Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees
Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 18954 - 16 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
29.05.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods. |
|---|---|
| AbstractList | Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods. Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods. Abstract Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods. |
| ArticleNumber | 18954 |
| Author | Mehra, Ritika Ahuja, Neelu Jyothi Aswal, Shobha |
| Author_xml | – sequence: 1 givenname: Shobha surname: Aswal fullname: Aswal, Shobha email: shobha.swl@gmail.com organization: Department of Computer Science and Engineering, VM Singh Bhandari Uttarakhand Technical University – sequence: 2 givenname: Neelu Jyothi surname: Ahuja fullname: Ahuja, Neelu Jyothi organization: Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies – sequence: 3 givenname: Ritika surname: Mehra fullname: Mehra, Ritika organization: Department of Computer Science and Engineering, Dev Bhoomi Uttarakhand University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40442171$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk2PFCEQholZ467r_gEPhsSLl1agoAeOZuLHJpt40TPhq0cmPTACfRj3z8vMrKvxIAmBvHmqiqLe5-gi5RQQeknJW0pAvqucCiUHwkTfSvCBP0FXjHAxMGDs4q_7JbqpdUv6Ekxxqp6hS044Z3RFr9D9eja1xik602JOOE_YxrwLvgsznpe0wc4kFwqOO7MJFS81di3vW9zFn8F3OplywNY03IL7nuKPJWB7wC6n2sri2gm380n3wcV6LNNKCPUFejqZuYabh_Maffv44ev683D35dPt-v3d4DjINlgInI4rZoyUhigpwQrCrVoJY4BbgEl6GLmSE-XBeksUjBMoaeUoDVcWrtHtOa_PZqv3pXdSDjqbqE9CLhttSotuDtoqBt6CEJIK7pmU3nAPK2ZNEFwA9Fxvzrn2JfeOatO7WF2YZ5NCXqoGRjmQkRHS0df_oNu8lNQ7PVIwquNEOvXqgVps__bH5_0eUQfYGXAl11rC9IhQoo9W0Gcr6G4FfbKC5j0IzkG1w2kTyp_a_4n6BaPrtWA |
| Cites_doi | 10.1007/s00521-018-03972-2 10.3390/inorganics12120331 10.1016/j.neunet.2019.12.001 10.1364/OE.530764 10.1007/s12652-018-1160-1 10.18280/ts.380421 10.1007/s12553-018-0279-6 10.1164/rccm.201409-1671PP 10.1038/s41598-021-04608-7 10.3390/bioengineering10101123 10.1016/j.compeleceng.2022.107778 10.1007/s13721-021-00313-7 10.1016/j.cmpb.2016.07.029 10.3389/fnins.2022.854685 10.1002/pmic.201600267 10.1186/s13148-020-00842-4 10.1038/s41374-020-00525-x 10.1016/j.asoc.2019.105538 10.1002/9781118646106.ch2 10.3389/fphar.2018.00530 10.1109/ICBDA49040.2020.9101199 10.1007/s40747-017-0037-9 10.1039/D4CC06510G 10.11648/j.ajtab.20180402.14 10.1016/j.cmpb.2022.106622 10.1016/j.jneumeth.2020.108799 10.1016/j.knosys.2023.110937 10.1186/s40537-016-0059-y 10.1186/s40537-019-0217-0 10.1016/j.jbi.2018.11.013 10.1038/s41568-021-00408-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-02954-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_b923db3558154d288da4d372bae54533 40442171 10_1038_s41598_025_02954_4 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c438t-b3e41672aa88a09883b504b975aa34b33f8d36498f14ebdb0936f398b868a49b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499347000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:45 EDT 2025 Fri Sep 05 15:58:08 EDT 2025 Tue Oct 07 08:05:27 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Sun Nov 09 14:52:47 EST 2025 Fri May 30 10:54:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Imbalanced data Binary Bat Swarm Algorithm Oblique decision tree Lung cancer Biomedical data |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-b3e41672aa88a09883b504b975aa34b33f8d36498f14ebdb0936f398b868a49b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/b923db3558154d288da4d372bae54533 |
| PMID | 40442171 |
| PQID | 3213690005 |
| PQPubID | 2041939 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b923db3558154d288da4d372bae54533 proquest_miscellaneous_3214306200 proquest_journals_3213690005 pubmed_primary_40442171 crossref_primary_10_1038_s41598_025_02954_4 springer_journals_10_1038_s41598_025_02954_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-29 |
| PublicationDateYYYYMMDD | 2025-05-29 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 2954_CR32 P Jain (2954_CR10) 2016; 3 2954_CR33 C Chakraborty (2954_CR21) 2022; 99 R Remark (2954_CR8) 2015; 191 N Joshua (2954_CR12) 2021; 38 SA Senthilkumar (2954_CR9) 2018; 4 T Gangavarapu (2954_CR30) 2019; 81 BI Grisci (2954_CR11) 2019; 89 S Rauschert (2954_CR14) 2020; 12 PM Shakeel (2954_CR28) 2020; 32 S Dash (2954_CR1) 2019; 6 Y Dai (2954_CR20) 2022; 16 BB Hazarika (2954_CR23) 2022; 215 KM Boehm (2954_CR15) 2022; 22 E Pashaei (2954_CR19) 2023; 10 Q Dong (2954_CR5) 2024; 12 N Ma (2954_CR4) 2024; 32 A Fernández (2954_CR3) 2017; 3 2954_CR26 B Alsinglawi (2954_CR17) 2022; 12 Y Su (2954_CR2) 2017; 17 C Zhao (2954_CR6) 2025; 61 I Bilgen (2954_CR13) 2020; 343 K Guo (2954_CR16) 2023; 4 G Nagarajan (2954_CR22) 2021; 10 P Shrivastava (2954_CR31) 2017; 139 PM Shakeel (2954_CR27) 2020; 10 A Anagaw (2954_CR24) 2019; 10 C Gautam (2954_CR29) 2020; 1 GM Weiss (2954_CR18) 2013; 24 F Deng (2954_CR25) 2021; 101 C Jiang (2954_CR7) 2018; 9 |
| References_xml | – volume: 32 start-page: 777 year: 2020 ident: 2954_CR28 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-03972-2 – volume: 12 start-page: 331 issue: 12 year: 2024 ident: 2954_CR5 publication-title: Inorganics doi: 10.3390/inorganics12120331 – volume: 1 start-page: 191 issue: 123 year: 2020 ident: 2954_CR29 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.001 – volume: 32 start-page: 33378 issue: 19 year: 2024 ident: 2954_CR4 publication-title: Opt. Express doi: 10.1364/OE.530764 – volume: 10 start-page: 3889 year: 2019 ident: 2954_CR24 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-018-1160-1 – volume: 38 start-page: 1103 issue: 4 year: 2021 ident: 2954_CR12 publication-title: Traitement Du. Signal doi: 10.18280/ts.380421 – volume: 10 start-page: 157 year: 2020 ident: 2954_CR27 publication-title: Heal. Technol. doi: 10.1007/s12553-018-0279-6 – volume: 191 start-page: 377 issue: 4 year: 2015 ident: 2954_CR8 publication-title: Am. J. Respiratory Critic. Care Med. doi: 10.1164/rccm.201409-1671PP – ident: 2954_CR33 – volume: 12 start-page: 607 issue: 1 year: 2022 ident: 2954_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-021-04608-7 – volume: 10 start-page: 1123 issue: 10 year: 2023 ident: 2954_CR19 publication-title: Bioengineering doi: 10.3390/bioengineering10101123 – volume: 99 year: 2022 ident: 2954_CR21 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.107778 – volume: 10 start-page: 39 issue: 1 year: 2021 ident: 2954_CR22 publication-title: Netw. Model. Anal. Health Inform. Bioinform. doi: 10.1007/s13721-021-00313-7 – volume: 139 start-page: 171 year: 2017 ident: 2954_CR31 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.07.029 – volume: 16 year: 2022 ident: 2954_CR20 publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.854685 – volume: 17 start-page: 1600267 issue: 3–4 year: 2017 ident: 2954_CR2 publication-title: Proteomics doi: 10.1002/pmic.201600267 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2954_CR14 publication-title: Clin. Epigenetics doi: 10.1186/s13148-020-00842-4 – volume: 101 start-page: 430 issue: 4 year: 2021 ident: 2954_CR25 publication-title: Lab. Invest. doi: 10.1038/s41374-020-00525-x – volume: 81 start-page: 105538 year: 2019 ident: 2954_CR30 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105538 – volume: 24 start-page: 13 year: 2013 ident: 2954_CR18 publication-title: Imbalanced Learn. Found. Algorithms Appl. doi: 10.1002/9781118646106.ch2 – volume: 9 start-page: 530 year: 2018 ident: 2954_CR7 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00530 – ident: 2954_CR26 doi: 10.1109/ICBDA49040.2020.9101199 – volume: 3 start-page: 105 year: 2017 ident: 2954_CR3 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-017-0037-9 – volume: 61 start-page: 1962 issue: 10 year: 2025 ident: 2954_CR6 publication-title: Chem. Commun. doi: 10.1039/D4CC06510G – volume: 4 start-page: 57 issue: 2 year: 2018 ident: 2954_CR9 publication-title: Am. J. Theor. Appl. Bus. doi: 10.11648/j.ajtab.20180402.14 – ident: 2954_CR32 – volume: 215 start-page: 106622 year: 2022 ident: 2954_CR23 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106622 – volume: 343 year: 2020 ident: 2954_CR13 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108799 – volume: 4 start-page: 110937 issue: 279 year: 2023 ident: 2954_CR16 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110937 – volume: 3 start-page: 1 year: 2016 ident: 2954_CR10 publication-title: J. Big Data doi: 10.1186/s40537-016-0059-y – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 2954_CR1 publication-title: J. Big Data doi: 10.1186/s40537-019-0217-0 – volume: 89 start-page: 122 year: 2019 ident: 2954_CR11 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.11.013 – volume: 22 start-page: 114 issue: 2 year: 2022 ident: 2954_CR15 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00408-3 |
| SSID | ssj0000529419 |
| Score | 2.4505787 |
| Snippet | Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The... Abstract Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research.... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 18954 |
| SubjectTerms | 631/114 631/114/1564 Algorithms Binary Bat Swarm Algorithm Biomedical data Cancer Classification Decision making Decision Trees Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Imbalanced data Lung cancer Lung Neoplasms - classification Lung Neoplasms - diagnostic imaging Machine Learning multidisciplinary Oblique decision tree Science Science (multidisciplinary) Tomography, X-Ray Computed - methods |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgCxIX3o9AQUbiBtEmHm9inxAgKjhQ7QGkcrL8SrVSuymbBanw55lxnK0QjxNXx0ocfePx2OP5PsaeATS4rqH306BcSYRdpdNBl75uSECOGMRUEptoDw_V0ZFe5vLoIV-rnHxictQj2zPd20YnPA-9pxPzOYgamqR3-fLsS0kaUpRrzYIal9keEW9VM7a3fP9h-Xl35kJZLfx4rp2pQM0HXL-oxkxQmbLGgcpf1qdE4_-n2PO3vGlajg5u_N8fucmu57CUvxrt6Ba7FNe32dVRqPL8DvuRtDPpVlECkvcdH-v2CWJ-gg6DezKfDV-dooMaOF2nP-Y9-qPT1fcYsDeV_XJnt3zHGsvdOff9xGBL3XHo1B6y7g-njPlwl306ePvxzbsyyzaUXoLalg4iRnmtsFYpW2mlwC0q6XS7sBakA-hUgEZq1dUyuuAqDU0HWjnVKCu1g3tstu7X8QHjInR1VcVuoaWQrfK6rb0Uwcc2NB6bC_Z8AsucjewcJmXVQZkRWoPQmgStkQV7TXjuehKzdmroN8cmT1TjMOINjkjnMbgMQqlgZYBWOBsx2AQo2P4Eq8nTfTAXKBbs6e4xTlTKvth17L-mPhL3Z-iVCnZ_tKLdSGQlJe4N64K9mMzq4uV__6GH_x7LI3ZNJMtelELvsxnCGR-zK_7bdjVsnuTJ8RMGQBxq priority: 102 providerName: ProQuest |
| Title | Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees |
| URI | https://link.springer.com/article/10.1038/s41598-025-02954-4 https://www.ncbi.nlm.nih.gov/pubmed/40442171 https://www.proquest.com/docview/3213690005 https://www.proquest.com/docview/3214306200 https://doaj.org/article/b923db3558154d288da4d372bae54533 |
| Volume | 15 |
| WOSCitedRecordID | wos001499347000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCxIXxGcJLSsjcYOoiccb28cWtYJDVxECaTlZduygldoNapZKbf98x052KQLEhcscnFHieMaesex5D-ANYkVxjVY_jcrlEbArd9rrvCmrSCAXEcRUIpuQs5maz3V9i-or3gkb4IGHgdt3lIF4F0HAKdh7rpS3wqPkzgYK_phwPgupb22mBlRvrukzY5VMgWq_p0gVq8l4LEjW1CXxSyRKgP1_yjJ_OyFNgef4ETwcM0Z2MPT0MdwJyydwf-CQvHwK14nWMl74SWPMupYNJfVx9NkpzWXWRMues8UZrR09izfdv7GOloqzxVXwpB0rcpmzK7YBdGXukjXdGlw2qrvT1O5HSh4WD7P7Z_Dl-Ojz-w_5yKiQNwLVKncYKAGT3FqlbKGVQjcthNNyai0Kh9gqj5XQqi1FcN4VGqsWtXKqUlZoh89ha9ktwwtg3LdlUYR2qgUXUjValo3gvgnSVw01Z_B2Pbrm-wCcYdKBNyoz2MKQLUyyhREZHEYDbDQj6HVqIFcwoyuYf7lCBntr85lxJvYGeYlVYkbN4PXmMc2heDBil6H7kXQEbZ1owchgZzD7pieiEIK2bWUG79Z-8PPlf_-hl__jh3bhAU8OO8253oMtMnp4Bfeai9WiP5_AXTmXSaoJbB8ezepPkzQLSJ7wOkpJcrv-eFJ_vQHd7gfp |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb2iggJHgBFET25vYB4R4Va1aVj0UqTdjx061UrtpNwto4T_xG5lxkq0Qj1sPXB3LsuPPn8cez3wAT4UocF9D9tNCuZQSdqVOe51WeUECcpRBTEWxiXI8VgcHem8FfgyxMPSscuDESNS-qeiOfEPwXBRR4fLVyWlKqlHkXR0kNDpY7ITFVzyytS-33-H8PuN88_3-2620VxVIKynUPHUioBFScmuVsplWSrhRJp0uR9YK6YSolReF1KrOZXDe4ZG_qIVWThXKSu0EtnsBLqIZwbP4VHBveadDXjMcXB-bkwm10eL-SDFsnMKgNf4I-cv-F2UC_mTb_uaXjdvd5vX_7UfdgGu9Yc1edyvhJqyE6S243EltLm7D96j-Se-iIhRZU7Mu8wCBlB0h5bGKFsCMTY6RYltGAQGHrEFGPZ58Cx5rU-Ayc3bOlnlvmVuwqhly8FJ1dxTLfa9cxMjn396Bj-cy8ruwOm2mYQ0Y93WeZaEeacllqSpd5pXkvgqlLyosTuD5AAdz0uUXMfFdgFCmA49B8JgIHiMTeEOIWdak3OCxoJkdmp5qjEOb3TtKm4_msedKeSu9KLmzAc1lIRJYH4BjesJqzRlqEniy_IxUQ_4jOw3N51hH4gkTeTWBex1Olz2RmZR4us0TeDEA96zxvw_o_r_78hiubO1_2DW72-OdB3CVx3U0Srleh1Wc2vAQLlVf5pN29iguRAafzhvQPwHpRWq1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q5SE2vKGBAkaCFY0msT2JvUAIKCOqolEXIM3OxLFTjdRO2skAGvgzvo57nUeFeOy6YOtYUZwcH1_H954D8FSIDNc1ZD8tlI1JsCu22um4TDMykCMFMRXMJvLpVM1m-mADfvS1MJRW2XNiIGpXl_SPfCR4KrLgcDmqurSIg93Jy5PTmByk6KS1t9NoIbLv119x-9a82NvFb_2M88nbD2_exZ3DQFxKoVaxFR4DkpwXhVJFopUSdpxIq_NxUQhphaiUE5nUqkqlt87i9j-rhFZWZaqQ2gq87wW4SJKCRAr5LB_-79AJGg60q9NJhBo1uFZSPRunkmiNL0X-shYGy4A_xbm_ndGGpW9y_X9-aTfgWhdws1ftDLkJG35xCy63Fpzr2_A9uIJSvlSAKKsr1ioSEHjZEVIhK2liLNn8GKm3YVQocMhqZNrj-TfvsDcVNDNbrNigh8vsmpV1r81L3e1RaHedoxGjXIDmDnw8l5Hfhc1FvfBbwLir0iTx1VhLLnNV6jwtJXelz11WYnMEz3tomJNWd8SEfAGhTAskg0AyAUhGRvCa0DP0JM3w0FAvD01HQcZiLO8syelj2Oy4Uq6QTuTcFh7DaCEi2O5BZDoia8wZgiJ4MlxGCqJzpWLh68-hj8SdJ_JtBPdazA5PIhMpcdebRrDTg_js5n8f0P1_P8tjuII4Nu_3pvsP4CoPU2occ70Nm_hl_UO4VH5ZzZvlozAnGXw6bzz_BJbQc2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+biomedical+lung+cancer+images+using+optimized+binary+bat+technique+by+constructing+oblique+decision+trees&rft.jtitle=Scientific+reports&rft.au=Shobha+Aswal&rft.au=Neelu+Jyothi+Ahuja&rft.au=Ritika+Mehra&rft.date=2025-05-29&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-025-02954-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b923db3558154d288da4d372bae54533 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |