Robust statistical inference based on the C-divergence family
This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other diverg...
Uloženo v:
| Vydáno v: | Annals of the Institute of Statistical Mathematics Ročník 71; číslo 5; s. 1289 - 1322 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
Springer Japan
01.10.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0020-3157, 1572-9052 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper describes a family of divergences, named herein as the
C
-divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the
C
-divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators. |
|---|---|
| AbstractList | This paper describes a family of divergences, named herein as the C-divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the C-divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators. This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the C -divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators. |
| Author | Basu, Ayanendranath Ghosh, Abhik Maji, Avijit Pardo, Leandro |
| Author_xml | – sequence: 1 givenname: Avijit surname: Maji fullname: Maji, Avijit email: avijit.maji@hotmail.com organization: Department of Statistics and Information Management, Reserve Bank of India – sequence: 2 givenname: Abhik surname: Ghosh fullname: Ghosh, Abhik organization: Indian Statistical Institute – sequence: 3 givenname: Ayanendranath surname: Basu fullname: Basu, Ayanendranath organization: Indian Statistical Institute – sequence: 4 givenname: Leandro surname: Pardo fullname: Pardo, Leandro organization: Department of Statistics and O.R., Complutense University of Madrid |
| BookMark | eNp9kE9LAzEQxYMo2FY_gLcFz9FJsptkDx6k-A8Kgug5ZJNsTWmzNUmFfnt3XUEQ7GmGmffmDb8pOg5dcAhdELgiAOI6ESg5w0AkBi4kro7QhFSC4hoqeowmABQw6yenaJrSCgAYZXSCbl66ZpdykbLOPmVv9LrwoXXRBeOKRidniy4U-d0Vc2z9p4vL702rN369P0MnrV4nd_5TZ-jt_u51_ogXzw9P89sFNiWTGdelAcJIbSw4OzQCrKkqa6U1wE1tqWm0kaJlQAXljeQMHGuAlo1j0lVshi7Hu9vYfexcymrV7WLoIxWjXIDgHOghFaWi5LWUvDyoAlFXwGUpehUZVSZ2KUXXqm30Gx33ioAaiKuRuOqJq4G4Gr4UfzzGD1i7kKP264NOOjpTnxKWLv7-9L_pCwN6k_4 |
| CitedBy_id | crossref_primary_10_1109_TIT_2024_3366538 crossref_primary_10_1007_s40304_020_00221_8 crossref_primary_10_1007_s10463_025_00939_8 crossref_primary_10_1080_00949655_2020_1783665 crossref_primary_10_1080_03610926_2022_2155788 crossref_primary_10_1007_s11749_024_00956_4 |
| Cites_doi | 10.1109/TIT.2018.2794537 10.1016/j.jspi.2015.01.003 10.1111/j.2517-6161.1984.tb01318.x 10.1111/j.2517-6161.1966.tb00626.x 10.1016/j.jspi.2008.04.022 10.1093/biomet/85.3.549 10.1002/0471725382 10.1080/01621459.1989.10478744 10.1016/j.spl.2016.02.007 10.1239/jap/1269610827 10.1080/01621459.1987.10478501 10.1016/j.jspi.2012.03.019 10.1007/s10463-012-0372-y 10.1201/b10956 10.1080/01621459.1986.10478264 10.3150/16-BEJ826 10.1007/s13571-012-0050-3 10.1214/aos/1176350367 10.1002/em.2860060207 10.1007/BF00773476 10.1214/aos/1176343997 10.1214/aos/1176343842 10.1214/aos/1176325512 10.5109/12576 10.1007/978-1-4757-2769-2 10.1016/j.jmva.2008.02.004 10.1007/s13171-014-0063-2 10.1093/biomet/88.3.865 |
| ContentType | Journal Article |
| Copyright | The Institute of Statistical Mathematics, Tokyo 2018 Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. 2019 The Institute of Statistical Mathematics, Tokyo 2018. |
| Copyright_xml | – notice: The Institute of Statistical Mathematics, Tokyo 2018 – notice: Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 – notice: The Institute of Statistical Mathematics, Tokyo 2018. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH H8D HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10463-018-0678-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) Aerospace Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Statistics Mathematics |
| EISSN | 1572-9052 |
| EndPage | 1322 |
| ExternalDocumentID | 10_1007_s10463_018_0678_5 |
| GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7.U 78A 7WY 8FL 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M2O M4Y MA- NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ~02 ~8M ~EX -Y2 1SB 2.D 2VQ 2WC 692 88I 8FE 8FG AAPKM AARHV AAYTO AAYXX ABDBE ABFSG ABJCF ABQSL ABRTQ ABULA ABUWG ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ARAPS ATHPR AZQEC BBWZM BENPR BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO FA8 FRNLG GNUQQ H13 HCIFZ HF~ IHE K6V K7- L6V M0C M2P M7S N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS RNI RZC RZE RZK S1Z S26 S28 SCLPG SDD T16 TEORI TKC ZWQNP 3V. 7SC 7XB 8AL 8FD 8FK H8D JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c438t-94c01319cd0ed131970dc55dd8dc06c9d2cbac87f302726b8630e3b024be38e53 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481796100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-3157 |
| IngestDate | Sat Nov 01 11:00:31 EDT 2025 Sat Oct 11 05:45:46 EDT 2025 Sat Oct 11 05:44:44 EDT 2025 Tue Nov 18 21:14:26 EST 2025 Sat Nov 29 02:58:41 EST 2025 Fri Feb 21 02:32:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Generalized power divergence Divergence Density power divergence Power divergence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-94c01319cd0ed131970dc55dd8dc06c9d2cbac87f302726b8630e3b024be38e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2079506847 |
| PQPubID | 25813 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3267076602 proquest_journals_2274698864 proquest_journals_2079506847 crossref_primary_10_1007_s10463_018_0678_5 crossref_citationtrail_10_1007_s10463_018_0678_5 springer_journals_10_1007_s10463_018_0678_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Annals of the Institute of Statistical Mathematics |
| PublicationTitleAbbrev | Ann Inst Stat Math |
| PublicationYear | 2019 |
| Publisher | Springer Japan Springer Nature B.V |
| Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
| References | Broniatowski, M., Toma, A., Vajda, I. (2012). Decomposable pseudodistances and applications in statistical estimation. Journal of Statistical Planning and Inference, 142, 2574–2585. BeranRJMinimum Hellinger distance estimates for parametric modelsAnnals of Statistics1977544546344870010.1214/aos/11763438420381.62028 Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559. Broniatowski, M., Vajda, I. (2012). Several applications of divergence criteria in continuous families. Kybernetika, 48, 600–636. Ghosh, A., Basu, A., Pardo, L. (2015). On the robustness of a divergence based test of simple statistical hypotheses. Journal of Statistical Planning and Inference, 161, 91–108. Ghosh, A., Maji, A., Basu, A. (2013). Robust inference based on divergences in reliability systems. In I. Frenkel, A. Karagrigoriou, A. Lisnianski, A. Kleyner (Eds.), Applied reliability engineering and risk analysis. probabilistic models and statistical inference. Dedicated to the Centennial of the birth of Boris Gnedenko. New York: Wiley. SimpsonDGMinimum Hellinger distance estimation for the analysis of count dataJournal of the American Statistical Association19878280280790998510.1080/01621459.1987.104785010633.62029 Ghosh, A., Harris, I. R., Maji, A., Basu, A., Pardo, L. (2017). A generalized divergence for statistical inference. Bernoulli, 23, 2746–2783. Woodruff, R. C., Mason, J. M., Valencia, R., Zimmering, S. (1984). Chemical mutagenesis testing in drosophila I: Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories. Environmental and Molecular Mutagenesis, 6, 189–202. Simpson, D. G., Carroll, R. J., Ruppert, D. (1987). M-estimation for discrete data: Asymptotic distribution theory and implications. Annals of Statistics, 15, 657–669. SimpsonDGHellinger deviance test: Efficiency, breakdown points, and examplesJournal of the American Statistical Association19898410711399966710.1080/01621459.1989.10478744 Vonta, F., Karagrigoriou, A. (2010). Generalized measures of divergences in survival analysis and reliability. Journal of Applied Probability, 47, 216–234. LehmannELTheory of point estimation1983New YorkWiley10.1007/978-1-4757-2769-20522.62020 Ghosh, A., Basu, A. (2016). Testing composite null hypotheses based on S-divergences. Statistics and Probability Letters, 114, 38–47. LindsayBGEfficiency versus robustness: The case for minimum Hellinger distance and related methodsAnnals of Statistics19942210811114129255710.1214/aos/11763255120807.62030 Fujisawa, H., Eguchi., S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053–2081. Tamura, R. N., Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance. Journal of the American Statistical Association, 81, 223–229. GhoshAAsymptotic properties of minimum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-divergence estimator for discrete modelsSankhya A201577380407340012010.1007/s13171-014-0063-21322.62093 Ali, S. M., Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society B, 28, 131–142. Basu, A., Mandal, A., Martin, N., Pardo, L. (2013). Testing statistical hypotheses based on the density power divergence. Annals of the Institute of Statistical Mathematics, 65, 319–348. PardoLStatistical inference based on divergences2006Boca RatonCRC/Chapman-Hall1118.62008 StiglerSMDo robust estimators work with real data?Annals of Statistics197751055109845520510.1214/aos/11763439970374.62050(with discussion) CsiszárIEine informations theoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen KettenPublications of the Mathematical Institute of the Hungarian Academy of Sciences19633851070124.08703 Basu, A., Shioya, H., Park, C. (2011). Statistical inference: The minimum distance approach. Boca Raton: Chapman & Hall/CRC. Jones, M. C., Hjort, N. L., Harris, I. R., Basu, A. (2001). A comparison of related density based minimum divergence estimators. Biometrika, 88, 865–873. Patra, S., Maji, A., Basu, A., Pardo, L. (2013). The power divergence and the density power divergence families: The mathematical connection. Sankhya B, 75, 16–28. Cressie, N., Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society B, 46, 440–464. Ghosh, A., Basu, A. (2018). A new family of divergences originating from model adequacy tests and application to robust statistical inference. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2018.2794537. Rousseeuw, P. J., Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley. Basu, A., Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: Efficiency, distributions and robustness. Annals of the Institute of Statistical Mathematics, 46, 683–705. CsiszárIInformation-type measures of difference of probability distributions and indirect observationsStudia Scientiarum Mathematicarum Hungarica196722993182193450157.25802 Jana, S., Basu, A. (2018). A characterization of all single-integral, non-kernel divergence estimators. Technical Report, ISRU/2018/1. Kolkata: Indian Statistical Institute. Park, C., Basu, A. (2004). Minimum disparity estimation: Asymptotic normality and breakdown point results. Bulletin of Informatics and Cybernetics, 36, 19–33. (special issue in Honor of Professor Takashi Yanagawa). Mattheou, K., Leeb, S., Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. Journal of Statistical Planning and Inference, 139, 228–235. Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley. A Ghosh (678_CR13) 2015; 77 678_CR28 678_CR27 678_CR26 I Csiszár (678_CR11) 1967; 2 678_CR24 678_CR21 678_CR20 678_CR3 678_CR4 678_CR5 678_CR1 SM Stigler (678_CR32) 1977; 5 678_CR2 EL Lehmann (678_CR22) 1983 DG Simpson (678_CR29) 1987; 82 BG Lindsay (678_CR23) 1994; 22 678_CR19 678_CR18 678_CR17 678_CR16 678_CR15 678_CR14 678_CR35 678_CR12 678_CR34 678_CR33 678_CR31 678_CR7 678_CR8 678_CR9 L Pardo (678_CR25) 2006 RJ Beran (678_CR6) 1977; 5 I Csiszár (678_CR10) 1963; 3 DG Simpson (678_CR30) 1989; 84 |
| References_xml | – reference: Basu, A., Shioya, H., Park, C. (2011). Statistical inference: The minimum distance approach. Boca Raton: Chapman & Hall/CRC. – reference: Rousseeuw, P. J., Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley. – reference: SimpsonDGHellinger deviance test: Efficiency, breakdown points, and examplesJournal of the American Statistical Association19898410711399966710.1080/01621459.1989.10478744 – reference: Basu, A., Mandal, A., Martin, N., Pardo, L. (2013). Testing statistical hypotheses based on the density power divergence. Annals of the Institute of Statistical Mathematics, 65, 319–348. – reference: CsiszárIInformation-type measures of difference of probability distributions and indirect observationsStudia Scientiarum Mathematicarum Hungarica196722993182193450157.25802 – reference: Broniatowski, M., Vajda, I. (2012). Several applications of divergence criteria in continuous families. Kybernetika, 48, 600–636. – reference: Jones, M. C., Hjort, N. L., Harris, I. R., Basu, A. (2001). A comparison of related density based minimum divergence estimators. Biometrika, 88, 865–873. – reference: Ghosh, A., Basu, A., Pardo, L. (2015). On the robustness of a divergence based test of simple statistical hypotheses. Journal of Statistical Planning and Inference, 161, 91–108. – reference: SimpsonDGMinimum Hellinger distance estimation for the analysis of count dataJournal of the American Statistical Association19878280280790998510.1080/01621459.1987.104785010633.62029 – reference: Basu, A., Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: Efficiency, distributions and robustness. Annals of the Institute of Statistical Mathematics, 46, 683–705. – reference: Patra, S., Maji, A., Basu, A., Pardo, L. (2013). The power divergence and the density power divergence families: The mathematical connection. Sankhya B, 75, 16–28. – reference: LindsayBGEfficiency versus robustness: The case for minimum Hellinger distance and related methodsAnnals of Statistics19942210811114129255710.1214/aos/11763255120807.62030 – reference: Mattheou, K., Leeb, S., Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. Journal of Statistical Planning and Inference, 139, 228–235. – reference: Tamura, R. N., Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance. Journal of the American Statistical Association, 81, 223–229. – reference: Fujisawa, H., Eguchi., S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053–2081. – reference: Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley. – reference: Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559. – reference: Broniatowski, M., Toma, A., Vajda, I. (2012). Decomposable pseudodistances and applications in statistical estimation. Journal of Statistical Planning and Inference, 142, 2574–2585. – reference: CsiszárIEine informations theoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen KettenPublications of the Mathematical Institute of the Hungarian Academy of Sciences19633851070124.08703 – reference: StiglerSMDo robust estimators work with real data?Annals of Statistics197751055109845520510.1214/aos/11763439970374.62050(with discussion) – reference: GhoshAAsymptotic properties of minimum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-divergence estimator for discrete modelsSankhya A201577380407340012010.1007/s13171-014-0063-21322.62093 – reference: Simpson, D. G., Carroll, R. J., Ruppert, D. (1987). M-estimation for discrete data: Asymptotic distribution theory and implications. Annals of Statistics, 15, 657–669. – reference: Ali, S. M., Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society B, 28, 131–142. – reference: Woodruff, R. C., Mason, J. M., Valencia, R., Zimmering, S. (1984). Chemical mutagenesis testing in drosophila I: Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories. Environmental and Molecular Mutagenesis, 6, 189–202. – reference: PardoLStatistical inference based on divergences2006Boca RatonCRC/Chapman-Hall1118.62008 – reference: BeranRJMinimum Hellinger distance estimates for parametric modelsAnnals of Statistics1977544546344870010.1214/aos/11763438420381.62028 – reference: Ghosh, A., Basu, A. (2018). A new family of divergences originating from model adequacy tests and application to robust statistical inference. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2018.2794537. – reference: LehmannELTheory of point estimation1983New YorkWiley10.1007/978-1-4757-2769-20522.62020 – reference: Vonta, F., Karagrigoriou, A. (2010). Generalized measures of divergences in survival analysis and reliability. Journal of Applied Probability, 47, 216–234. – reference: Ghosh, A., Harris, I. R., Maji, A., Basu, A., Pardo, L. (2017). A generalized divergence for statistical inference. Bernoulli, 23, 2746–2783. – reference: Ghosh, A., Basu, A. (2016). Testing composite null hypotheses based on S-divergences. Statistics and Probability Letters, 114, 38–47. – reference: Cressie, N., Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society B, 46, 440–464. – reference: Park, C., Basu, A. (2004). Minimum disparity estimation: Asymptotic normality and breakdown point results. Bulletin of Informatics and Cybernetics, 36, 19–33. (special issue in Honor of Professor Takashi Yanagawa). – reference: Ghosh, A., Maji, A., Basu, A. (2013). Robust inference based on divergences in reliability systems. In I. Frenkel, A. Karagrigoriou, A. Lisnianski, A. Kleyner (Eds.), Applied reliability engineering and risk analysis. probabilistic models and statistical inference. Dedicated to the Centennial of the birth of Boris Gnedenko. New York: Wiley. – reference: Jana, S., Basu, A. (2018). A characterization of all single-integral, non-kernel divergence estimators. Technical Report, ISRU/2018/1. Kolkata: Indian Statistical Institute. – ident: 678_CR15 doi: 10.1109/TIT.2018.2794537 – ident: 678_CR16 doi: 10.1016/j.jspi.2015.01.003 – ident: 678_CR9 doi: 10.1111/j.2517-6161.1984.tb01318.x – ident: 678_CR1 doi: 10.1111/j.2517-6161.1966.tb00626.x – ident: 678_CR24 doi: 10.1016/j.jspi.2008.04.022 – ident: 678_CR2 doi: 10.1093/biomet/85.3.549 – ident: 678_CR28 doi: 10.1002/0471725382 – volume: 84 start-page: 107 year: 1989 ident: 678_CR30 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1989.10478744 – ident: 678_CR14 doi: 10.1016/j.spl.2016.02.007 – ident: 678_CR34 doi: 10.1239/jap/1269610827 – ident: 678_CR7 – volume-title: Statistical inference based on divergences year: 2006 ident: 678_CR25 – volume: 82 start-page: 802 year: 1987 ident: 678_CR29 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478501 – ident: 678_CR8 doi: 10.1016/j.jspi.2012.03.019 – ident: 678_CR4 doi: 10.1007/s10463-012-0372-y – ident: 678_CR5 doi: 10.1201/b10956 – ident: 678_CR19 – ident: 678_CR33 doi: 10.1080/01621459.1986.10478264 – ident: 678_CR17 doi: 10.3150/16-BEJ826 – ident: 678_CR27 doi: 10.1007/s13571-012-0050-3 – ident: 678_CR20 – ident: 678_CR31 doi: 10.1214/aos/1176350367 – ident: 678_CR35 doi: 10.1002/em.2860060207 – ident: 678_CR3 doi: 10.1007/BF00773476 – volume: 5 start-page: 1055 year: 1977 ident: 678_CR32 publication-title: Annals of Statistics doi: 10.1214/aos/1176343997 – volume: 5 start-page: 445 year: 1977 ident: 678_CR6 publication-title: Annals of Statistics doi: 10.1214/aos/1176343842 – volume: 22 start-page: 1081 year: 1994 ident: 678_CR23 publication-title: Annals of Statistics doi: 10.1214/aos/1176325512 – ident: 678_CR26 doi: 10.5109/12576 – volume: 3 start-page: 85 year: 1963 ident: 678_CR10 publication-title: Publications of the Mathematical Institute of the Hungarian Academy of Sciences – volume-title: Theory of point estimation year: 1983 ident: 678_CR22 doi: 10.1007/978-1-4757-2769-2 – volume: 2 start-page: 299 year: 1967 ident: 678_CR11 publication-title: Studia Scientiarum Mathematicarum Hungarica – ident: 678_CR12 doi: 10.1016/j.jmva.2008.02.004 – volume: 77 start-page: 380 year: 2015 ident: 678_CR13 publication-title: Sankhya A doi: 10.1007/s13171-014-0063-2 – ident: 678_CR18 – ident: 678_CR21 doi: 10.1093/biomet/88.3.865 |
| SSID | ssj0003232 |
| Score | 2.217474 |
| Snippet | This paper describes a family of divergences, named herein as the
C
-divergence family, which is a generalized version of the power divergence family and also... This paper describes a family of divergences, named herein as the C-divergence family, which is a generalized version of the power divergence family and also... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1289 |
| SubjectTerms | Computer simulation Divergence Economic models Economics Estimators Finance Hypothesis testing Influence functions Insurance Management Mathematics Mathematics and Statistics Statistical inference Statistics Statistics for Business |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFJwHP6bidEoPnpRAmjRfRxmKF4f4xW5lTVIQpJN18-83aZtNZQp6a_uSEF6S93vpy_sF4MxYkdmcakTiXKLEIbKzgzRG2YhgShVVPMfVZRNiMJDDobpr8rjLcNo9hCQrS_0p2S3xMcdYIm9hEVuFNYd20q_G-4fnufmlhDYU4d7AMBFCmcua-ApGCw_zW1C0wprr7X_1cge2Gtcyuqznwi6s2KIDGyHzuOzA5u2co9W9tb2fWdM074HPA5uV06gM31xDLyEXMPJQZ6JxEbnqUR8Zf5ajIvGM6v8j-_B0ffXYv0HNzQpIJ1ROkUq059lR2mBr_IPARjNmjDQac60M0dlIS5H7qCbhmeQUW5o5PM8slZbRA2gV48IeQhQ7lyXJhbOZIkloTkZUYJy5XZ0QmrM47wIOKk51Qzvub794TReEyV5lqVNZ6lWWsi6cz6u81ZwbvxXuhXFLm-VXpgQLxTB3yLtc7LbiXEnJk6Vi59EKLDjHpAsXYZQX4h-7cvSn0sfQds6Xqg8G9qA1nczsCazrdzfMk9NqTn8AkmjsGQ priority: 102 providerName: Springer Nature |
| Title | Robust statistical inference based on the C-divergence family |
| URI | https://link.springer.com/article/10.1007/s10463-018-0678-5 https://www.proquest.com/docview/2079506847 https://www.proquest.com/docview/2274698864 https://www.proquest.com/docview/3267076602 |
| Volume | 71 |
| WOSCitedRecordID | wos000481796100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: 7WY dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: M0C dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: P5Z dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: K7- dateStart: 20060101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: M7S dateStart: 20060101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: BENPR dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: M2O dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1572-9052 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: M2P dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1572-9052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003232 issn: 0020-3157 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xwGF7KJQWdSld5dBTkVXHjl-nqqxAlSq2K16lvUQb25GQ0C4lS38_M3nsiopy6WUUxXFkZSbfjD32NwAfQjRFLKVnIi0ty9AjIw7KlBVTwaV00umS18UmzHhsr67cpF1wq9ptlR0m1kAd5p7WyD9hmGFwzq25-Hz7m1HVKMqutiU0erCRCpGSnX8zbInEUsiWLZywRpkuq9kcncsog5laRnjN1GO_tAo2_8qP1m7neOt_B7wNL9uAM_nSWMgrWIuzHXhxsmRrrXagTxFnQ9j8GuhE2H21SKruHna-7k4FJuT0QjKfJdg9GbFAuzpqOs-kWSl5AxfHR-ejr6ytscB8Ju2CucwT447zgcdAF4YHr1QINniuvQvCF1NvTUn5TaELqyWPskDPXkRpo5K7sD6bz-JbSFIMXrLSIHqaLJOlmErDeYHzO2O8Vmk5AN594dy3BORUB-MmX1Enk1JyVEpOSsnVAD4uu9w27BvPPbzfKSJvf8QqF9w4xTX64KebcVKunbU6e7J5pcMBHHSGsGr-51D2nn_ZO-hj3OWaPYH7sL64u4_vYdP_Qb3eDaFnfvwcwsbh0XhyOqwtGuUJH5EU32s5IWnOUE7UL5SnZ5cPgAz7Bg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hqAQ9QEtbsUDBh3JpZdWxndg5IIS2IBCw6oFK3NKN7UiV0C4lSyteimdkJol3VUS5ceAWxXEUZ8bz45n5BuCTD6YMlXJcJpXlGjUyykGV8HIohVK5yrNKNM0mzGBgLy7y73NwF2thKK0yysRGUPuxozPyr2hmGPS5MyH3rn5z6hpF0dXYQqNli5Nw-xddtnr3-BvSd0fKw4Pz_hHvugpwp5Wd8Fw7wpjJnRfB04UR3qWp99Y7kbncS1cOnTUVRfRkVtpMiaBK1GVlUDZQlwgU-Qta45IoVVD0p5JfSdWhk5NsS02MoralepoiponlpB94-q8enBm3D-KxjZo7XHlpP-gNLHcGNdtvd8BbmAujVXh9NkWjrVdhiSzqFpD6HVDF2009YXW8h5N_xapHRkrds_GI4XTW556yVhq4UtaeBL2HH8-ymA8wPxqPwhqwBI0zXRnUDkZrVcmhMkKU6L8a47I0qXogIkUL1wGsU5-Py2IGDU1MUCATFMQERdqDz9MpVy26yFMPb0bCF52gqQspTJ6KDG2Mx4eloRahNtOPDs94pgdfIuPNhv_7KetPv2wbFo_Oz06L0-PByQYsoY2Zt_mPmzA_ub4JH-GV-4M0vt5q9g-Dn8_Nj_eyG08z |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FV0PvsX12YMnJZg2aR5HURdFXRZ84K1skxQEqWK7_n6TttlVWQXx1naSECbpPDKZbwAOtOGpyYhCUZgJRK1GtnKQhCgdRJgQSSTLcFVsgvd64vFR9ps6p4W_7e5DknVOg0NpysvjV50df0p8oy7-GArkpC2Kp2GGuppBzl2_fRiJYhKRBi7cCZuY-7DmpCG-KqaxtfktQFrpne7Sv2e8DIuNyRmc1HtkBaZMvgrzPiO5WIWFmxF2q31rO_uzhm9eA5cfNizKoPDf7EBPPkcwcCpQBy95YLsHp0i7Ox4VuGdQn5usw333_O70AjUVF5CiRJRIUuXwd6TS2Gj3wLFWcay10AozJXWk0oESPHPRzoilghFsSGr1fGqIMDHZgFb-kptNCEJrytCMW1nKKSVZNCAc49R6e5wrFodZB7Bnd6IaOHJXFeM5GQMpO5YllmWJY1kSd-Bw1OW1xuL4rfGOX8Ok-S2LJMJcxphZjTyZbF10JoVgdCLZWrocc8Zw1IEjv-Jj8o9T2fpT632Y6591k-vL3tU2tK19Juu7gzvQKt-GZhdm1btd8be9aqt_AAaT9-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+statistical+inference+based+on+the+C-divergence+family&rft.jtitle=Annals+of+the+Institute+of+Statistical+Mathematics&rft.au=Maji%2C+Avijit&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.au=Pardo%2C+Leandro&rft.date=2019-10-01&rft.issn=0020-3157&rft.eissn=1572-9052&rft.volume=71&rft.issue=5&rft.spage=1289&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10463-018-0678-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10463_018_0678_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-3157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-3157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-3157&client=summon |