Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation
Density evolution is an algorithm for computing the capacity of low-density parity-check (LDPC) codes under message-passing decoding. For memoryless binary-input continuous-output additive white Gaussian noise (AWGN) channels and sum-product decoders, we use a Gaussian approximation for message dens...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 47; číslo 2; s. 657 - 670 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Density evolution is an algorithm for computing the capacity of low-density parity-check (LDPC) codes under message-passing decoding. For memoryless binary-input continuous-output additive white Gaussian noise (AWGN) channels and sum-product decoders, we use a Gaussian approximation for message densities under density evolution to simplify the analysis of the decoding algorithm. We convert the infinite-dimensional problem of iteratively calculating message densities, which is needed to find the exact threshold, to a one-dimensional problem of updating the means of the Gaussian densities. This simplification not only allows us to calculate the threshold quickly and to understand the behavior of the decoder better, but also makes it easier to design good irregular LDPC codes for AWGN channels. For various regular LDPC codes we have examined, thresholds can be estimated within 0.1 dB of the exact value. For rates between 0.5 and 0.9, codes designed using the Gaussian approximation perform within 0.02 dB of the best performing codes found so far by using density evolution when the maximum variable degree is 10. We show that by using the Gaussian approximation, we can visualize the sum-product decoding algorithm. We also show that the optimization of degree distributions can be understood and done graphically using the visualization. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/18.910580 |