Advancement of the search process of salp swarm algorithm for global optimization problems

•A novel variant of salp swarm algorithm is proposed.•The proposal fruitfully employs three simple but effective methodologies.•It is applied to 35 benchmark test functions and four real-life application problems.•Results are widely compared to the relevant results in literature.•The findings are hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 182; S. 115292
Hauptverfasser: Çelik, Emre, Öztürk, Nihat, Arya, Yogendra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.11.2021
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel variant of salp swarm algorithm is proposed.•The proposal fruitfully employs three simple but effective methodologies.•It is applied to 35 benchmark test functions and four real-life application problems.•Results are widely compared to the relevant results in literature.•The findings are highly impressive, ratifying the overt potential of this work. This paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from the base version with three simple but effective modifications. In the first one, the most important parameter in SSA responsible for balancing exploration and exploitation is chaotically changed by embedding a sinusoidal map in it to catch a better balance between exploration and exploitation from the first iteration until the last. As a short falling, SSA can’t exchange information amongst leaders of the chain. Therefore, a mutualistic relationship between two leader salps is included in mSSA to raise its search performance. Additionally, a random technique is systematically applied to the follower salps to introduce diversity in the chain. This can be since there may be some salps in the chain that do not necessarily follow the leader for exploring unvisited areas of the search space. Several test problems are solved by the advocated approach and results are presented in comparison with the relevant results in the available literature. It is ascertained that mSSA, despite its simplicity, significantly outperforms not only the basic SSA but also numerous recent algorithms in terms of fruitful solution precision and convergent trend line.
AbstractList •A novel variant of salp swarm algorithm is proposed.•The proposal fruitfully employs three simple but effective methodologies.•It is applied to 35 benchmark test functions and four real-life application problems.•Results are widely compared to the relevant results in literature.•The findings are highly impressive, ratifying the overt potential of this work. This paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from the base version with three simple but effective modifications. In the first one, the most important parameter in SSA responsible for balancing exploration and exploitation is chaotically changed by embedding a sinusoidal map in it to catch a better balance between exploration and exploitation from the first iteration until the last. As a short falling, SSA can’t exchange information amongst leaders of the chain. Therefore, a mutualistic relationship between two leader salps is included in mSSA to raise its search performance. Additionally, a random technique is systematically applied to the follower salps to introduce diversity in the chain. This can be since there may be some salps in the chain that do not necessarily follow the leader for exploring unvisited areas of the search space. Several test problems are solved by the advocated approach and results are presented in comparison with the relevant results in the available literature. It is ascertained that mSSA, despite its simplicity, significantly outperforms not only the basic SSA but also numerous recent algorithms in terms of fruitful solution precision and convergent trend line.
This paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from the base version with three simple but effective modifications. In the first one, the most important parameter in SSA responsible for balancing exploration and exploitation is chaotically changed by embedding a sinusoidal map in it to catch a better balance between exploration and exploitation from the first iteration until the last. As a short falling, SSA can't exchange information amongst leaders of the chain. Therefore, a mutualistic relationship between two leader salps is included in mSSA to raise its search performance. Additionally, a random technique is systematically applied to the follower salps to introduce diversity in the chain. This can be since there may be some salps in the chain that do not necessarily follow the leader for exploring unvisited areas of the search space. Several test problems are solved by the advocated approach and results are presented in comparison with the relevant results in the available literature. It is ascertained that mSSA, despite its simplicity, significantly outperforms not only the basic SSA but also numerous recent algorithms in terms of fruitful solution precision and convergent trend line.
ArticleNumber 115292
Author Çelik, Emre
Arya, Yogendra
Öztürk, Nihat
Author_xml – sequence: 1
  givenname: Emre
  surname: Çelik
  fullname: Çelik, Emre
  email: emrecelik@duzce.edu.tr
  organization: Department of Electrical and Electronics Engineering, Duzce University, Düzce, Turkey
– sequence: 2
  givenname: Nihat
  surname: Öztürk
  fullname: Öztürk, Nihat
  email: ozturk@gazi.edu.tr
  organization: Department of Electrical and Electronics Engineering, Gazi University, Ankara, Turkey
– sequence: 3
  givenname: Yogendra
  surname: Arya
  fullname: Arya, Yogendra
  email: mr.y.arya@gmail.com
  organization: Department of Electrical Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz7sm2Y9swUspfkHBi168hGwyaVN2NzVJK_rr3XU9eehpYJhnXt5nhiad6wCha0pSSmh5u0shfMqUEUZTSgu2YGdoSiueJSVfZBM0JYuCJznl-QWahbAjhHJC-BS9L_VRdgpa6CJ2Bsct4ADSqy3ee6cghGEbZLPHfYBvsWw2ztu4bbFxHm8aV8sGu320rf2W0bpu4OoG2nCJzo1sAlz9zTl6e7h_XT0l65fH59Vynag8q2KykEVeEQOaSQmaA6lKyQvJIee85gVVwOoccpJpQ1lWUaKNMVTnmnDTF-XZHN2Mf_vgjwOEKHbu4Ls-UrCCl1lZFoz0V2y8Ut6F4MGIvbet9F-CEjE4FDsxOBSDQzE67KHqH6Rs_G0ZvbTNafRuRKGvfrTgRVAWetPaelBRaGdP4T88E5AQ
CitedBy_id crossref_primary_10_1002_oca_3052
crossref_primary_10_1007_s40435_025_01611_y
crossref_primary_10_1016_j_aej_2025_02_032
crossref_primary_10_3390_math10234519
crossref_primary_10_1016_j_engappai_2022_104981
crossref_primary_10_1016_j_dajour_2023_100205
crossref_primary_10_3390_math10193566
crossref_primary_10_1007_s00202_024_02344_5
crossref_primary_10_1049_rpg2_12803
crossref_primary_10_1007_s10489_022_03269_x
crossref_primary_10_1016_j_heliyon_2024_e34326
crossref_primary_10_1080_23307706_2023_2270481
crossref_primary_10_3390_en16114304
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1155_2023_9976375
crossref_primary_10_1007_s00500_023_07974_8
crossref_primary_10_1007_s00521_022_07558_x
crossref_primary_10_1016_j_matcom_2024_02_008
crossref_primary_10_1002_jnm_2952
crossref_primary_10_1016_j_engappai_2023_106814
crossref_primary_10_1016_j_engappai_2023_107702
crossref_primary_10_1007_s10462_025_11289_5
crossref_primary_10_1049_rpg2_12817
crossref_primary_10_1007_s13042_024_02216_1
crossref_primary_10_1109_ACCESS_2024_3360300
crossref_primary_10_1016_j_jestch_2025_102053
crossref_primary_10_1080_15325008_2023_2240360
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_1016_j_enconman_2023_117390
crossref_primary_10_1109_ACCESS_2023_3308825
crossref_primary_10_1371_journal_pone_0286060
crossref_primary_10_1016_j_jestch_2022_101166
crossref_primary_10_1002_adc2_121
crossref_primary_10_1016_j_prime_2023_100380
crossref_primary_10_1038_s41598_025_05251_2
crossref_primary_10_1016_j_epsr_2023_109916
crossref_primary_10_1002_oca_3037
crossref_primary_10_1007_s00366_021_01545_x
crossref_primary_10_1080_15325008_2023_2280904
crossref_primary_10_1016_j_engappai_2022_105778
crossref_primary_10_1109_TCSS_2023_3238965
crossref_primary_10_1016_j_asoc_2024_112121
crossref_primary_10_1016_j_egyr_2023_10_074
crossref_primary_10_1016_j_enbuild_2024_114385
crossref_primary_10_1007_s00521_024_09568_3
crossref_primary_10_1007_s00202_023_02033_9
crossref_primary_10_1080_02286203_2023_2281181
crossref_primary_10_1177_09544062241261268
crossref_primary_10_3390_app13116810
crossref_primary_10_1016_j_jestch_2024_101897
crossref_primary_10_1371_journal_pone_0291463
crossref_primary_10_1016_j_knosys_2022_110169
crossref_primary_10_1049_rpg2_12553
crossref_primary_10_1080_17452007_2025_2459657
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1016_j_asoc_2024_112268
crossref_primary_10_1080_15435075_2025_2523508
crossref_primary_10_1007_s12652_022_03751_x
crossref_primary_10_1016_j_engappai_2023_107574
crossref_primary_10_1016_j_renene_2025_123878
crossref_primary_10_1080_23080477_2022_2054197
crossref_primary_10_1016_j_knosys_2025_114273
crossref_primary_10_1080_15376494_2023_2229841
crossref_primary_10_1007_s00500_023_09151_3
crossref_primary_10_1007_s40815_022_01251_w
crossref_primary_10_3389_fbioe_2022_1018895
crossref_primary_10_1016_j_resourpol_2021_102300
crossref_primary_10_3390_en15218063
Cites_doi 10.1007/s00521-013-1433-8
10.1126/science.220.4598.671
10.1016/j.swevo.2018.02.013
10.1007/s00500-018-3432-2
10.1016/j.jksuci.2018.06.003
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2017.07.002
10.1109/ICNN.1995.488968
10.1023/A:1008202821328
10.1007/s00500-020-05130-0
10.1016/j.asoc.2020.106204
10.1016/j.ins.2014.02.123
10.1016/j.swevo.2016.10.001
10.1007/s00521-015-1925-9
10.1007/s00521-015-1870-7
10.1016/j.asoc.2019.01.043
10.1016/j.eswa.2019.113122
10.1016/j.engappai.2019.103407
10.1007/s10898-007-9149-x
10.1016/j.engappai.2019.103249
10.1080/15325008.2014.903546
10.1016/j.knosys.2019.02.010
10.1016/j.compstruc.2012.03.013
10.1016/B978-008045157-2/50081-X
10.1016/j.cnsns.2012.06.009
10.1177/003754970107600201
10.1061/(ASCE)CP.1943-5487.0000163
10.1007/s00521-017-3335-7
10.1108/02644401011008577
10.1007/s00366-011-0241-y
10.3906/elk-1311-111
10.1016/j.tree.2016.06.007
10.1007/978-3-642-32894-7_27
10.1016/j.compstruc.2012.09.003
10.1016/j.compstruc.2014.03.007
10.1098/rsif.2017.0298
10.1007/s00500-017-2597-4
10.1109/TSMCB.2006.873185
10.1016/j.asoc.2017.01.008
10.1016/j.ins.2009.03.004
10.1016/j.knosys.2018.12.008
10.3390/app8112080
10.1016/j.engappai.2019.103294
10.1016/j.jfranklin.2012.06.008
10.1109/CEC.2007.4425083
10.3390/sym12081234
10.1016/j.compstruc.2012.07.010
10.1016/j.cad.2010.12.015
10.1016/j.compstruc.2016.03.001
10.1016/j.knosys.2015.12.022
10.1016/j.knosys.2015.07.006
10.1016/j.knosys.2014.07.025
10.7551/mitpress/1290.001.0001
10.1016/j.advengsoft.2016.01.008
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115292
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115292
S0957417421007235
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c438t-9a5480fed2aaed7e086a75a7e477b751ce2b4e403df123810dfff1d4d07f52973
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688432600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Oct 05 00:24:39 EDT 2025
Sat Nov 29 07:10:51 EST 2025
Tue Nov 18 21:34:47 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modified algorithm
Global optimization
Chaos theory
Mutualism
Sinusoidal map
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-9a5480fed2aaed7e086a75a7e477b751ce2b4e403df123810dfff1d4d07f52973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hdl.handle.net/20.500.12684/10730
PQID 2576366520
PQPubID 2045477
ParticipantIDs proquest_journals_2576366520
crossref_primary_10_1016_j_eswa_2021_115292
crossref_citationtrail_10_1016_j_eswa_2021_115292
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115292
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Çelik (b0055) 2020; 88
Krohling, dos Santos Coelho (b0155) 2006; 36
Yang, X. (2012). Flower pollination algorithm for global optimization. Oral session presentation at the meeting of International Conference on Unconventional Computation and Natural Computation; Orleans, France.
Saha, Mukherjee (b0240) 2018; 22
Cortés-Toro, Crawford, Gómez-Pulido, Soto, Lanza-Gutiérrez (b0035) 2018; 8
Li, Zhang, Yin (b0165) 2014; 24
Geem, Kim, Loganathan (b0085) 2001; 76
Karaboga, Basturk (b0130) 2007; 39
Bonabeau, Dorigo, Theraulaz (b0015) 1999
Eskandar, Sadollah, Bahreininejad, Hamdi (b0070) 2012; 110-111
Sutherland, K.R., & Weihs, D. (2017). Hydrodynamic advantages of swimming by salp chains. Journal of The Royal Society Interface, 14(133), 20170298.
Mirjalili, Lewis (b0180) 2016; 95
Mirjalili (b0185) 2016; 96
Hegazy, Makhlouf, El-Tawel (b0110) 2020; 32
Yang, Deb, Hanne, He (b0280) 2019; 31
Çelik (b0050) 2020; 87
Elaziz, Mirjalili (b0065) 2019; 172
Tubishat, Idris, Shuib, Abushariah, Mirjalili (b0265) 2020; 145
Henschke, Everett, Richardson, Suthers (b0115) 2016; 31
Gandomi, Yang, Alavi (b0080) 2013; 29
Braik, Sheta, Turabieh, Alhiary (b0020) 2020; 25
Rashedi, Nezamabadi-pour, Saryazdi (b0230) 2009; 179
Zeng, Shu, Zhang (b0285) 2020; 2020
Gupta, Deep (b0095) 2019; 165
Mohanty, Sahu, Panda (b0210) 2014; 42
Guha, Roy, Banerjee (b0090) 2017; 33
Askarzadeh (b0005) 2016; 169
Kaveh, Khayatazad (b0140) 2012; 112-113
Truong, Nallagownden, Baharudin, Vo (b0270) 2019; 77
Gandomi, Yang, Talatahari, Alavi (b0075) 2013; 18
Hayyolalam, Pourhaji Kazem (b0105) 2020; 87
Mirjalili, Mirjalili, Hatamlou (b0190) 2016; 27
Kirkpatrick, Gelatt, Vecchi (b0150) 1983; 220
Mirjalili, Mirjalili, Lewis (b0170) 2014; 69
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees algorithm, a novel tool for complex optimisation problems. Oral session presentation at the meeting of the 2nd international virtual conference on intelligent production machines and systems, Elsevier: Oxford.
Cheng, Lien (b0025) 2012; 26
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Oral session presentation at the meeting of the IEEE international conference on neural networks, Perth, Australia.
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0195) 2017; 114
Storn, Price (b0255) 1997; 11
Salimi (b0245) 2015; 75
Kaveh, Talatahari (b0135) 2010; 27
Güvenç, Yiğit, Işık, Akkaya (b0100) 2016; 24
Çelik, Öztürk (b0040) 2018; 22
Li, Zhu, Liu (b0160) 2020; 12
Jain, Singh, Rani (b0125) 2019; 44
Wang, Guo, Gandomi, Hao, Wang (b0290) 2014; 274
Rao, Savsani, Vakharia (b0225) 2011; 43
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Bradford Company.
Mirjalili, Gandomi (b0200) 2017; 53
Cheng, Prayogo (b0030) 2014; 139
Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Oral session presentation at the meeting of IEEE Congress on Evolutionary Computation; Singapore.
Çelik (b0045) 2018; 30
Mohamed, Bilel, Alsagri (b0205) 2020; 91
Singh, Singh, Houssein (b0250) 2020
Holland (b0120) 1975
Sadollah, Bahreininejad, Eskandar, Hamdi (b0235) 2012; 102-103
Mirjalili (b0175) 2015; 89
Panda, Sahu, Mohanty (b0215) 2012; 349
10.1016/j.eswa.2021.115292_b0010
Cheng (10.1016/j.eswa.2021.115292_b0030) 2014; 139
Saha (10.1016/j.eswa.2021.115292_b0240) 2018; 22
Truong (10.1016/j.eswa.2021.115292_b0270) 2019; 77
Cheng (10.1016/j.eswa.2021.115292_b0025) 2012; 26
Mohamed (10.1016/j.eswa.2021.115292_b0205) 2020; 91
Panda (10.1016/j.eswa.2021.115292_b0215) 2012; 349
Askarzadeh (10.1016/j.eswa.2021.115292_b0005) 2016; 169
Cortés-Toro (10.1016/j.eswa.2021.115292_b0035) 2018; 8
Tubishat (10.1016/j.eswa.2021.115292_b0265) 2020; 145
Zeng (10.1016/j.eswa.2021.115292_b0285) 2020; 2020
Sadollah (10.1016/j.eswa.2021.115292_b0235) 2012; 102-103
Çelik (10.1016/j.eswa.2021.115292_b0045) 2018; 30
10.1016/j.eswa.2021.115292_b0260
10.1016/j.eswa.2021.115292_b0145
10.1016/j.eswa.2021.115292_b0220
Mirjalili (10.1016/j.eswa.2021.115292_b0180) 2016; 95
Hegazy (10.1016/j.eswa.2021.115292_b0110) 2020; 32
Braik (10.1016/j.eswa.2021.115292_b0020) 2020; 25
Mohanty (10.1016/j.eswa.2021.115292_b0210) 2014; 42
Mirjalili (10.1016/j.eswa.2021.115292_b0170) 2014; 69
Guha (10.1016/j.eswa.2021.115292_b0090) 2017; 33
Bonabeau (10.1016/j.eswa.2021.115292_b0015) 1999
Güvenç (10.1016/j.eswa.2021.115292_b0100) 2016; 24
Storn (10.1016/j.eswa.2021.115292_b0255) 1997; 11
10.1016/j.eswa.2021.115292_b0060
Wang (10.1016/j.eswa.2021.115292_b0290) 2014; 274
Gupta (10.1016/j.eswa.2021.115292_b0095) 2019; 165
Çelik (10.1016/j.eswa.2021.115292_b0055) 2020; 88
10.1016/j.eswa.2021.115292_b0275
Gandomi (10.1016/j.eswa.2021.115292_b0080) 2013; 29
Geem (10.1016/j.eswa.2021.115292_b0085) 2001; 76
Henschke (10.1016/j.eswa.2021.115292_b0115) 2016; 31
Li (10.1016/j.eswa.2021.115292_b0160) 2020; 12
Mirjalili (10.1016/j.eswa.2021.115292_b0195) 2017; 114
Rashedi (10.1016/j.eswa.2021.115292_b0230) 2009; 179
Mirjalili (10.1016/j.eswa.2021.115292_b0175) 2015; 89
Çelik (10.1016/j.eswa.2021.115292_b0040) 2018; 22
Kirkpatrick (10.1016/j.eswa.2021.115292_b0150) 1983; 220
Kaveh (10.1016/j.eswa.2021.115292_b0135) 2010; 27
Hayyolalam (10.1016/j.eswa.2021.115292_b0105) 2020; 87
Mirjalili (10.1016/j.eswa.2021.115292_b0200) 2017; 53
Li (10.1016/j.eswa.2021.115292_b0165) 2014; 24
Eskandar (10.1016/j.eswa.2021.115292_b0070) 2012; 110-111
Elaziz (10.1016/j.eswa.2021.115292_b0065) 2019; 172
Mirjalili (10.1016/j.eswa.2021.115292_b0185) 2016; 96
Mirjalili (10.1016/j.eswa.2021.115292_b0190) 2016; 27
Singh (10.1016/j.eswa.2021.115292_b0250) 2020
Kaveh (10.1016/j.eswa.2021.115292_b0140) 2012; 112-113
Salimi (10.1016/j.eswa.2021.115292_b0245) 2015; 75
Krohling (10.1016/j.eswa.2021.115292_b0155) 2006; 36
Karaboga (10.1016/j.eswa.2021.115292_b0130) 2007; 39
Holland (10.1016/j.eswa.2021.115292_b0120) 1975
Çelik (10.1016/j.eswa.2021.115292_b0050) 2020; 87
Gandomi (10.1016/j.eswa.2021.115292_b0075) 2013; 18
Jain (10.1016/j.eswa.2021.115292_b0125) 2019; 44
Rao (10.1016/j.eswa.2021.115292_b0225) 2011; 43
Yang (10.1016/j.eswa.2021.115292_b0280) 2019; 31
References_xml – volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0175
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– volume: 102-103
  start-page: 49
  year: 2012
  end-page: 63
  ident: b0235
  article-title: Mine blast algorithm for optimization of truss structures with discrete variables
  publication-title: Computers and Structures
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b0125
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 87
  start-page: 103294
  year: 2020
  ident: b0050
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Oral session presentation at the meeting of the IEEE international conference on neural networks, Perth, Australia.
– volume: 88
  start-page: 103407
  year: 2020
  ident: b0055
  article-title: Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 112-113
  start-page: 283
  year: 2012
  end-page: 294
  ident: b0140
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers and Structures
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b0290
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
– volume: 12
  start-page: 1
  year: 2020
  end-page: 30
  ident: b0160
  article-title: An improved moth-flame optimization algorithm for engineering problems
  publication-title: Symmetry
– volume: 24
  start-page: 1867
  year: 2014
  end-page: 1877
  ident: b0165
  article-title: Animal migration optimization: An optimization algorithm inspired by animal migration behavior
  publication-title: Neural Computing and Applications
– volume: 77
  start-page: 567
  year: 2019
  end-page: 583
  ident: b0270
  article-title: A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems
  publication-title: Applied Soft Computing
– reference: Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Oral session presentation at the meeting of IEEE Congress on Evolutionary Computation; Singapore.
– reference: Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees algorithm, a novel tool for complex optimisation problems. Oral session presentation at the meeting of the 2nd international virtual conference on intelligent production machines and systems, Elsevier: Oxford.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0085
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: b0245
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
– year: 2020
  ident: b0250
  article-title: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
  publication-title: Evolutionary Intelligence
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0255
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 349
  start-page: 2609
  year: 2012
  end-page: 2625
  ident: b0215
  article-title: Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization
  publication-title: Journal of the Franklin Institute
– volume: 31
  start-page: 1987
  year: 2019
  end-page: 1994
  ident: b0280
  article-title: Attraction and diffusion in nature-inspired optimization algorithms
  publication-title: Neural Computing and Applications
– volume: 25
  start-page: 181
  year: 2020
  end-page: 206
  ident: b0020
  article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm
  publication-title: Soft Computing
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0185
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 145
  start-page: 113122
  year: 2020
  ident: b0265
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 155
  year: 2010
  end-page: 182
  ident: b0135
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
– volume: 42
  start-page: 959
  year: 2014
  end-page: 969
  ident: b0210
  article-title: Tuning and assessment of proportional–integral–derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm
  publication-title: Electric Power Components and Systems
– volume: 32
  start-page: 335
  year: 2020
  end-page: 344
  ident: b0110
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 33
  start-page: 46
  year: 2017
  end-page: 67
  ident: b0090
  article-title: Quasi-oppositional symbiotic organism search algorithm applied to load frequency control
  publication-title: Swarm and Evolutionary Computations
– reference: Yang, X. (2012). Flower pollination algorithm for global optimization. Oral session presentation at the meeting of International Conference on Unconventional Computation and Natural Computation; Orleans, France.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0170
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: b0030
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Computers and Structures
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0225
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0130
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– volume: 26
  start-page: 612
  year: 2012
  end-page: 624
  ident: b0025
  article-title: Hybrid artificial intelligence-based PBA for benchmark functions and facility layout design optimization
  publication-title: Journal of Computing in Civil Engineering
– reference: Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Bradford Company.
– volume: 91
  start-page: 106204
  year: 2020
  ident: b0205
  article-title: A multi-objective methodology for multi-criteria engineering design
  publication-title: Applied Soft Computing
– volume: 24
  start-page: 1150
  year: 2016
  end-page: 1162
  ident: b0100
  article-title: Performance analysis of biogeography based optimization for automatic voltage regulator system
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0150
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 30
  start-page: 1991
  year: 2018
  end-page: 2002
  ident: b0045
  article-title: Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system
  publication-title: Neural Computing and Applications
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0180
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 87
  start-page: 103249
  year: 2020
  ident: b0105
  article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: b0155
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0005
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers and Structures
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0195
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0285
  article-title: Memetic salp swarm algorithm-based frequency regulation for power system with renewable energy integration
  publication-title: Mathematical Problems in Engineering
– volume: 8
  start-page: 2080
  year: 2018
  ident: b0035
  article-title: A new metaheuristic inspired by the vapour-liquid equilibrium for continuous optimization
  publication-title: Applied Sciences
– volume: 110-111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b0070
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers and Structures
– volume: 22
  start-page: 8011
  year: 2018
  end-page: 8024
  ident: b0040
  article-title: A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator
  publication-title: Soft Computing
– year: 1975
  ident: b0120
  article-title: Adaptation in natural and artificial systems
– year: 1999
  ident: b0015
  article-title: Swarm intelligence: From natural to artificial systems
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b0080
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
– volume: 22
  start-page: 3797
  year: 2018
  end-page: 3816
  ident: b0240
  article-title: A novel chaos-integrated symbiotic organisms search algorithm for global optimization
  publication-title: Soft Computing
– volume: 18
  start-page: 89
  year: 2013
  end-page: 98
  ident: b0075
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 165
  start-page: 374
  year: 2019
  end-page: 406
  ident: b0095
  article-title: Improved sine cosine algorithm with crossover scheme for global optimization
  publication-title: Knowledge-Based Systems
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0190
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Application
– volume: 172
  start-page: 42
  year: 2019
  end-page: 63
  ident: b0065
  article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 31
  start-page: 720
  year: 2016
  end-page: 733
  ident: b0115
  article-title: Rethinking the role of salps in the ocean
  publication-title: Trends in Ecology and Evolution
– volume: 53
  start-page: 407
  year: 2017
  end-page: 419
  ident: b0200
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Applied Soft Computing
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0230
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– reference: Sutherland, K.R., & Weihs, D. (2017). Hydrodynamic advantages of swimming by salp chains. Journal of The Royal Society Interface, 14(133), 20170298.
– volume: 24
  start-page: 1867
  issue: 7-8
  year: 2014
  ident: 10.1016/j.eswa.2021.115292_b0165
  article-title: Animal migration optimization: An optimization algorithm inspired by animal migration behavior
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1433-8
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.eswa.2021.115292_b0150
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2021.115292_b0125
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.013
– volume: 22
  start-page: 8011
  issue: 23
  year: 2018
  ident: 10.1016/j.eswa.2021.115292_b0040
  article-title: A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3432-2
– volume: 32
  start-page: 335
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0110
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.06.003
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.115292_b0170
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2021.115292_b0195
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 10.1016/j.eswa.2021.115292_b0145
  doi: 10.1109/ICNN.1995.488968
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2021.115292_b0255
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 25
  start-page: 181
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0020
  article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05130-0
– volume: 91
  start-page: 106204
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0205
  article-title: A multi-objective methodology for multi-criteria engineering design
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106204
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.eswa.2021.115292_b0290
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– volume: 33
  start-page: 46
  year: 2017
  ident: 10.1016/j.eswa.2021.115292_b0090
  article-title: Quasi-oppositional symbiotic organism search algorithm applied to load frequency control
  publication-title: Swarm and Evolutionary Computations
  doi: 10.1016/j.swevo.2016.10.001
– volume: 31
  start-page: 1987
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2021.115292_b0280
  article-title: Attraction and diffusion in nature-inspired optimization algorithms
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1925-9
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0190
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-015-1870-7
– volume: 77
  start-page: 567
  year: 2019
  ident: 10.1016/j.eswa.2021.115292_b0270
  article-title: A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.01.043
– year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0250
  article-title: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
  publication-title: Evolutionary Intelligence
– volume: 145
  start-page: 113122
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0265
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113122
– volume: 88
  start-page: 103407
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0055
  article-title: Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103407
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2021.115292_b0130
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 87
  start-page: 103249
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0105
  article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103249
– year: 1999
  ident: 10.1016/j.eswa.2021.115292_b0015
– volume: 42
  start-page: 959
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2021.115292_b0210
  article-title: Tuning and assessment of proportional–integral–derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2014.903546
– volume: 172
  start-page: 42
  year: 2019
  ident: 10.1016/j.eswa.2021.115292_b0065
  article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.02.010
– volume: 102-103
  start-page: 49
  year: 2012
  ident: 10.1016/j.eswa.2021.115292_b0235
  article-title: Mine blast algorithm for optimization of truss structures with discrete variables
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2012.03.013
– ident: 10.1016/j.eswa.2021.115292_b0220
  doi: 10.1016/B978-008045157-2/50081-X
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2021.115292_b0075
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 76
  start-page: 60
  year: 2001
  ident: 10.1016/j.eswa.2021.115292_b0085
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 26
  start-page: 612
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2021.115292_b0025
  article-title: Hybrid artificial intelligence-based PBA for benchmark functions and facility layout design optimization
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000163
– volume: 30
  start-page: 1991
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2021.115292_b0045
  article-title: Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3335-7
– volume: 27
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2021.115292_b0135
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
  doi: 10.1108/02644401011008577
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2021.115292_b0080
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 24
  start-page: 1150
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0100
  article-title: Performance analysis of biogeography based optimization for automatic voltage regulator system
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
  doi: 10.3906/elk-1311-111
– volume: 31
  start-page: 720
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0115
  article-title: Rethinking the role of salps in the ocean
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/j.tree.2016.06.007
– ident: 10.1016/j.eswa.2021.115292_b0275
  doi: 10.1007/978-3-642-32894-7_27
– volume: 112-113
  start-page: 283
  year: 2012
  ident: 10.1016/j.eswa.2021.115292_b0140
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.eswa.2021.115292_b0030
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2014.03.007
– ident: 10.1016/j.eswa.2021.115292_b0260
  doi: 10.1098/rsif.2017.0298
– volume: 22
  start-page: 3797
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2021.115292_b0240
  article-title: A novel chaos-integrated symbiotic organisms search algorithm for global optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2597-4
– volume: 36
  start-page: 1407
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2021.115292_b0155
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
  doi: 10.1109/TSMCB.2006.873185
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0285
  article-title: Memetic salp swarm algorithm-based frequency regulation for power system with renewable energy integration
  publication-title: Mathematical Problems in Engineering
– volume: 53
  start-page: 407
  year: 2017
  ident: 10.1016/j.eswa.2021.115292_b0200
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.01.008
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2021.115292_b0230
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 165
  start-page: 374
  year: 2019
  ident: 10.1016/j.eswa.2021.115292_b0095
  article-title: Improved sine cosine algorithm with crossover scheme for global optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.12.008
– volume: 8
  start-page: 2080
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2021.115292_b0035
  article-title: A new metaheuristic inspired by the vapour-liquid equilibrium for continuous optimization
  publication-title: Applied Sciences
  doi: 10.3390/app8112080
– volume: 87
  start-page: 103294
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0050
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103294
– volume: 349
  start-page: 2609
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2021.115292_b0215
  article-title: Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2012.06.008
– ident: 10.1016/j.eswa.2021.115292_b0010
  doi: 10.1109/CEC.2007.4425083
– volume: 12
  start-page: 1
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2021.115292_b0160
  article-title: An improved moth-flame optimization algorithm for engineering problems
  publication-title: Symmetry
  doi: 10.3390/sym12081234
– volume: 110-111
  start-page: 151
  year: 2012
  ident: 10.1016/j.eswa.2021.115292_b0070
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.115292_b0225
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0005
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0185
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2021.115292_b0175
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– year: 1975
  ident: 10.1016/j.eswa.2021.115292_b0120
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2021.115292_b0245
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.07.025
– ident: 10.1016/j.eswa.2021.115292_b0060
  doi: 10.7551/mitpress/1290.001.0001
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2021.115292_b0180
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
SSID ssj0017007
Score 2.6045845
Snippet •A novel variant of salp swarm algorithm is proposed.•The proposal fruitfully employs three simple but effective methodologies.•It is applied to 35 benchmark...
This paper propounds a modified version of the salp swarm algorithm (mSSA) for solving optimization problems more prolifically. This technique is refined from...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115292
SubjectTerms Algorithms
Chains
Chaos theory
Exploitation
Global optimization
Modified algorithm
Mutualism
Parameter modification
Search process
Sinusoidal map
Title Advancement of the search process of salp swarm algorithm for global optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2021.115292
https://www.proquest.com/docview/2576366520
Volume 182
WOSCitedRecordID wos000688432600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg44EXfiMGA_mBtypV4thx8limIUBoQmKgwktkxzbr1CZVEmDw1-OL7aZUMAESL2nlNnHr-3I53913h9BTaaRKi0REkhIeUanzSBCiImFyrux-JdUDPfr9a35yks_nxRsfiumGdgK8rvOLi2L9X0Vtx6ywgTr7F-LeXNQO2PdW6PZoxW6PfyT4mYvqhyA_GJbetbF2pAAY7cRyPem-inY1EctPTbvoz1ZDxqEvENJYTbLyFM2JbzrT_eTFhxLJvS8EHShyW8HwIEgIxOdcLxdO667GXFv4pMi-9_D67Mj3AlqciX7E4LfBsv3Q2P-qWrHtoCAJMPUcRdN5zQJzZkxTcu5HC43EdeiZaqd8c55GGXcdE0ftTH6p6Z3T4Xyq7VpNYVqr_BlxffV2Kmi_hclgLgIpISRlV9E-4aywenx_9vJ4_moTduKx49eHH-dZVi4hcHem31kyO8_0wVA5vYVu-B0Gnjlk3EZXdH0H3QzdO7BX5nfRxy2g4MZgCxTsgII9UGAUgIIHoOANULAFCnZAwdtAwQEo99C758enRy8i32kjqmia91EhoOyf0YoIoRXXdp8rOBNcU84lZ0mliaSaxqkyCdh4sTLGJIqqmBsG3c_uo726qfUDhFVlTR7NK1ZISausKIyiUrBM5qpSMc0OUBJWrax8GXrohrIsQ77heQkrXcJKl26lD9Bkc87aFWG59NssCKP0ZqQzD0uLnUvPOwySK_393JWwH0-zjJH44T9e9hG6Pt4Vh2ivbz_rx-ha9aVfdO0Tj8Af8tmjBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancement+of+the+search+process+of+salp+swarm+algorithm+for+global+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=%C3%87elik%2C+Emre&rft.au=%C3%96zt%C3%BCrk%2C+Nihat&rft.au=Arya%2C+Yogendra&rft.date=2021-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=182&rft_id=info:doi/10.1016%2Fj.eswa.2021.115292&rft.externalDocID=S0957417421007235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon