ADN source-load-storage cooperative two-layer optimal allocation based on ICSQPSO algorithm
Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal natu...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 38866 - 22 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
06.11.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm.. |
|---|---|
| AbstractList | Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm.. Abstract Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm.. Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model's validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model's validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm.. |
| ArticleNumber | 38866 |
| Author | Lu, Zongqiang Li, Xiaobang Zhang, Kang Zhao, Liying Zhu, Liying |
| Author_xml | – sequence: 1 givenname: Xiaobang surname: Li fullname: Li, Xiaobang organization: Hebei Petroleum University of Technology – sequence: 2 givenname: Kang surname: Zhang fullname: Zhang, Kang email: forkangkang@126.com organization: Hebei Petroleum University of Technology – sequence: 3 givenname: Liying surname: Zhao fullname: Zhao, Liying organization: Hebei Petroleum University of Technology – sequence: 4 givenname: Liying surname: Zhu fullname: Zhu, Liying organization: Hebei Petroleum University of Technology – sequence: 5 givenname: Zongqiang surname: Lu fullname: Lu, Zongqiang organization: Hebei Petroleum University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41198713$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcluFDEQhi0URELIC3BALXHh4uC97WM0bCNFCShw4mB5qR561NMe7B5Q3h5nOgvKIb647Prqd7n-l-hgTCMg9JqSU0q4fl8ElUZjwiRmTAmK9TN0xIioR87YwX_xITopZU3qkswIal6gQ0Gp0S3lR-jn2YeLpqRdDoCH5CIuU8puBU1IaQvZTf0faKa_CQ_uGnKTtlO_cUPjhiGFmkxj412B2NRgubj69vXqsuZWKffTr80r9LxzQ4GT2_0Y_fj08fviCz6__LxcnJ3jILiesGdt9DyqIIkRkRCjHIudVr4NLSglmfSCy0B8q3zHWEU8JY61QLiQhgd-jJazbkxubbe5dpivbXK93V-kvLIuT30YwGruTIgteOK04F556KIIXEcjmOiMqVrvZq1tTr93UCa76UuAYXAjpF2xnCmjhKmzrOjbR-i6znGsP91TkmkidKXe3FI7v4F4396dBRVgMxByKiVDd49QYm-strPVtlpt91bbG1U-F5UKjyvID28_UfUPZ3KpEA |
| Cites_doi | 10.1109/ACCESS.2024.3458410 10.1016/j.egyr.2023.03.116 10.1016/j.scs.2023.105107 10.1049/rpg2.12325 10.1016/j.energy.2023.127761 10.1016/j.energy.2020.118263 10.1002/tee.24015 10.1061/(ASCE)EY.1943-7897.0000808 10.1109/TPWRS.2020.3032830 10.1109/ACCESS.2024.3368629 10.1016/j.egyr.2020.11.228 10.1109/ACCESS.2019.2962276 10.3390/en15041540 10.1016/j.energy.2023.127087 10.1016/j.energy.2024.133036 10.1016/j.ijepes.2022.108859 10.1109/TPWRS.2006.889132 10.1016/j.energy.2022.123226 10.3390/en16031356 10.3389/fenrg.2022.1012581 10.1016/j.ijepes.2022.108641 10.1016/j.energy.2020.118488 10.1016/j.energy.2024.132601 10.1016/j.segan.2024.101309 10.1016/j.egyr.2021.06.050 10.1016/j.energy.2023.129725 10.1109/TSTE.2021.3053559 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-22641-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_83a9cd7eb0a843b6befd4c38d9424f99 41198713 10_1038_s41598_025_22641_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-b27db3d6c5094d0096a2df86b7c7e66525b435c0b76bf224d0b10a27e034593c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610752800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 19:21:46 EST 2025 Fri Nov 07 23:27:04 EST 2025 Fri Nov 07 14:48:34 EST 2025 Mon Nov 10 01:42:04 EST 2025 Thu Nov 13 04:30:20 EST 2025 Fri Nov 07 01:15:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | ICSQPSO algorithm Demand response Economical analysis Active distribution network Collaborative planning Distributed power |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-b27db3d6c5094d0096a2df86b7c7e66525b435c0b76bf224d0b10a27e034593c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3269528048?pq-origsite=%requestingapplication% |
| PMID | 41198713 |
| PQID | 3269528048 |
| PQPubID | 2041939 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_83a9cd7eb0a843b6befd4c38d9424f99 proquest_miscellaneous_3269649005 proquest_journals_3269528048 pubmed_primary_41198713 crossref_primary_10_1038_s41598_025_22641_8 springer_journals_10_1038_s41598_025_22641_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-06 |
| PublicationDateYYYYMMDD | 2025-11-06 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | T Cheng (22641_CR15) 2022; 148 22641_CR22 T Ding (22641_CR12) 2021; 36 X Huang (22641_CR23) 2020; 8 A Selvakumar (22641_CR25) 2007; 22 A Salari (22641_CR2) 2024; 288 22641_CR18 B Ahmadisourenabadi (22641_CR8) 2024; 308 A Alhendi (22641_CR13) 2023; 9 YX Hu (22641_CR14) 2023; 145 MA Magzoub (22641_CR24) 2022; 15 C Wang (22641_CR26) 2024; 307 N Huang (22641_CR1) 2023; 278 J Liu (22641_CR21) 2020; 213 Y Lu (22641_CR27) 2023; 271 S Deshmukh (22641_CR7) 2024; 12 22641_CR11 MS Jonban (22641_CR5) 2024; 38 Z Jiang (22641_CR6) 2021; 7 Y Li (22641_CR4) 2022; 245 R Xie (22641_CR19) 2020; 6 Y Zhou (22641_CR17) 2020; 207 Y Mi (22641_CR16) 2023; 16 M Moradi-Sepahvand (22641_CR9) 2023; 147 K Ibrahim (22641_CR10) 2020; 27 B Zhu (22641_CR28) 2024; 12 J Hossain (22641_CR3) 2024; 101 H Qiu (22641_CR20) 2021; 12 |
| References_xml | – volume: 12 start-page: 131350 year: 2024 ident: 22641_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3458410 – volume: 9 start-page: 4799 year: 2023 ident: 22641_CR13 publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.03.116 – volume: 101 year: 2024 ident: 22641_CR3 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2023.105107 – ident: 22641_CR11 doi: 10.1049/rpg2.12325 – volume: 278 year: 2023 ident: 22641_CR1 publication-title: Energy doi: 10.1016/j.energy.2023.127761 – volume: 207 year: 2020 ident: 22641_CR17 publication-title: Energy doi: 10.1016/j.energy.2020.118263 – ident: 22641_CR22 doi: 10.1002/tee.24015 – volume: 148 start-page: 4021068 year: 2022 ident: 22641_CR15 publication-title: J. Energy Eng. doi: 10.1061/(ASCE)EY.1943-7897.0000808 – volume: 36 start-page: 2281 year: 2021 ident: 22641_CR12 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3032830 – volume: 12 start-page: 29607 year: 2024 ident: 22641_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3368629 – volume: 6 start-page: 370 year: 2020 ident: 22641_CR19 publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.11.228 – volume: 8 start-page: 2272 year: 2020 ident: 22641_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962276 – volume: 15 start-page: 1540 year: 2022 ident: 22641_CR24 publication-title: Energies doi: 10.3390/en15041540 – volume: 271 year: 2023 ident: 22641_CR27 publication-title: Energy doi: 10.1016/j.energy.2023.127087 – volume: 308 year: 2024 ident: 22641_CR8 publication-title: Energy doi: 10.1016/j.energy.2024.133036 – volume: 147 year: 2023 ident: 22641_CR9 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108859 – volume: 22 start-page: 42 year: 2007 ident: 22641_CR25 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.889132 – volume: 245 year: 2022 ident: 22641_CR4 publication-title: Energy doi: 10.1016/j.energy.2022.123226 – volume: 16 start-page: 1356 year: 2023 ident: 22641_CR16 publication-title: Energies doi: 10.3390/en16031356 – ident: 22641_CR18 doi: 10.3389/fenrg.2022.1012581 – volume: 145 year: 2023 ident: 22641_CR14 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108641 – volume: 213 year: 2020 ident: 22641_CR21 publication-title: Energy doi: 10.1016/j.energy.2020.118488 – volume: 307 year: 2024 ident: 22641_CR26 publication-title: Energy doi: 10.1016/j.energy.2024.132601 – volume: 38 year: 2024 ident: 22641_CR5 publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2024.101309 – volume: 7 start-page: 314 year: 2021 ident: 22641_CR6 publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.06.050 – volume: 288 year: 2024 ident: 22641_CR2 publication-title: Energy doi: 10.1016/j.energy.2023.129725 – volume: 12 start-page: 1525 year: 2021 ident: 22641_CR20 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2021.3053559 – volume: 27 start-page: 1654 year: 2020 ident: 22641_CR10 publication-title: Teh. Vjesn. |
| SSID | ssj0000529419 |
| Score | 2.4637423 |
| Snippet | Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It... Abstract Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 38866 |
| SubjectTerms | 639/4077/4079 639/4077/4082 639/4077/909 Active distribution network Algorithms Alternative energy sources Collaboration Collaborative planning Decision making Demand response Distributed power Economical analysis Energy resources Energy storage Humanities and Social Sciences ICSQPSO algorithm Integrated approach multidisciplinary Network management systems Operating costs Optimization Renewable energy Renewable resources Resource allocation Scheduling Science Science (multidisciplinary) Solar power |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT90wDLcmtEm7TPteB0ydxG2LaJO0TY7AhuDyYAIkpB2iJE43JHhF75Uh_nucpu-NiaFddquaKEpsJ3bs-GeAjRhbUjpwFisYM6klZ9YJybTjEp2zVYntUGyimUzU6ak-vFPqK74JS_DAiXCbSljtsQmusEoKV7vQovRCIQ0rWz2k7pHVc-cylVC9uZalHrNkCqE256SpYjYZr1jMHS2Z-kMTDYD9f7My70VIB8Wz-xyejRZjvpVm-gIehelLeJJqSN68gu9bXyZ5csGz884ii88d6ZDIfdddhoTrnffXHTu3ZF3nHR0RFzRcjLcnb10eFRnm9LG_c_Tt8OiA2n50s7P-58VrONn9eryzx8aKCcwT0XvmeINOYO0jLB7G64nl2KraNb4JdV3xypF55AvX1K4l5Y2FKwvLm1AIWWnhxRtYmXbT8A5yUXpRIRkMWHlZcut8gY1HX0jpuPKYwacF9cxlAsYwQ0BbKJNobYjWZqC1URlsRwIve0ZQ6-EHsdqMrDb_YnUGawv2mHGnzQ2Zn7riig6iDD4um2mPxMCHnYbuKvWppSapyOBtYutyJrKMbpdSZPB5weffgz-8oPf_Y0Gr8JRHgYxe6noNVvrZVViHx_5XfzaffRgk-hb_gfce priority: 102 providerName: Directory of Open Access Journals |
| Title | ADN source-load-storage cooperative two-layer optimal allocation based on ICSQPSO algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-22641-8 https://www.ncbi.nlm.nih.gov/pubmed/41198713 https://www.proquest.com/docview/3269528048 https://www.proquest.com/docview/3269649005 https://doaj.org/article/83a9cd7eb0a843b6befd4c38d9424f99 |
| Volume | 15 |
| WOSCitedRecordID | wos001610752800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXZC48H4EyipI3MBqYjuxfUJtaUUPXQIFaREHy68UpHaz7KYg_j2eJLsV4nHhMopiK5pkPs9MZuwZgGeYW5IqUIIdjAlXnBJjGSfKUu6tNUXu667ZhJhO5WymqiHgthq2Va51YqeofeMwRr4T3QxVUBkB93LxlWDXKMyuDi00tmCMlcr4CMZ7B9Pq3SbKgnksnqvhtEzG5M4qWiw8VUYLgmdIcyJ_sUhd4f4_eZu_ZUo7A3R4839ZvwU3Btcz3e2xchuuhPkduNY3o_xxFz7tvpqmfSyfnDXGE9w3GbVN6ppmEfoC4Wn7vSFnJrrpaRN1zXl8HCbu-7BfihbRp_HiaP_kbXXyJo6dRj7az-f34MPhwfv912RovUBclF5LLBXeMl86rK_n8T_HUF_L0gonQlkWtLDRz3KZFaWtoxfgM5tnhoqQMV4o5th9GM2beXgIKcsdK3z0PHzheE6NdZkXzruMc0ul8wk8X39-vegrbOguM86k7oWlo7B0JywtE9hDCW1mYnXs7kazPNXDYtOSGeW8CDYzkjNb2lB77pj0EYq8ViqB7bWg9LBkV_pSSgk83QzHxYYZFDMPzUU_p-QqwiqBBz0uNpzwHOM3OUvgxRoolw__-ws9-jcvj-E6RaxiILvchlG7vAhP4Kr71n5ZLSewJWaio3IyQH_SRRUiPaYVUhHpuDo6rj7-BDS7DAM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQIEhwAquJ7cT2AaHSUnXUMhS1SCNxMPEyBamdDDNTqv4pfiPvJZOpEMutB25RYll2_L3FbwV4Rr4lbSJn1MGYSSM5q5yQzDgug3NVkYdh02xC9ft6MDC7S_Cjy4WhsMqOJzaMOtSebOSrqGaYgmsE3OvxN0Zdo8i72rXQaGGxHU9P8Mo2fdXbwPN9zvnm2_31LTbvKsA8LmzGHFfBiVB6Kh0XSIWveBjq0imvYlkWvHCoQvjMqdINUcCFzOVZxVXMhCyM8ALnvQAXkY8rCiFTA7Ww6ZDXTOZmnpuTCb06RflIOWy8YJSxmjP9i_xr2gT8Sbf9zS_biLvN6__bj7oB1-aKdbrWUsJNWIqjW3C5bbV5ehs-rW3009ZTwQ7rKjCKCkVemvq6Hse2_Hk6O6nZYYWXkLRGTnqE01FYQmvUTEnehxQfeut7H3b33uO3A9z37MvRHfh4Lju7C8ujehTvQypyL4qAelUovMx55XwWlA8-k9Jx7UMCL7rjtuO2foht_P5C2xYcFsFhG3BYncAbQsRiJNX-bl7UkwM7ZyVWi8r4oKLLKi2FK10cBumFDkhocmhMAisdMOycIU3tGSoSeLr4jKyE_EPVKNbH7ZhSGoRxAvdaHC5WInOyTuUigZcdMM8m__uGHvx7LU_gytb-ux270-tvP4SrnOiETPblCizPJsfxEVzy32dfp5PHDaGl8Pm8AfsTwXRfmA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQIEhwAquJ7ST2AaHSoWJUGAaVSpU4mHhJQWonw8yUqn-NX8d7WaZCLLceuEWJZdnx9xa_FeAJ-ZaUDpxRB2MmteSstEIybbn01pZZ6qum2UQxGqm9PT1egR99LgyFVfY8sWHUvnZkI19HNUNnXFGZ2aoLixgPtl5OvzHqIEWe1r6dRguR7XByjNe3-YvhAM_6Kedbrz9uvmFdhwHmcJELZnnhrfC5ozJyntT5kvtK5bZwRcjzjGcW1QmX2CK3FQo7n9g0KXkREiEzLZzAec_B-UJmGVHXOz5e2nfIgyZT3eXpJEKtz1FWUj4bzxhlr6ZM_SILm5YBf9Jzf_PRNqJv6-r__NOuwZVO4Y43Wgq5DithcgMuti04T27Cp43BKG49GOygLj2jaFHksbGr62loy6LHi-OaHZR4OYlr5LCHOB2FK7TGzpj0AB_jw3Bz58N45z1-28d9L74c3oLdM9nZbVid1JNwF2KROpF51Ld85mTKS-sSXzjvEiktV85H8Kw_ejNt64qYJh5AKNMCxSBQTAMUoyJ4RehYjqSa4M2LerZvOhZjlCi180WwSamksLkNlZdOKI8EKCutI1jrQWI6RjU3pwiJ4PHyM7IY8huVk1AftWNyqRHSEdxpMblciUzJapWKCJ73ID2d_O8buvfvtTyCS4hT83Y42r4PlzmRDFny8zVYXcyOwgO44L4vvs5nDxuai-HzWeP1J6VCaGU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADN+source-load-storage+cooperative+two-layer+optimal+allocation+based+on+ICSQPSO+algorithm&rft.jtitle=Scientific+reports&rft.au=Li%2C+Xiaobang&rft.au=Zhang%2C+Kang&rft.au=Zhao%2C+Liying&rft.au=Zhu%2C+Liying&rft.date=2025-11-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-22641-8&rft.externalDocID=10_1038_s41598_025_22641_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |