Enhanced brain tumour segmentation using a hybrid dual encoder–decoder model in federated learning

Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furtherm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 34416 - 19
Hlavní autoři: Narmadha, K., Varalakshmi, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 02.10.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional datasets. To address these drawbacks, we propose a Hybrid Dual Encoder–Decoder Segmentation Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The proposed model aims to enhance segmentation accuracy and efficiency in terms of total training time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients demonstrate consistent, high segmentation performance. These findings highlight that integrating transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced segmentation accuracy while preserving medical data privacy.
AbstractList Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional datasets. To address these drawbacks, we propose a Hybrid Dual Encoder-Decoder Segmentation Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The proposed model aims to enhance segmentation accuracy and efficiency in terms of total training time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients demonstrate consistent, high segmentation performance. These findings highlight that integrating transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced segmentation accuracy while preserving medical data privacy.Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional datasets. To address these drawbacks, we propose a Hybrid Dual Encoder-Decoder Segmentation Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The proposed model aims to enhance segmentation accuracy and efficiency in terms of total training time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients demonstrate consistent, high segmentation performance. These findings highlight that integrating transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced segmentation accuracy while preserving medical data privacy.
Abstract Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional datasets. To address these drawbacks, we propose a Hybrid Dual Encoder–Decoder Segmentation Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The proposed model aims to enhance segmentation accuracy and efficiency in terms of total training time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients demonstrate consistent, high segmentation performance. These findings highlight that integrating transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced segmentation accuracy while preserving medical data privacy.
Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning. However, conventional segmentation models often struggle with boundary delineation and generalization across heterogeneous datasets. Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional datasets. To address these drawbacks, we propose a Hybrid Dual Encoder-Decoder Segmentation Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The proposed model aims to enhance segmentation accuracy and efficiency in terms of total training time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients demonstrate consistent, high segmentation performance. These findings highlight that integrating transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced segmentation accuracy while preserving medical data privacy.
ArticleNumber 34416
Author Narmadha, K.
Varalakshmi, P.
Author_xml – sequence: 1
  givenname: K.
  surname: Narmadha
  fullname: Narmadha, K.
  email: narmk27@gmail.com
  organization: Department of Information Science and Technology, Anna University
– sequence: 2
  givenname: P.
  surname: Varalakshmi
  fullname: Varalakshmi, P.
  organization: Department of Information Science and Technology, Anna University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41038951$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uFiEUhompsbX2BlwYEjfdjPI3AyxNU2uTJm50Tfg5fJ0vM1BhZtGd9-AdeiXSb2o1LmQBB_K87wHel-go5QQIvabkHSVcva-C9lp1hPUdlYKzjjxDJ4yIvmOcsaO_6mN0VuuetNEzLah-gY7Fg4Xu6QkKl-nWJg8Bu2LHhJd1zmvBFXYzpMUuY054rWPaYYtv710ZAw6rnTAknwOUn99_BDhUeG7zhJtFhLa1S7OcwJbUtK_Q82inCmeP6yn6-vHyy8Wn7ubz1fXFh5vOC66WzglPowuRe-2cYk56awWoIVBPpepBE-KVs1EroIrrwIWXOqpBWsklB89P0fXmG7Ldm7syzrbcm2xHczjIZWdsWUY_geljVC5wKln7E8-Z5QMZRGsFA6c-0uZ1vnndlfxthbqYeawepskmyGs1nPWDoqRl0NC3_6D79oepvfRADUToQTbqzSO1uhnC0_V-Z9EAtgG-5FoLxCeEEvMAmS1z0zI3h8wNaSK-iWqD0w7Kn97_Uf0CMG2ucQ
Cites_doi 10.1186/s40537-019-0276-2
10.1007/978-3-030-00889-5_1
10.3390/s23073420
10.1007/978-3-319-24574-4_28
10.3390/bdcc8090099
10.1016/j.imavis.2025.105463
10.1007/s10278-024-00981-7
10.1109/3DV.2016.79
10.3390/diagnostics15050513
10.1007/978-3-319-55524-9_14
10.7717/peerj-cs.1754
10.1007/978-3-030-61609-0_60
10.1016/j.compbiomed.2021.104472
10.1016/j.bspc.2023.104791
10.1109/BIBM62325.2024.10822476
10.3390/mti2030047
10.3390/electronics12071687
10.1016/j.compmedimag.2023.102313
10.1109/ACCESS.2021.3111131
10.1109/TPAMI.2024.3435571
10.3390/bioengineering9080368
10.3390/diagnostics13193140
10.1016/j.patcog.2024.110424
10.1016/j.knosys.2025.113785
10.1109/PAIS62114.2024.10541292
10.1145/3298981
10.1016/j.ijcce.2022.11.001
10.1109/ICCV48922.2021.00986
10.1016/j.eswa.2023.122093
10.1109/WACV51458.2022.00181
10.1007/978-3-031-15937-4_65
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-17432-0
DatabaseName SpringerOpen
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_5ff8bd3172294c32a360646d1e631cf1
41038951
10_1038_s41598_025_17432_0
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-b4c1fbdf3c9bb82b7caa4e86d1c1785e900c8baf98e1839d34c79f867a7373ec3
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587018600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:21:07 EDT 2025
Mon Oct 06 18:26:28 EDT 2025
Mon Oct 06 17:07:13 EDT 2025
Mon Oct 06 01:44:06 EDT 2025
Sat Nov 29 07:20:50 EST 2025
Fri Oct 03 01:22:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain tumour segmentation
Swin transformer
EfficientNet
Federated learning
BASNet
MaskFormer
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b4c1fbdf3c9bb82b7caa4e86d1c1785e900c8baf98e1839d34c79f867a7373ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3256604967?pq-origsite=%requestingapplication%
PMID 41038951
PQID 3256604967
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5ff8bd3172294c32a360646d1e631cf1
proquest_miscellaneous_3256810598
proquest_journals_3256604967
pubmed_primary_41038951
crossref_primary_10_1038_s41598_025_17432_0
springer_journals_10_1038_s41598_025_17432_0
PublicationCentury 2000
PublicationDate 2025-10-02
PublicationDateYYYYMMDD 2025-10-02
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 17432_CR23
17432_CR24
17432_CR21
W Wang (17432_CR29) 2021
17432_CR43
17432_CR22
17432_CR27
17432_CR28
17432_CR25
17432_CR26
17432_CR30
17432_CR31
N Micallef (17432_CR19) 2021; 9
S Minaee (17432_CR3) 2022; 44
17432_CR2
17432_CR1
17432_CR4
17432_CR6
17432_CR5
17432_CR8
17432_CR7
17432_CR12
17432_CR9
17432_CR13
17432_CR35
17432_CR10
17432_CR32
17432_CR11
17432_CR33
17432_CR16
17432_CR38
17432_CR17
17432_CR39
17432_CR14
17432_CR36
17432_CR15
17432_CR41
17432_CR20
17432_CR42
17432_CR40
R Azad (17432_CR18) 2024; 46
N Hernandez-Cruz (17432_CR34) 2024; 8
B McMahan (17432_CR37) 2017
References_xml – ident: 17432_CR2
  doi: 10.1186/s40537-019-0276-2
– volume: 44
  start-page: 3523
  issue: 7
  year: 2022
  ident: 17432_CR3
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 17432_CR13
  doi: 10.1007/978-3-030-00889-5_1
– ident: 17432_CR24
  doi: 10.3390/s23073420
– ident: 17432_CR12
  doi: 10.1007/978-3-319-24574-4_28
– volume: 8
  start-page: 99
  issue: 9
  year: 2024
  ident: 17432_CR34
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc8090099
– volume-title: TransBTS: Multimodal brain tumour segmentation using transformer
  year: 2021
  ident: 17432_CR29
– ident: 17432_CR42
– ident: 17432_CR4
  doi: 10.1016/j.imavis.2025.105463
– ident: 17432_CR14
– ident: 17432_CR21
  doi: 10.1007/s10278-024-00981-7
– ident: 17432_CR28
  doi: 10.1109/3DV.2016.79
– ident: 17432_CR39
– ident: 17432_CR38
  doi: 10.3390/diagnostics15050513
– ident: 17432_CR26
  doi: 10.1007/978-3-319-55524-9_14
– ident: 17432_CR25
  doi: 10.7717/peerj-cs.1754
– ident: 17432_CR41
  doi: 10.1007/978-3-030-61609-0_60
– ident: 17432_CR5
  doi: 10.1016/j.compbiomed.2021.104472
– ident: 17432_CR23
  doi: 10.1016/j.bspc.2023.104791
– ident: 17432_CR35
  doi: 10.1109/BIBM62325.2024.10822476
– ident: 17432_CR1
  doi: 10.3390/mti2030047
– ident: 17432_CR10
– ident: 17432_CR17
  doi: 10.3390/electronics12071687
– ident: 17432_CR7
  doi: 10.1016/j.compmedimag.2023.102313
– volume: 9
  start-page: 125523
  year: 2021
  ident: 17432_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111131
– volume: 46
  start-page: 10076
  year: 2024
  ident: 17432_CR18
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2024.3435571
– ident: 17432_CR20
  doi: 10.3390/bioengineering9080368
– ident: 17432_CR16
  doi: 10.3390/diagnostics13193140
– ident: 17432_CR32
  doi: 10.1016/j.patcog.2024.110424
– ident: 17432_CR22
– ident: 17432_CR33
  doi: 10.1016/j.knosys.2025.113785
– ident: 17432_CR8
– ident: 17432_CR43
– ident: 17432_CR15
  doi: 10.1016/j.patcog.2024.110424
– ident: 17432_CR40
  doi: 10.1109/PAIS62114.2024.10541292
– ident: 17432_CR6
  doi: 10.1145/3298981
– ident: 17432_CR27
  doi: 10.1016/j.ijcce.2022.11.001
– start-page: 1273
  volume-title: Communication-efficient learning of deep networks from decentralized data
  year: 2017
  ident: 17432_CR37
– ident: 17432_CR9
  doi: 10.1109/ICCV48922.2021.00986
– ident: 17432_CR11
– ident: 17432_CR36
  doi: 10.1016/j.eswa.2023.122093
– ident: 17432_CR30
  doi: 10.1109/WACV51458.2022.00181
– ident: 17432_CR31
  doi: 10.1007/978-3-031-15937-4_65
SSID ssj0000529419
Score 2.4607787
Snippet Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment planning....
Abstract Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour localization for improved diagnostics and treatment...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 34416
SubjectTerms Accuracy
Algorithms
BASNet
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Brain research
Brain tumors
Brain tumour segmentation
Communication
Data integrity
Datasets
Deep learning
Efficiency
EfficientNet
Federated Learning
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Localization
Magnetic Resonance Imaging - methods
MaskFormer
Medical imaging
multidisciplinary
Neural Networks, Computer
Neuroimaging
Privacy
Science
Science (multidisciplinary)
Segmentation
Swin transformer
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwEB1VFZXYIKA8UgpyJXYQNbGd2FkCasUCVSxa1J3l5y0L0uo-KnXHP_CHfAkzdu6lCBAbdlFiWc45tuaMxjMD8LLzxLpu616IWMtO29px9FJ4G7jqKTMz36r89EGdnOjz8-HjrVZfdCeslAcuwB12KWkX0MpxPkgvuBUouWUf2tiL1qfs-KDqueVMlareOLodpiyZRujDBVoqyibjXU0inNfNL5YoF-z_k8r8LUKaDc_xfbg3KUb2pqz0AWzF8SHslB6SN7sQjsaLHMVnjro9sOUKnfk5W8TZlymtaGR0uX3GLLu4ofwsRulXjApYhjj__vVbiPmJ5aY4DKdIVGACNWhgU0-J2SM4Oz46ffe-nlon1F4Kvayd9G1yIQk_OKe5U95aGTXChtzoLg5N47WzadCRJFIQ0qsh6V5ZJZSIXjyG7fFyjE-BScVt9Ci08LRKF5PTTrpOePSdpRBNrODVGkZzVSpkmBzZFtoU0A2CbjLopqngLSG9GUnVrfML5NxMnJt_cV7B_ponMx25hREo3nr0d3pVwcHmMx4WioDYMV6uyhhNilJX8KTwu1mJpBWj3qzg9Zrwn5P__Yf2_scPPYO7PO_MBjfoPmwv56v4HO746-XnxfxF3to_AIAG-XA
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced brain tumour segmentation using a hybrid dual encoder–decoder model in federated learning
URI https://link.springer.com/article/10.1038/s41598-025-17432-0
https://www.ncbi.nlm.nih.gov/pubmed/41038951
https://www.proquest.com/docview/3256604967
https://www.proquest.com/docview/3256810598
https://doaj.org/article/5ff8bd3172294c32a360646d1e631cf1
Volume 15
WOSCitedRecordID wos001587018600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISN4ia2E7snBBFW4FEVxECtJys2HG2HJot-0Dqjf_AP-SXMON4t0I8LlyiKE6iib6Z-LPnBfC0cIS6ztNSCJ_KQjep5bhK4XnLVUmZmSGq8uNbNZno6bSq44bbMoZVbv6J4Ufdzh3tkR8KnJtLpLOlenH-JaWuUeRdjS00dmCPqiSIELpXb_dYyIsl8yrmymRCHy5xvqKcMl6kRMV5mv0yH4Wy_X_imr_5ScP0c3zzfwW_BTci8WQvB025DVd8fweuDa0oL-5CO-5PQzAAs9Q0gq3WZ_gEW_rZWcxO6hnFyM9Yw04vKM2LURYXozqYrV_8-Pa99eGMhd46DF_RUZ0KpLIti60pZvfgw_H4_avXaezAkDop9Cq10uWdbTvhKms1t8o1jfS6bHOEWBe-yjKnbdNV2hPTaoV0qup0qRollPBO7MNuP-_9A2BS8cY75Gto9NL6zmorbSEcLsGlEJlP4NkGB3M-FNowwUEutBlQM4iaCaiZLIEjgmp7JxXJDhfmi5mJNmeKrtO2RYLEUQ2c4I3A1ZpE4X0pctflCRxsEDPRcpfmEq4EnmyH0ebIkdL0fr4e7tFETHUC9wcF2UoiSWKkrQk832jM5cv__kEP_y3LI7jOg9JmqLsHsLtarP1juOq-rj4vFyPYUVMVjnoEe0fjSf1uFDYX8HjC61GwChyp35zUn34Czl8PYA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3pRAASPBCqImtidxFgjxaNWqw6iLgrpz40emXTRTJjOg2fEP_AcfxZdwr5NMhXjsumAX5WHZ8fH1sX3vPQBPB5Z6XaVxJoSP5UCVseG4SuGp43lGkZnBq_LjMB-N1MFBsbcC3_tYGHKr7G1iMNRuYmmPfEPg3Jwhnc3yV6efYlKNotPVXkKjhcWuX3zBJVvzcucd9u8zzrc2999ux52qQGylULPYSJtWxlXCFsYobnJbltKrzKWWlOp9kSRWmbIqlCf24IS0eVGpLC9zkQtvBZZ7AS4ijeAquAruLfd06NRMpkUXm5MItdHg_EgxbHwQE_XncfLL_BdkAv7EbX87lw3T3db1_-1H3YBrHbFmr9uRcBNWfH0LLrdSm4vb4Dbro-DswAyJYrDZ_AS_YI0fn3TRVzWjGIAxK9nRgsLYGEWpMcrz6fz0x9dvzocrFrSDGBZRUR4OpOqOddIb4zvw4VyaeBdW60nt7wGTOS-9RT6KRk0aXxllpBkImyslhUh8BM_7ftenbSIRHRwAhNItSjSiRAeU6CSCNwSN5ZuUBDzcmEzHurMpelBVyjgkgBxhZwUvBa5GJVbeZyK1VRrBeo8Q3VmmRp_BI4Iny8doU-igqKz9ZN6-o4h4qwjWWkAuayKpxkjLI3jRI_Ss8L836P6_6_IYrmzvvx_q4c5o9wFc5WHAJDhu1mF1Np37h3DJfp4dN9NHYcQxODxv5P4EjyxnlA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q5SE2vB-BAkaCFUST2E7sLBAC2hFVq9EsAHXnxo4zZdFMmQdodvwDf8Pn8CXc6yRTIR67LthFiWPZyfH1sX3vPQBPMkd_XadxLoSPZabL2HJcpfC04iqnyMzgVflhX41G-uCgGG_A9z4Whtwqe5sYDHU1dbRHPhA4N-dIZ3M1qDu3iPH28OXJp5gUpOiktZfTaCGy51dfcPk2f7G7jf_6KefDnXdv3sadwkDspNCL2EqX1raqhSus1dwqV5bS67xKHanW-yJJnLZlXWhPTKIS0qmi1rkqlVDCO4H1noPzipKWB7fB8Xp_h07QZFp0cTqJ0IM5zpUUz8azmJYBPE5-mQuDZMCfeO5vZ7Rh6hte_Z8_2jW40hFu9qodIddhwzc34GIrwbm6CdVOcxScIJglsQy2WB7jG2zuJ8ddVFbDKDZgwkp2tKLwNkbRa4zyf1Z-9uPrt8qHKxY0hRhWUVN-DqTwFeskOSa34P2ZdPE2bDbTxt8FJhUvvUOeisZOWl9bbaXNhFNaSyESH8GzHgPmpE0wYoJjgNCmRYxBxJiAGJNE8Jpgsi5JycHDjelsYjpbY7K61rZCYsgRgk7wUuAqVWLjfS5SV6cRbPVoMZ3FmptTqETweP0YbQ0dIJWNny7bMpoIuY7gTgvOdUsktRjpegTPe7SeVv73Dt37d1sewSUErNnfHe3dh8s8jJ0Eh9AWbC5mS_8ALrjPi4_z2cMw-BgcnjVwfwKZvXBR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+brain+tumour+segmentation+using+a+hybrid+dual+encoder-decoder+model+in+federated+learning&rft.jtitle=Scientific+reports&rft.au=Narmadha%2C+K&rft.au=Varalakshmi%2C+P&rft.date=2025-10-02&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=34416&rft_id=info:doi/10.1038%2Fs41598-025-17432-0&rft_id=info%3Apmid%2F41038951&rft.externalDocID=41038951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon