
| Score | 2.450596 |
| Snippet | The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model,... The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model,... Abstract The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 18839 |
| SubjectTerms | 639/766/259 639/766/530 Data-driven analysis Economics GDP Gravity model Gross Domestic Product Humanities and Social Sciences Inference algorithm International trade multidisciplinary Science Science (multidisciplinary) Trade flow Traffic control |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1EFLyI39YvInjTYJukbXJUcfEkggreQpJNQdCu7K6K_95J0l0VFS9e0xCSmaTvPTKZATgwFnFVekdlWXMUKNJTUxacOkRvpLuq9L6JxSbqy0t5d6euPpX6CjFhKT1wMtxxVZmC5SFPmCpF3yMaGuGRdMiC17JIeT6R9XwSUymrN1OiUN0rmZzL4xEiVXhNxkqKP-1K0PoLEsWE_T-xzG83pBF4ekuw2DFGcpJmugwzvl2B-VRD8m0Vetf-oaEuxLmiw9oxCQWFkFqTWOOGICclIeBqGAYnLbaRR-TL2Eaah8EraVMY-GgNbnvnN2cXtCuOQJ3gckytZaovchuestZ91LEIxqilnPNl3pfCMRO4BPMFCgqLGO8rPJnCuMoq5hokUesw2w5avwmEGUQob2xuFNq2amwTdBIvbeOtaQqbweHEUPop5cDQ8e6aS53MqtGsOppV1xmcBltOe4b81bEBvao7r-q_vJrBzsQTujtUI81ZwSvUhyzPYH_6GY9DuOMwrR88xz4CVRAKsww2kgenMxG5CAnPcIZHE5d-DP77grb-Y0HbsMDi3ispUzswOx4--12Ycy_j-9FwL27ed4846uQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Self-consistent gravity model for inferring node mass in flow networks |
| URI | https://link.springer.com/article/10.1038/s41598-025-03664-7 https://www.ncbi.nlm.nih.gov/pubmed/40442287 https://www.proquest.com/docview/3213689920 https://www.proquest.com/docview/3214306096 https://doaj.org/article/66a1205527954de283a4e93281378103 |
| Volume | 15 |
| WOSCitedRecordID | wos001499336200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFgQXHuUVKCsjcQOrie0kzglR1BUcuop4SMvJsh2nQipJ2WxB_HtmnOxWiMeFSw6OlUwyM55vPOMZgGfWoV3VwXOdlxIdFB24zTPJPVpvhLtVHkIbm02Ui4VeLqt62nAbprTKzZoYF-qm97RHfihFJgt0DkT68vwrp65RFF2dWmjswB5VSZAxda_e7rFQFEtl1XRWJpX6cEB7RWfKRM5x6S4UL3-xR7Fs_5-w5m9x0mh-5rf-l_DbcHMCnuzVKCl34Ero9uHa2Iryxz5c35xQHu7C_H04a7mn1FmUgW7NqEcRonUW2-YwhLmMcrhWRCnrcIx9QQiOY6w967-zbswsH-7Bx_nxh9dv-NRvgXsl9Zo7J6pGpY5Ox5YNusZo39E98z7kaaOVF5bgiQgZ-igOYUMoUNmV9YWrhG8Rl92H3a7vwkNgwqLRC9altrIqFK1ryfWSuWuDs23mEni--evmfCyrYWI4XGoz8sggj0zkkSkTOCLGbGdSSew40K9OzaRhpihsJlIqKFflqgkIm_DNiE51JkuND07gYMMfM-npYC6Zk8DT7W3UMAqb2C70F3GOQscKfb0EHozisKVEpYpqqCGFLzbycfnwv3_Qo3_T8hhuiCiiORfVAeyuVxfhCVz139afh9UMdsplGa96BntHx4v63SxuJeD1RNSzqAN4p357Un_6CSdaBlM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB1VBVQ2FMorbQEjwQqsJo6TOAuEeF21armqRJG6c23HQUglKTe3rfpTfCMzTnIrxGPXBVsnSpzkeM6ceB4Az4xFXlXecZUVKQoU5bnJkpQ7ZG90d8vM-zo0myimU3V4WO4vwY8xF4bCKkebGAx11Tr6R76ViiTNURyI-PXJd05do2h3dWyh0cNi11-co2TrXu28x-_7XIjJh4N323zoKsCdTNWcWyvKSsaWckCLCgUgshiKEOd8FldKOmGIhIVP0BO3SI4-R0hL43JbCldLKnSAJv8auhFChVDB_cU_Hdo1k0k55ObEqdrqkB8ph01kHKkil7z4hf9Cm4A_-ba_7csGupus_m8v6jbcGhxr9qZfCXdgyTdrcKNvtXmxBitjBnZ3Fyaf_HHNHYUGI8abOaMeTKhGWGgLxNCNZxSjNqM3wxocY99QYuAYq4_bc9b0kfPdPfh8JQ90H5abtvEPgQmDpO6NjU1ppM9rW5O0TDNbe2vqxEbwYvzK-qQvG6LDdn-qdI8JjZjQARO6iOAtAWFxJpX8DgPt7IseLIjOc5OImArmlZmsPLqFeGf0vlWSFgovHMHmiAc92KFOX4IhgqeLw2hBaFvINL49DedIFI6oZSN40MNvMRMZS6oRhzN8OeLx8uJ_f6D1f8_lCaxsH3zc03s7090NuCnC8si4KDdheT479Y_gujubf-1mj8P6YnB01Tj9Ccv7WRc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLa8Lj1IgUMBIcAJrE8dJnANCQFlRFa1WAqTejO04FVJJymbbqn-NX8eMk2yFeNx64OpEiZN8nm--eB4AT41FXlXecZUVKQoU5bnJkpQ7ZG90d8vM-zo0myhmM7W_X87X4MeYC0NhlaNNDIa6ah39I5-kIklzFAcintRDWMR8Z_rq6DunDlK00zq20-ghsufPTlG-dS93d_BbPxNi-u7T2_d86DDAnUzVklsrykrGlvJBiwrFIDIaChLnfBZXSjphiJCFT9Art0iUPkd4S-NyWwpXSyp6gOZ_o6Ci5SFscL76v0M7aDIphzydOFWTDrmS8tlExpE2csmLX7gwtAz4k5_72x5toL7pjf_5pd2E64PDzV73K-QWrPlmEy73LTjPNuHqmJnd3YbpR39Yc0chw4j9ZsmoNxOqFBbaBTF07xnFri3oLbEGx9g3lB44xurD9pQ1fUR9twWfL-SB7sB60zb-HjBhkOy9sbEpjfR5bWuSnGlma29NndgIno9fXB_15UR0CANIle7xoREfOuBDFxG8IVCszqRS4GGgXRzowbLoPDeJiKmQXpnJyqO7iHdGr1wlaaHwwhFsj9jQg33q9DkwIniyOoyWhbaLTOPb43COREGJGjeCuz0UVzORsaTacTjDFyM2zy_-9we6_--5PIYrCE_9YXe29wCuibBSMi7KbVhfLo79Q7jkTpZfu8WjsNQYfLlomP4EP7Rh1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-consistent+gravity+model+for+inferring+node+mass+in+flow+networks&rft.jtitle=Scientific+reports&rft.au=Lee%2C+Daekyung&rft.au=Cho%2C+Wonguk&rft.au=Kim%2C+Heetae&rft.au=Kim%2C+Gunn&rft.date=2025-05-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-03664-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_03664_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |