Self-consistent gravity model for inferring node mass in flow networks

The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables l...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 18839 - 10
Main Authors: Lee, Daekyung, Cho, Wonguk, Kim, Heetae, Kim, Gunn, Jeong, Hyeong-Chai, Kim, Beom Jun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.05.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.
AbstractList The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country's economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country's intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country's economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country's intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.
Abstract The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.
The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country’s economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country’s intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.
ArticleNumber 18839
Author Cho, Wonguk
Kim, Gunn
Kim, Heetae
Lee, Daekyung
Kim, Beom Jun
Jeong, Hyeong-Chai
Author_xml – sequence: 1
  givenname: Daekyung
  surname: Lee
  fullname: Lee, Daekyung
  organization: Department of Energy Engineering, Korea Institute of Energy Technology, Supply Chain Intelligence Institute Austria
– sequence: 2
  givenname: Wonguk
  surname: Cho
  fullname: Cho, Wonguk
  organization: Graduate School of Data Science, Seoul National University
– sequence: 3
  givenname: Heetae
  surname: Kim
  fullname: Kim, Heetae
  organization: Department of Energy Engineering, Korea Institute of Energy Technology
– sequence: 4
  givenname: Gunn
  surname: Kim
  fullname: Kim, Gunn
  email: gunnkim@sejong.ac.kr
  organization: Department of Physics and Astronomy and Institute for Fundamental Physics, Sejong University
– sequence: 5
  givenname: Hyeong-Chai
  surname: Jeong
  fullname: Jeong, Hyeong-Chai
  organization: Department of Physics and Astronomy and Institute for Fundamental Physics, Sejong University, School of Computational Sciences, Korea Institute for Advanced Study
– sequence: 6
  givenname: Beom Jun
  surname: Kim
  fullname: Kim, Beom Jun
  email: beomjun@skku.edu
  organization: Department of Physics, Sungkyunkwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40442287$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha0KVCjlBbqoInXDJsW-_om9rBBQJKQuoGvLcW5GmSb21M6AeHs8BChiUW9sHX3n2L7nE9kLMSAhXxj9zijXp1kwaXRNQdaUKyXq5gM5BCpkDRxg7835gBznvKZlSTCCmY_kQFAhAHRzSC5ucOxrH0Me8oxhrlbJ3Q3zQzXFDseqj6kaQo8pDWFVhaJVk8u5aFU_xvsq4Hwf05_8mez3bsx4_Lwfkd8X57dnP-vrX5dXZz-uay-4nuu2BdMJ2gI0uum01hTAgPAeJe208OCU4hKQyUa1jFFUuqHCedUa8L0AfkSultwuurXdpGFy6cFGN9gnIaaVdWke_IhWKceASgmNkaJD0NwJNBw0440uIyxZJ0vWJsW_W8yznYbscRxdwLjNlgMTnCpqVEG_vUPXcZtC-emO4kobA7RQX5-pbTth9_q8l2kXABbAp5hzwv4VYdTuWrVLq7a0ap9atTsTX0x5sysB07-7_-N6BEpin7o
Cites_doi 10.3386/w12516
10.1007/978-3-319-54241-6_4
10.1016/j.joep.2008.12.001
10.1002/ijfe.2168
10.1111/1468-0262.00352
10.1177/2277978721989922
10.1177/030913257900300218
10.3141/2430-08
10.1016/j.tust.2022.104842
10.1162/rest.90.3.538
10.1038/srep02983
10.1007/s11079-021-09619-5
10.1016/j.strueco.2020.08.004
10.3390/su15076099
10.1257/000282803321455214
10.2139/ssrn.1994500
10.1016/j.physa.2016.06.055
10.1155/2019/6509726
10.1016/0041-1647(70)90072-9
10.1038/nature10856
10.1177/00157325221140154
10.1016/B978-0-444-54314-1.00003-3
10.3390/ijerph8083134
10.2307/1925976
10.1016/j.jimonfin.2017.07.001
10.1038/s41598-023-32686-2
10.2307/2785468
10.1162/qjec.2008.123.2.441
10.1177/0972150914553523
10.1016/j.physa.2012.03.031
10.1103/PhysRevE.103.012312
10.1016/j.jinteco.2004.05.002
10.1109/ACCESS.2024.3363635
10.1162/rest.88.4.641
10.1146/annurev-economics-111809-125114
10.1038/srep00902
10.1088/1742-5468/2009/07/L07003
10.1016/j.jimonfin.2007.03.002
10.1038/s41598-019-44930-9
10.1016/j.ins.2021.08.026
10.1016/j.jinteco.2009.01.003
10.1209/0295-5075/81/48005
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-03664-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_66a1205527954de283a4e93281378103
40442287
10_1038_s41598_025_03664_7
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2022R1C1C1005856; NRF-2022R1C1C1005856; NRF-2021R1F1A1063238; 2019R1A2C2089463
  funderid: https://doi.org/10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: NRF-2021R1F1A1063238
– fundername: National Research Foundation of Korea
  grantid: NRF-2022R1C1C1005856
– fundername: National Research Foundation of Korea
  grantid: 2019R1A2C2089463
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c438t-bb29d40b22787d888022924cce50d84c2a66352e1576b110e68704ac6b92cf423
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499336200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:30:38 EST 2025
Fri Sep 05 15:57:39 EDT 2025
Tue Oct 07 08:08:09 EDT 2025
Mon Jun 02 02:23:32 EDT 2025
Sat Nov 29 07:51:40 EST 2025
Fri May 30 10:54:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gravity model
Data-driven analysis
Trade flow
Inference algorithm
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-bb29d40b22787d888022924cce50d84c2a66352e1576b110e68704ac6b92cf423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3213689920?pq-origsite=%requestingapplication%
PMID 40442287
PQID 3213689920
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_66a1205527954de283a4e93281378103
proquest_miscellaneous_3214306096
proquest_journals_3213689920
pubmed_primary_40442287
crossref_primary_10_1038_s41598_025_03664_7
springer_journals_10_1038_s41598_025_03664_7
PublicationCentury 2000
PublicationDate 2025-05-29
PublicationDateYYYYMMDD 2025-05-29
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Tinbergen (3664_CR1) 1962
K Head (3664_CR7) 2014; 4
E Helpman (3664_CR5) 2008; 123
AV Deardorff (3664_CR18) 1998; 5377
X Liang (3664_CR28) 2013; 3
3664_CR43
S Cevik (3664_CR22) 2022; 33
S Li (3664_CR41) 2021; 578
3664_CR44
3664_CR46
PR Lane (3664_CR33) 2008; 90
JE Anderson (3664_CR16) 2003; 93
I-H Cheng (3664_CR4) 2005; 87
PJ Jin (3664_CR38) 2014; 2430
Q Sun (3664_CR42) 2019; 2019
J Song (3664_CR31) 2023; 131
JQ Stewart (3664_CR19) 1948; 11
R Cazabet (3664_CR47) 2017
R Li (3664_CR30) 2021; 103
AK Mishra (3664_CR3) 2015; 16
R Portes (3664_CR32) 2005; 65
M Fidora (3664_CR34) 2007; 26
L Mazur (3664_CR37) 2022; 27
JMCS Silva (3664_CR8) 2006; 88
C Hellmanzik (3664_CR36) 2017; 77
G Krings (3664_CR27) 2009; 2009
S Jadhav (3664_CR13) 2024; 59
X Li (3664_CR21) 2011; 8
I Pal (3664_CR11) 2021; 10
AW Evans (3664_CR15) 1970; 4
ML Senior (3664_CR14) 1979; 3
F Simini (3664_CR23) 2012; 484
O Kwon (3664_CR29) 2012; 391
JE Anderson (3664_CR2) 2011; 3
JCJM van den Bergh (3664_CR24) 2009; 30
JH Bergstrand (3664_CR9) 1985; 67
I Hong (3664_CR26) 2016; 462
RK Pan (3664_CR20) 2012; 2
I Savin (3664_CR10) 2020; 55
W Cho (3664_CR45) 2023; 13
J Eaton (3664_CR6) 2002; 70
N Coeurdacier (3664_CR35) 2009; 77
Z Li (3664_CR39) 2019; 9
G Aksenov (3664_CR12) 2023
3664_CR17
H Singh (3664_CR40) 2024; 12
W-S Jung (3664_CR25) 2008; 81
References_xml – ident: 3664_CR17
  doi: 10.3386/w12516
– start-page: 47
  volume-title: Complex Networks VIII
  year: 2017
  ident: 3664_CR47
  doi: 10.1007/978-3-319-54241-6_4
– volume: 30
  start-page: 117
  issue: 2
  year: 2009
  ident: 3664_CR24
  publication-title: J. Econ. Psychol.
  doi: 10.1016/j.joep.2008.12.001
– volume: 27
  start-page: 554
  issue: 1
  year: 2022
  ident: 3664_CR37
  publication-title: Int. J. Financ. Econ.
  doi: 10.1002/ijfe.2168
– volume: 70
  start-page: 1741
  issue: 5
  year: 2002
  ident: 3664_CR6
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00352
– volume: 10
  start-page: 72
  issue: 1
  year: 2021
  ident: 3664_CR11
  publication-title: South Asian J. Macroecon. Public Finance
  doi: 10.1177/2277978721989922
– volume: 3
  start-page: 175
  issue: 2
  year: 1979
  ident: 3664_CR14
  publication-title: Prog. Hum. Geogr.
  doi: 10.1177/030913257900300218
– volume: 2430
  start-page: 72
  issue: 1
  year: 2014
  ident: 3664_CR38
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2430-08
– volume: 131
  year: 2023
  ident: 3664_CR31
  publication-title: Tunn Undergr Space
  doi: 10.1016/j.tust.2022.104842
– volume: 90
  start-page: 538
  issue: 3
  year: 2008
  ident: 3664_CR33
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/rest.90.3.538
– volume: 3
  start-page: 2983
  issue: 1
  year: 2013
  ident: 3664_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/srep02983
– volume: 33
  start-page: 141
  issue: 1
  year: 2022
  ident: 3664_CR22
  publication-title: Open Econ. Rev.
  doi: 10.1007/s11079-021-09619-5
– volume: 55
  start-page: 119
  year: 2020
  ident: 3664_CR10
  publication-title: Struct. Change Econ. Dyn.
  doi: 10.1016/j.strueco.2020.08.004
– year: 2023
  ident: 3664_CR12
  publication-title: Sustainability
  doi: 10.3390/su15076099
– volume: 87
  start-page: 49
  year: 2005
  ident: 3664_CR4
  publication-title: Fed. Reserve Bank St. Louis Rev.
– volume: 93
  start-page: 170
  issue: 1
  year: 2003
  ident: 3664_CR16
  publication-title: Am. Econ. Rev.
  doi: 10.1257/000282803321455214
– ident: 3664_CR44
  doi: 10.2139/ssrn.1994500
– ident: 3664_CR43
– volume: 462
  start-page: 48
  year: 2016
  ident: 3664_CR26
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.06.055
– volume: 2019
  start-page: 6509726
  year: 2019
  ident: 3664_CR42
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/6509726
– volume: 4
  start-page: 19
  issue: 1
  year: 1970
  ident: 3664_CR15
  publication-title: Transp. Res.
  doi: 10.1016/0041-1647(70)90072-9
– volume: 484
  start-page: 96
  issue: 7392
  year: 2012
  ident: 3664_CR23
  publication-title: Nature
  doi: 10.1038/nature10856
– volume: 59
  start-page: 26
  issue: 1
  year: 2024
  ident: 3664_CR13
  publication-title: Foreign Trade Rev.
  doi: 10.1177/00157325221140154
– volume: 4
  start-page: 131
  year: 2014
  ident: 3664_CR7
  publication-title: Handb. Int. Econ.
  doi: 10.1016/B978-0-444-54314-1.00003-3
– volume: 8
  start-page: 3134
  issue: 8
  year: 2011
  ident: 3664_CR21
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph8083134
– volume: 67
  start-page: 474
  issue: 3
  year: 1985
  ident: 3664_CR9
  publication-title: Rev. Econ. Stat.
  doi: 10.2307/1925976
– volume: 77
  start-page: 164
  year: 2017
  ident: 3664_CR36
  publication-title: J. Int. Money Finance
  doi: 10.1016/j.jimonfin.2017.07.001
– volume: 13
  start-page: 5721
  issue: 1
  year: 2023
  ident: 3664_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32686-2
– volume: 11
  start-page: 31
  issue: 1/2
  year: 1948
  ident: 3664_CR19
  publication-title: Sociometry
  doi: 10.2307/2785468
– volume: 123
  start-page: 441
  issue: 2
  year: 2008
  ident: 3664_CR5
  publication-title: Q. J. Econ.
  doi: 10.1162/qjec.2008.123.2.441
– volume: 16
  start-page: 107
  issue: 1
  year: 2015
  ident: 3664_CR3
  publication-title: Glob. Bus. Rev.
  doi: 10.1177/0972150914553523
– volume: 391
  start-page: 4261
  issue: 17
  year: 2012
  ident: 3664_CR29
  publication-title: Physica A
  doi: 10.1016/j.physa.2012.03.031
– volume: 5377
  start-page: 7
  year: 1998
  ident: 3664_CR18
  publication-title: Natl. Bur. Econ. Res.
– volume: 103
  year: 2021
  ident: 3664_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.103.012312
– volume: 65
  start-page: 269
  issue: 2
  year: 2005
  ident: 3664_CR32
  publication-title: J. Int. Econ.
  doi: 10.1016/j.jinteco.2004.05.002
– volume: 12
  start-page: 23163
  year: 2024
  ident: 3664_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3363635
– volume: 88
  start-page: 641
  issue: 4
  year: 2006
  ident: 3664_CR8
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/rest.88.4.641
– volume: 3
  start-page: 133
  year: 2011
  ident: 3664_CR2
  publication-title: Annu. Rev. Econ.
  doi: 10.1146/annurev-economics-111809-125114
– volume: 2
  start-page: 902
  issue: 1
  year: 2012
  ident: 3664_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/srep00902
– volume-title: Shaping the World Economy: Suggestions for an International Economic Policy. Twentieth Century Fund study
  year: 1962
  ident: 3664_CR1
– volume: 2009
  start-page: 07003
  issue: 07
  year: 2009
  ident: 3664_CR27
  publication-title: J. Stat. Mech J. Theory Exp.
  doi: 10.1088/1742-5468/2009/07/L07003
– volume: 26
  start-page: 631
  issue: 4
  year: 2007
  ident: 3664_CR34
  publication-title: J. Int. Money Financ.
  doi: 10.1016/j.jimonfin.2007.03.002
– volume: 9
  start-page: 8387
  issue: 1
  year: 2019
  ident: 3664_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44930-9
– ident: 3664_CR46
– volume: 578
  start-page: 725
  year: 2021
  ident: 3664_CR41
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.08.026
– volume: 77
  start-page: 195
  issue: 2
  year: 2009
  ident: 3664_CR35
  publication-title: J. Int. Econ.
  doi: 10.1016/j.jinteco.2009.01.003
– volume: 81
  start-page: 48005
  issue: 4
  year: 2008
  ident: 3664_CR25
  publication-title: EPL
  doi: 10.1209/0295-5075/81/48005
SSID ssj0000529419
Score 2.450596
Snippet The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model,...
The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model,...
Abstract The gravity model, inspired by Newton’s law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 18839
SubjectTerms 639/766/259
639/766/530
Data-driven analysis
Economics
GDP
Gravity model
Gross Domestic Product
Humanities and Social Sciences
Inference algorithm
International trade
multidisciplinary
Science
Science (multidisciplinary)
Trade flow
Traffic control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1EFLyI39YvInjTYJukbXJUcfEkggreQpJNQdCu7K6K_95J0l0VFS9e0xCSmaTvPTKZATgwFnFVekdlWXMUKNJTUxacOkRvpLuq9L6JxSbqy0t5d6euPpX6CjFhKT1wMtxxVZmC5SFPmCpF3yMaGuGRdMiC17JIeT6R9XwSUymrN1OiUN0rmZzL4xEiVXhNxkqKP-1K0PoLEsWE_T-xzG83pBF4ekuw2DFGcpJmugwzvl2B-VRD8m0Vetf-oaEuxLmiw9oxCQWFkFqTWOOGICclIeBqGAYnLbaRR-TL2Eaah8EraVMY-GgNbnvnN2cXtCuOQJ3gckytZaovchuestZ91LEIxqilnPNl3pfCMRO4BPMFCgqLGO8rPJnCuMoq5hokUesw2w5avwmEGUQob2xuFNq2amwTdBIvbeOtaQqbweHEUPop5cDQ8e6aS53MqtGsOppV1xmcBltOe4b81bEBvao7r-q_vJrBzsQTujtUI81ZwSvUhyzPYH_6GY9DuOMwrR88xz4CVRAKsww2kgenMxG5CAnPcIZHE5d-DP77grb-Y0HbsMDi3ispUzswOx4--12Ycy_j-9FwL27ed4846uQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Self-consistent gravity model for inferring node mass in flow networks
URI https://link.springer.com/article/10.1038/s41598-025-03664-7
https://www.ncbi.nlm.nih.gov/pubmed/40442287
https://www.proquest.com/docview/3213689920
https://www.proquest.com/docview/3214306096
https://doaj.org/article/66a1205527954de283a4e93281378103
Volume 15
WOSCitedRecordID wos001499336200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFgQXHuUVKCsjcQOrie0kzglR1BUcuop4SMvJsh2nQipJ2WxB_HtmnOxWiMeFSw6OlUwyM55vPOMZgGfWoV3VwXOdlxIdFB24zTPJPVpvhLtVHkIbm02Ui4VeLqt62nAbprTKzZoYF-qm97RHfihFJgt0DkT68vwrp65RFF2dWmjswB5VSZAxda_e7rFQFEtl1XRWJpX6cEB7RWfKRM5x6S4UL3-xR7Fs_5-w5m9x0mh-5rf-l_DbcHMCnuzVKCl34Ero9uHa2Iryxz5c35xQHu7C_H04a7mn1FmUgW7NqEcRonUW2-YwhLmMcrhWRCnrcIx9QQiOY6w967-zbswsH-7Bx_nxh9dv-NRvgXsl9Zo7J6pGpY5Ox5YNusZo39E98z7kaaOVF5bgiQgZ-igOYUMoUNmV9YWrhG8Rl92H3a7vwkNgwqLRC9altrIqFK1ryfWSuWuDs23mEni--evmfCyrYWI4XGoz8sggj0zkkSkTOCLGbGdSSew40K9OzaRhpihsJlIqKFflqgkIm_DNiE51JkuND07gYMMfM-npYC6Zk8DT7W3UMAqb2C70F3GOQscKfb0EHozisKVEpYpqqCGFLzbycfnwv3_Qo3_T8hhuiCiiORfVAeyuVxfhCVz139afh9UMdsplGa96BntHx4v63SxuJeD1RNSzqAN4p357Un_6CSdaBlM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB1VBVQ2FMorbQEjwQqsJo6TOAuEeF21armqRJG6c23HQUglKTe3rfpTfCMzTnIrxGPXBVsnSpzkeM6ceB4Az4xFXlXecZUVKQoU5bnJkpQ7ZG90d8vM-zo0myimU3V4WO4vwY8xF4bCKkebGAx11Tr6R76ViiTNURyI-PXJd05do2h3dWyh0cNi11-co2TrXu28x-_7XIjJh4N323zoKsCdTNWcWyvKSsaWckCLCgUgshiKEOd8FldKOmGIhIVP0BO3SI4-R0hL43JbCldLKnSAJv8auhFChVDB_cU_Hdo1k0k55ObEqdrqkB8ph01kHKkil7z4hf9Cm4A_-ba_7csGupus_m8v6jbcGhxr9qZfCXdgyTdrcKNvtXmxBitjBnZ3Fyaf_HHNHYUGI8abOaMeTKhGWGgLxNCNZxSjNqM3wxocY99QYuAYq4_bc9b0kfPdPfh8JQ90H5abtvEPgQmDpO6NjU1ppM9rW5O0TDNbe2vqxEbwYvzK-qQvG6LDdn-qdI8JjZjQARO6iOAtAWFxJpX8DgPt7IseLIjOc5OImArmlZmsPLqFeGf0vlWSFgovHMHmiAc92KFOX4IhgqeLw2hBaFvINL49DedIFI6oZSN40MNvMRMZS6oRhzN8OeLx8uJ_f6D1f8_lCaxsH3zc03s7090NuCnC8si4KDdheT479Y_gujubf-1mj8P6YnB01Tj9Ccv7WRc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLa8Lj1IgUMBIcAJrE8dJnANCQFlRFa1WAqTejO04FVJJymbbqn-NX8eMk2yFeNx64OpEiZN8nm--eB4AT41FXlXecZUVKQoU5bnJkpQ7ZG90d8vM-zo0myhmM7W_X87X4MeYC0NhlaNNDIa6ah39I5-kIklzFAcintRDWMR8Z_rq6DunDlK00zq20-ghsufPTlG-dS93d_BbPxNi-u7T2_d86DDAnUzVklsrykrGlvJBiwrFIDIaChLnfBZXSjphiJCFT9Art0iUPkd4S-NyWwpXSyp6gOZ_o6Ci5SFscL76v0M7aDIphzydOFWTDrmS8tlExpE2csmLX7gwtAz4k5_72x5toL7pjf_5pd2E64PDzV73K-QWrPlmEy73LTjPNuHqmJnd3YbpR39Yc0chw4j9ZsmoNxOqFBbaBTF07xnFri3oLbEGx9g3lB44xurD9pQ1fUR9twWfL-SB7sB60zb-HjBhkOy9sbEpjfR5bWuSnGlma29NndgIno9fXB_15UR0CANIle7xoREfOuBDFxG8IVCszqRS4GGgXRzowbLoPDeJiKmQXpnJyqO7iHdGr1wlaaHwwhFsj9jQg33q9DkwIniyOoyWhbaLTOPb43COREGJGjeCuz0UVzORsaTacTjDFyM2zy_-9we6_--5PIYrCE_9YXe29wCuibBSMi7KbVhfLo79Q7jkTpZfu8WjsNQYfLlomP4EP7Rh1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-consistent+gravity+model+for+inferring+node+mass+in+flow+networks&rft.jtitle=Scientific+reports&rft.au=Lee%2C+Daekyung&rft.au=Cho%2C+Wonguk&rft.au=Kim%2C+Heetae&rft.au=Kim%2C+Gunn&rft.date=2025-05-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-03664-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_03664_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon