Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees

Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 18954 - 16
Hauptverfasser: Aswal, Shobha, Ahuja, Neelu Jyothi, Mehra, Ritika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 29.05.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.
AbstractList Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.
Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.
Abstract Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.
ArticleNumber 18954
Author Mehra, Ritika
Ahuja, Neelu Jyothi
Aswal, Shobha
Author_xml – sequence: 1
  givenname: Shobha
  surname: Aswal
  fullname: Aswal, Shobha
  email: shobha.swl@gmail.com
  organization: Department of Computer Science and Engineering, VM Singh Bhandari Uttarakhand Technical University
– sequence: 2
  givenname: Neelu Jyothi
  surname: Ahuja
  fullname: Ahuja, Neelu Jyothi
  organization: Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies
– sequence: 3
  givenname: Ritika
  surname: Mehra
  fullname: Mehra, Ritika
  organization: Department of Computer Science and Engineering, Dev Bhoomi Uttarakhand University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40442171$$D View this record in MEDLINE/PubMed
BookMark eNp9kk2PFCEQholZ467r_gEPhsSLl1agoAeOZuLHJpt40TPhq0cmPTACfRj3z8vMrKvxIAmBvHmqiqLe5-gi5RQQeknJW0pAvqucCiUHwkTfSvCBP0FXjHAxMGDs4q_7JbqpdUv6Ekxxqp6hS044Z3RFr9D9eja1xik602JOOE_YxrwLvgsznpe0wc4kFwqOO7MJFS81di3vW9zFn8F3OplywNY03IL7nuKPJWB7wC6n2sri2gm380n3wcV6LNNKCPUFejqZuYabh_Maffv44ev683D35dPt-v3d4DjINlgInI4rZoyUhigpwQrCrVoJY4BbgEl6GLmSE-XBeksUjBMoaeUoDVcWrtHtOa_PZqv3pXdSDjqbqE9CLhttSotuDtoqBt6CEJIK7pmU3nAPK2ZNEFwA9Fxvzrn2JfeOatO7WF2YZ5NCXqoGRjmQkRHS0df_oNu8lNQ7PVIwquNEOvXqgVps__bH5_0eUQfYGXAl11rC9IhQoo9W0Gcr6G4FfbKC5j0IzkG1w2kTyp_a_4n6BaPrtWA
Cites_doi 10.1007/s00521-018-03972-2
10.3390/inorganics12120331
10.1016/j.neunet.2019.12.001
10.1364/OE.530764
10.1007/s12652-018-1160-1
10.18280/ts.380421
10.1007/s12553-018-0279-6
10.1164/rccm.201409-1671PP
10.1038/s41598-021-04608-7
10.3390/bioengineering10101123
10.1016/j.compeleceng.2022.107778
10.1007/s13721-021-00313-7
10.1016/j.cmpb.2016.07.029
10.3389/fnins.2022.854685
10.1002/pmic.201600267
10.1186/s13148-020-00842-4
10.1038/s41374-020-00525-x
10.1016/j.asoc.2019.105538
10.1002/9781118646106.ch2
10.3389/fphar.2018.00530
10.1109/ICBDA49040.2020.9101199
10.1007/s40747-017-0037-9
10.1039/D4CC06510G
10.11648/j.ajtab.20180402.14
10.1016/j.cmpb.2022.106622
10.1016/j.jneumeth.2020.108799
10.1016/j.knosys.2023.110937
10.1186/s40537-016-0059-y
10.1186/s40537-019-0217-0
10.1016/j.jbi.2018.11.013
10.1038/s41568-021-00408-3
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-02954-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_b923db3558154d288da4d372bae54533
40442171
10_1038_s41598_025_02954_4
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c438t-b3e41672aa88a09883b504b975aa34b33f8d36498f14ebdb0936f398b868a49b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499347000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:45 EDT 2025
Fri Sep 05 15:58:08 EDT 2025
Tue Oct 07 08:05:27 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Sun Nov 09 14:52:47 EST 2025
Fri May 30 10:54:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Imbalanced data
Binary Bat Swarm Algorithm
Oblique decision tree
Lung cancer
Biomedical data
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b3e41672aa88a09883b504b975aa34b33f8d36498f14ebdb0936f398b868a49b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b923db3558154d288da4d372bae54533
PMID 40442171
PQID 3213690005
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_b923db3558154d288da4d372bae54533
proquest_miscellaneous_3214306200
proquest_journals_3213690005
pubmed_primary_40442171
crossref_primary_10_1038_s41598_025_02954_4
springer_journals_10_1038_s41598_025_02954_4
PublicationCentury 2000
PublicationDate 2025-05-29
PublicationDateYYYYMMDD 2025-05-29
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 2954_CR32
P Jain (2954_CR10) 2016; 3
2954_CR33
C Chakraborty (2954_CR21) 2022; 99
R Remark (2954_CR8) 2015; 191
N Joshua (2954_CR12) 2021; 38
SA Senthilkumar (2954_CR9) 2018; 4
T Gangavarapu (2954_CR30) 2019; 81
BI Grisci (2954_CR11) 2019; 89
S Rauschert (2954_CR14) 2020; 12
PM Shakeel (2954_CR28) 2020; 32
S Dash (2954_CR1) 2019; 6
Y Dai (2954_CR20) 2022; 16
BB Hazarika (2954_CR23) 2022; 215
KM Boehm (2954_CR15) 2022; 22
E Pashaei (2954_CR19) 2023; 10
Q Dong (2954_CR5) 2024; 12
N Ma (2954_CR4) 2024; 32
A Fernández (2954_CR3) 2017; 3
2954_CR26
B Alsinglawi (2954_CR17) 2022; 12
Y Su (2954_CR2) 2017; 17
C Zhao (2954_CR6) 2025; 61
I Bilgen (2954_CR13) 2020; 343
K Guo (2954_CR16) 2023; 4
G Nagarajan (2954_CR22) 2021; 10
P Shrivastava (2954_CR31) 2017; 139
PM Shakeel (2954_CR27) 2020; 10
A Anagaw (2954_CR24) 2019; 10
C Gautam (2954_CR29) 2020; 1
GM Weiss (2954_CR18) 2013; 24
F Deng (2954_CR25) 2021; 101
C Jiang (2954_CR7) 2018; 9
References_xml – volume: 32
  start-page: 777
  year: 2020
  ident: 2954_CR28
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-03972-2
– volume: 12
  start-page: 331
  issue: 12
  year: 2024
  ident: 2954_CR5
  publication-title: Inorganics
  doi: 10.3390/inorganics12120331
– volume: 1
  start-page: 191
  issue: 123
  year: 2020
  ident: 2954_CR29
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.12.001
– volume: 32
  start-page: 33378
  issue: 19
  year: 2024
  ident: 2954_CR4
  publication-title: Opt. Express
  doi: 10.1364/OE.530764
– volume: 10
  start-page: 3889
  year: 2019
  ident: 2954_CR24
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1160-1
– volume: 38
  start-page: 1103
  issue: 4
  year: 2021
  ident: 2954_CR12
  publication-title: Traitement Du. Signal
  doi: 10.18280/ts.380421
– volume: 10
  start-page: 157
  year: 2020
  ident: 2954_CR27
  publication-title: Heal. Technol.
  doi: 10.1007/s12553-018-0279-6
– volume: 191
  start-page: 377
  issue: 4
  year: 2015
  ident: 2954_CR8
  publication-title: Am. J. Respiratory Critic. Care Med.
  doi: 10.1164/rccm.201409-1671PP
– ident: 2954_CR33
– volume: 12
  start-page: 607
  issue: 1
  year: 2022
  ident: 2954_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-04608-7
– volume: 10
  start-page: 1123
  issue: 10
  year: 2023
  ident: 2954_CR19
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10101123
– volume: 99
  year: 2022
  ident: 2954_CR21
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107778
– volume: 10
  start-page: 39
  issue: 1
  year: 2021
  ident: 2954_CR22
  publication-title: Netw. Model. Anal. Health Inform. Bioinform.
  doi: 10.1007/s13721-021-00313-7
– volume: 139
  start-page: 171
  year: 2017
  ident: 2954_CR31
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.07.029
– volume: 16
  year: 2022
  ident: 2954_CR20
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.854685
– volume: 17
  start-page: 1600267
  issue: 3–4
  year: 2017
  ident: 2954_CR2
  publication-title: Proteomics
  doi: 10.1002/pmic.201600267
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2954_CR14
  publication-title: Clin. Epigenetics
  doi: 10.1186/s13148-020-00842-4
– volume: 101
  start-page: 430
  issue: 4
  year: 2021
  ident: 2954_CR25
  publication-title: Lab. Invest.
  doi: 10.1038/s41374-020-00525-x
– volume: 81
  start-page: 105538
  year: 2019
  ident: 2954_CR30
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105538
– volume: 24
  start-page: 13
  year: 2013
  ident: 2954_CR18
  publication-title: Imbalanced Learn. Found. Algorithms Appl.
  doi: 10.1002/9781118646106.ch2
– volume: 9
  start-page: 530
  year: 2018
  ident: 2954_CR7
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00530
– ident: 2954_CR26
  doi: 10.1109/ICBDA49040.2020.9101199
– volume: 3
  start-page: 105
  year: 2017
  ident: 2954_CR3
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-017-0037-9
– volume: 61
  start-page: 1962
  issue: 10
  year: 2025
  ident: 2954_CR6
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC06510G
– volume: 4
  start-page: 57
  issue: 2
  year: 2018
  ident: 2954_CR9
  publication-title: Am. J. Theor. Appl. Bus.
  doi: 10.11648/j.ajtab.20180402.14
– ident: 2954_CR32
– volume: 215
  start-page: 106622
  year: 2022
  ident: 2954_CR23
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106622
– volume: 343
  year: 2020
  ident: 2954_CR13
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108799
– volume: 4
  start-page: 110937
  issue: 279
  year: 2023
  ident: 2954_CR16
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110937
– volume: 3
  start-page: 1
  year: 2016
  ident: 2954_CR10
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0059-y
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 2954_CR1
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0217-0
– volume: 89
  start-page: 122
  year: 2019
  ident: 2954_CR11
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.11.013
– volume: 22
  start-page: 114
  issue: 2
  year: 2022
  ident: 2954_CR15
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00408-3
SSID ssj0000529419
Score 2.4505787
Snippet Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The...
Abstract Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research....
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 18954
SubjectTerms 631/114
631/114/1564
Algorithms
Binary Bat Swarm Algorithm
Biomedical data
Cancer
Classification
Decision making
Decision Trees
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Imbalanced data
Lung cancer
Lung Neoplasms - classification
Lung Neoplasms - diagnostic imaging
Machine Learning
multidisciplinary
Oblique decision tree
Science
Science (multidisciplinary)
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgCxIX3o9AQUbiBtEmHm9inxAgKjhQ7QGkcrL8SrVSuymbBanw55lxnK0QjxNXx0ocfePx2OP5PsaeATS4rqH306BcSYRdpdNBl75uSECOGMRUEptoDw_V0ZFe5vLoIV-rnHxictQj2zPd20YnPA-9pxPzOYgamqR3-fLsS0kaUpRrzYIal9keEW9VM7a3fP9h-Xl35kJZLfx4rp2pQM0HXL-oxkxQmbLGgcpf1qdE4_-n2PO3vGlajg5u_N8fucmu57CUvxrt6Ba7FNe32dVRqPL8DvuRtDPpVlECkvcdH-v2CWJ-gg6DezKfDV-dooMaOF2nP-Y9-qPT1fcYsDeV_XJnt3zHGsvdOff9xGBL3XHo1B6y7g-njPlwl306ePvxzbsyyzaUXoLalg4iRnmtsFYpW2mlwC0q6XS7sBakA-hUgEZq1dUyuuAqDU0HWjnVKCu1g3tstu7X8QHjInR1VcVuoaWQrfK6rb0Uwcc2NB6bC_Z8AsucjewcJmXVQZkRWoPQmgStkQV7TXjuehKzdmroN8cmT1TjMOINjkjnMbgMQqlgZYBWOBsx2AQo2P4Eq8nTfTAXKBbs6e4xTlTKvth17L-mPhL3Z-iVCnZ_tKLdSGQlJe4N64K9mMzq4uV__6GH_x7LI3ZNJMtelELvsxnCGR-zK_7bdjVsnuTJ8RMGQBxq
  priority: 102
  providerName: ProQuest
Title Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees
URI https://link.springer.com/article/10.1038/s41598-025-02954-4
https://www.ncbi.nlm.nih.gov/pubmed/40442171
https://www.proquest.com/docview/3213690005
https://www.proquest.com/docview/3214306200
https://doaj.org/article/b923db3558154d288da4d372bae54533
Volume 15
WOSCitedRecordID wos001499347000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCxIXxGcJLSsjcYOoiccb28cWtYJDVxECaTlZduygldoNapZKbf98x052KQLEhcscnFHieMaesex5D-ANYkVxjVY_jcrlEbArd9rrvCmrSCAXEcRUIpuQs5maz3V9i-or3gkb4IGHgdt3lIF4F0HAKdh7rpS3wqPkzgYK_phwPgupb22mBlRvrukzY5VMgWq_p0gVq8l4LEjW1CXxSyRKgP1_yjJ_OyFNgef4ETwcM0Z2MPT0MdwJyydwf-CQvHwK14nWMl74SWPMupYNJfVx9NkpzWXWRMues8UZrR09izfdv7GOloqzxVXwpB0rcpmzK7YBdGXukjXdGlw2qrvT1O5HSh4WD7P7Z_Dl-Ojz-w_5yKiQNwLVKncYKAGT3FqlbKGVQjcthNNyai0Kh9gqj5XQqi1FcN4VGqsWtXKqUlZoh89ha9ktwwtg3LdlUYR2qgUXUjValo3gvgnSVw01Z_B2Pbrm-wCcYdKBNyoz2MKQLUyyhREZHEYDbDQj6HVqIFcwoyuYf7lCBntr85lxJvYGeYlVYkbN4PXmMc2heDBil6H7kXQEbZ1owchgZzD7pieiEIK2bWUG79Z-8PPlf_-hl__jh3bhAU8OO8253oMtMnp4Bfeai9WiP5_AXTmXSaoJbB8ezepPkzQLSJ7wOkpJcrv-eFJ_vQHd7gfp
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb2iggJHgBFET25vYB4R4Va1aVj0UqTdjx061UrtpNwto4T_xG5lxkq0Qj1sPXB3LsuPPn8cez3wAT4UocF9D9tNCuZQSdqVOe51WeUECcpRBTEWxiXI8VgcHem8FfgyxMPSscuDESNS-qeiOfEPwXBRR4fLVyWlKqlHkXR0kNDpY7ITFVzyytS-33-H8PuN88_3-2620VxVIKynUPHUioBFScmuVsplWSrhRJp0uR9YK6YSolReF1KrOZXDe4ZG_qIVWThXKSu0EtnsBLqIZwbP4VHBveadDXjMcXB-bkwm10eL-SDFsnMKgNf4I-cv-F2UC_mTb_uaXjdvd5vX_7UfdgGu9Yc1edyvhJqyE6S243EltLm7D96j-Se-iIhRZU7Mu8wCBlB0h5bGKFsCMTY6RYltGAQGHrEFGPZ58Cx5rU-Ayc3bOlnlvmVuwqhly8FJ1dxTLfa9cxMjn396Bj-cy8ruwOm2mYQ0Y93WeZaEeacllqSpd5pXkvgqlLyosTuD5AAdz0uUXMfFdgFCmA49B8JgIHiMTeEOIWdak3OCxoJkdmp5qjEOb3TtKm4_msedKeSu9KLmzAc1lIRJYH4BjesJqzRlqEniy_IxUQ_4jOw3N51hH4gkTeTWBex1Olz2RmZR4us0TeDEA96zxvw_o_r_78hiubO1_2DW72-OdB3CVx3U0Srleh1Wc2vAQLlVf5pN29iguRAafzhvQPwHpRWq1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q5SE2vKGBAkaCFY0msT2JvUAIKCOqolEXIM3OxLFTjdRO2skAGvgzvo57nUeFeOy6YOtYUZwcH1_H954D8FSIDNc1ZD8tlI1JsCu22um4TDMykCMFMRXMJvLpVM1m-mADfvS1MJRW2XNiIGpXl_SPfCR4KrLgcDmqurSIg93Jy5PTmByk6KS1t9NoIbLv119x-9a82NvFb_2M88nbD2_exZ3DQFxKoVaxFR4DkpwXhVJFopUSdpxIq_NxUQhphaiUE5nUqkqlt87i9j-rhFZWZaqQ2gq87wW4SJKCRAr5LB_-79AJGg60q9NJhBo1uFZSPRunkmiNL0X-shYGy4A_xbm_ndGGpW9y_X9-aTfgWhdws1ftDLkJG35xCy63Fpzr2_A9uIJSvlSAKKsr1ioSEHjZEVIhK2liLNn8GKm3YVQocMhqZNrj-TfvsDcVNDNbrNigh8vsmpV1r81L3e1RaHedoxGjXIDmDnw8l5Hfhc1FvfBbwLir0iTx1VhLLnNV6jwtJXelz11WYnMEz3tomJNWd8SEfAGhTAskg0AyAUhGRvCa0DP0JM3w0FAvD01HQcZiLO8syelj2Oy4Uq6QTuTcFh7DaCEi2O5BZDoia8wZgiJ4MlxGCqJzpWLh68-hj8SdJ_JtBPdazA5PIhMpcdebRrDTg_js5n8f0P1_P8tjuII4Nu_3pvsP4CoPU2occ70Nm_hl_UO4VH5ZzZvlozAnGXw6bzz_BJbQc2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+biomedical+lung+cancer+images+using+optimized+binary+bat+technique+by+constructing+oblique+decision+trees&rft.jtitle=Scientific+reports&rft.au=Shobha+Aswal&rft.au=Neelu+Jyothi+Ahuja&rft.au=Ritika+Mehra&rft.date=2025-05-29&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-025-02954-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b923db3558154d288da4d372bae54533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon