Best practices and tools in R and Python for statistical processing and visualization of lipidomics and metabolomics data
Mass spectrometry-based lipidomics and metabolomics generate extensive data sets that, along with metadata such as clinical parameters, require specific data exploration skills to identify and visualize statistically significant trends and biologically relevant differences. Besides tailored methods...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 16; H. 1; S. 8714 - 19 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
30.09.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!