Robust statistical inference based on the C-divergence family

This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other diverg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of the Institute of Statistical Mathematics Ročník 71; číslo 5; s. 1289 - 1322
Hlavní autoři: Maji, Avijit, Ghosh, Abhik, Basu, Ayanendranath, Pardo, Leandro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.10.2019
Springer Nature B.V
Témata:
ISSN:0020-3157, 1572-9052
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the C -divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators.
AbstractList This paper describes a family of divergences, named herein as the C-divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the C-divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators.
This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also includes the density power divergence family as a particular member of this class. We explore the connection of this family with other divergence families and establish several characteristics of the corresponding minimum distance estimator including its asymptotic distribution under both discrete and continuous models; we also explore the use of the C -divergence family in parametric tests of hypothesis. We study the influence function of these minimum distance estimators, in both the first and second order, and indicate the possible limitations of the first-order influence function in this case. We also briefly study the breakdown results of the corresponding estimators. Some simulation results and real data examples demonstrate the small sample efficiency and robustness properties of the estimators.
Author Basu, Ayanendranath
Ghosh, Abhik
Maji, Avijit
Pardo, Leandro
Author_xml – sequence: 1
  givenname: Avijit
  surname: Maji
  fullname: Maji, Avijit
  email: avijit.maji@hotmail.com
  organization: Department of Statistics and Information Management, Reserve Bank of India
– sequence: 2
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  organization: Indian Statistical Institute
– sequence: 3
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  organization: Indian Statistical Institute
– sequence: 4
  givenname: Leandro
  surname: Pardo
  fullname: Pardo, Leandro
  organization: Department of Statistics and O.R., Complutense University of Madrid
BookMark eNp9kE9LAzEQxYMo2FY_gLcFz9FJsptkDx6k-A8Kgug5ZJNsTWmzNUmFfnt3XUEQ7GmGmffmDb8pOg5dcAhdELgiAOI6ESg5w0AkBi4kro7QhFSC4hoqeowmABQw6yenaJrSCgAYZXSCbl66ZpdykbLOPmVv9LrwoXXRBeOKRidniy4U-d0Vc2z9p4vL702rN369P0MnrV4nd_5TZ-jt_u51_ogXzw9P89sFNiWTGdelAcJIbSw4OzQCrKkqa6U1wE1tqWm0kaJlQAXljeQMHGuAlo1j0lVshi7Hu9vYfexcymrV7WLoIxWjXIDgHOghFaWi5LWUvDyoAlFXwGUpehUZVSZ2KUXXqm30Gx33ioAaiKuRuOqJq4G4Gr4UfzzGD1i7kKP264NOOjpTnxKWLv7-9L_pCwN6k_4
CitedBy_id crossref_primary_10_1109_TIT_2024_3366538
crossref_primary_10_1007_s40304_020_00221_8
crossref_primary_10_1007_s10463_025_00939_8
crossref_primary_10_1080_00949655_2020_1783665
crossref_primary_10_1080_03610926_2022_2155788
crossref_primary_10_1007_s11749_024_00956_4
Cites_doi 10.1109/TIT.2018.2794537
10.1016/j.jspi.2015.01.003
10.1111/j.2517-6161.1984.tb01318.x
10.1111/j.2517-6161.1966.tb00626.x
10.1016/j.jspi.2008.04.022
10.1093/biomet/85.3.549
10.1002/0471725382
10.1080/01621459.1989.10478744
10.1016/j.spl.2016.02.007
10.1239/jap/1269610827
10.1080/01621459.1987.10478501
10.1016/j.jspi.2012.03.019
10.1007/s10463-012-0372-y
10.1201/b10956
10.1080/01621459.1986.10478264
10.3150/16-BEJ826
10.1007/s13571-012-0050-3
10.1214/aos/1176350367
10.1002/em.2860060207
10.1007/BF00773476
10.1214/aos/1176343997
10.1214/aos/1176343842
10.1214/aos/1176325512
10.5109/12576
10.1007/978-1-4757-2769-2
10.1016/j.jmva.2008.02.004
10.1007/s13171-014-0063-2
10.1093/biomet/88.3.865
ContentType Journal Article
Copyright The Institute of Statistical Mathematics, Tokyo 2018
Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved.
Copyright Springer Nature B.V. 2019
The Institute of Statistical Mathematics, Tokyo 2018.
Copyright_xml – notice: The Institute of Statistical Mathematics, Tokyo 2018
– notice: Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
– notice: The Institute of Statistical Mathematics, Tokyo 2018.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10463-018-0678-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection (Alumni Edition)

Aerospace Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1572-9052
EndPage 1322
ExternalDocumentID 10_1007_s10463_018_0678_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7.U
78A
7WY
8FL
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M2O
M4Y
MA-
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
~02
~8M
~EX
-Y2
1SB
2.D
2VQ
2WC
692
88I
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARAPS
ATHPR
AZQEC
BBWZM
BENPR
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
FA8
FRNLG
GNUQQ
H13
HCIFZ
HF~
IHE
K6V
K7-
L6V
M0C
M2P
M7S
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDD
T16
TEORI
TKC
ZWQNP
3V.
7SC
7XB
8AL
8FD
8FK
H8D
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c438t-94c01319cd0ed131970dc55dd8dc06c9d2cbac87f302726b8630e3b024be38e53
IEDL.DBID K7-
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481796100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-3157
IngestDate Sat Nov 01 11:00:31 EDT 2025
Sat Oct 11 05:45:46 EDT 2025
Sat Oct 11 05:44:44 EDT 2025
Tue Nov 18 21:14:26 EST 2025
Sat Nov 29 02:58:41 EST 2025
Fri Feb 21 02:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Generalized power divergence
Divergence
Density power divergence
Power divergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-94c01319cd0ed131970dc55dd8dc06c9d2cbac87f302726b8630e3b024be38e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2079506847
PQPubID 25813
PageCount 34
ParticipantIDs proquest_journals_3267076602
proquest_journals_2274698864
proquest_journals_2079506847
crossref_primary_10_1007_s10463_018_0678_5
crossref_citationtrail_10_1007_s10463_018_0678_5
springer_journals_10_1007_s10463_018_0678_5
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Annals of the Institute of Statistical Mathematics
PublicationTitleAbbrev Ann Inst Stat Math
PublicationYear 2019
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References Broniatowski, M., Toma, A., Vajda, I. (2012). Decomposable pseudodistances and applications in statistical estimation. Journal of Statistical Planning and Inference, 142, 2574–2585.
BeranRJMinimum Hellinger distance estimates for parametric modelsAnnals of Statistics1977544546344870010.1214/aos/11763438420381.62028
Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559.
Broniatowski, M., Vajda, I. (2012). Several applications of divergence criteria in continuous families. Kybernetika, 48, 600–636.
Ghosh, A., Basu, A., Pardo, L. (2015). On the robustness of a divergence based test of simple statistical hypotheses. Journal of Statistical Planning and Inference, 161, 91–108.
Ghosh, A., Maji, A., Basu, A. (2013). Robust inference based on divergences in reliability systems. In I. Frenkel, A. Karagrigoriou, A. Lisnianski, A. Kleyner (Eds.), Applied reliability engineering and risk analysis. probabilistic models and statistical inference. Dedicated to the Centennial of the birth of Boris Gnedenko. New York: Wiley.
SimpsonDGMinimum Hellinger distance estimation for the analysis of count dataJournal of the American Statistical Association19878280280790998510.1080/01621459.1987.104785010633.62029
Ghosh, A., Harris, I. R., Maji, A., Basu, A., Pardo, L. (2017). A generalized divergence for statistical inference. Bernoulli, 23, 2746–2783.
Woodruff, R. C., Mason, J. M., Valencia, R., Zimmering, S. (1984). Chemical mutagenesis testing in drosophila I: Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories. Environmental and Molecular Mutagenesis, 6, 189–202.
Simpson, D. G., Carroll, R. J., Ruppert, D. (1987). M-estimation for discrete data: Asymptotic distribution theory and implications. Annals of Statistics, 15, 657–669.
SimpsonDGHellinger deviance test: Efficiency, breakdown points, and examplesJournal of the American Statistical Association19898410711399966710.1080/01621459.1989.10478744
Vonta, F., Karagrigoriou, A. (2010). Generalized measures of divergences in survival analysis and reliability. Journal of Applied Probability, 47, 216–234.
LehmannELTheory of point estimation1983New YorkWiley10.1007/978-1-4757-2769-20522.62020
Ghosh, A., Basu, A. (2016). Testing composite null hypotheses based on S-divergences. Statistics and Probability Letters, 114, 38–47.
LindsayBGEfficiency versus robustness: The case for minimum Hellinger distance and related methodsAnnals of Statistics19942210811114129255710.1214/aos/11763255120807.62030
Fujisawa, H., Eguchi., S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053–2081.
Tamura, R. N., Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance. Journal of the American Statistical Association, 81, 223–229.
GhoshAAsymptotic properties of minimum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-divergence estimator for discrete modelsSankhya A201577380407340012010.1007/s13171-014-0063-21322.62093
Ali, S. M., Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society B, 28, 131–142.
Basu, A., Mandal, A., Martin, N., Pardo, L. (2013). Testing statistical hypotheses based on the density power divergence. Annals of the Institute of Statistical Mathematics, 65, 319–348.
PardoLStatistical inference based on divergences2006Boca RatonCRC/Chapman-Hall1118.62008
StiglerSMDo robust estimators work with real data?Annals of Statistics197751055109845520510.1214/aos/11763439970374.62050(with discussion)
CsiszárIEine informations theoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen KettenPublications of the Mathematical Institute of the Hungarian Academy of Sciences19633851070124.08703
Basu, A., Shioya, H., Park, C. (2011). Statistical inference: The minimum distance approach. Boca Raton: Chapman & Hall/CRC.
Jones, M. C., Hjort, N. L., Harris, I. R., Basu, A. (2001). A comparison of related density based minimum divergence estimators. Biometrika, 88, 865–873.
Patra, S., Maji, A., Basu, A., Pardo, L. (2013). The power divergence and the density power divergence families: The mathematical connection. Sankhya B, 75, 16–28.
Cressie, N., Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society B, 46, 440–464.
Ghosh, A., Basu, A. (2018). A new family of divergences originating from model adequacy tests and application to robust statistical inference. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2018.2794537.
Rousseeuw, P. J., Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.
Basu, A., Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: Efficiency, distributions and robustness. Annals of the Institute of Statistical Mathematics, 46, 683–705.
CsiszárIInformation-type measures of difference of probability distributions and indirect observationsStudia Scientiarum Mathematicarum Hungarica196722993182193450157.25802
Jana, S., Basu, A. (2018). A characterization of all single-integral, non-kernel divergence estimators. Technical Report, ISRU/2018/1. Kolkata: Indian Statistical Institute.
Park, C., Basu, A. (2004). Minimum disparity estimation: Asymptotic normality and breakdown point results. Bulletin of Informatics and Cybernetics, 36, 19–33. (special issue in Honor of Professor Takashi Yanagawa).
Mattheou, K., Leeb, S., Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. Journal of Statistical Planning and Inference, 139, 228–235.
Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.
A Ghosh (678_CR13) 2015; 77
678_CR28
678_CR27
678_CR26
I Csiszár (678_CR11) 1967; 2
678_CR24
678_CR21
678_CR20
678_CR3
678_CR4
678_CR5
678_CR1
SM Stigler (678_CR32) 1977; 5
678_CR2
EL Lehmann (678_CR22) 1983
DG Simpson (678_CR29) 1987; 82
BG Lindsay (678_CR23) 1994; 22
678_CR19
678_CR18
678_CR17
678_CR16
678_CR15
678_CR14
678_CR35
678_CR12
678_CR34
678_CR33
678_CR31
678_CR7
678_CR8
678_CR9
L Pardo (678_CR25) 2006
RJ Beran (678_CR6) 1977; 5
I Csiszár (678_CR10) 1963; 3
DG Simpson (678_CR30) 1989; 84
References_xml – reference: Basu, A., Shioya, H., Park, C. (2011). Statistical inference: The minimum distance approach. Boca Raton: Chapman & Hall/CRC.
– reference: Rousseeuw, P. J., Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.
– reference: SimpsonDGHellinger deviance test: Efficiency, breakdown points, and examplesJournal of the American Statistical Association19898410711399966710.1080/01621459.1989.10478744
– reference: Basu, A., Mandal, A., Martin, N., Pardo, L. (2013). Testing statistical hypotheses based on the density power divergence. Annals of the Institute of Statistical Mathematics, 65, 319–348.
– reference: CsiszárIInformation-type measures of difference of probability distributions and indirect observationsStudia Scientiarum Mathematicarum Hungarica196722993182193450157.25802
– reference: Broniatowski, M., Vajda, I. (2012). Several applications of divergence criteria in continuous families. Kybernetika, 48, 600–636.
– reference: Jones, M. C., Hjort, N. L., Harris, I. R., Basu, A. (2001). A comparison of related density based minimum divergence estimators. Biometrika, 88, 865–873.
– reference: Ghosh, A., Basu, A., Pardo, L. (2015). On the robustness of a divergence based test of simple statistical hypotheses. Journal of Statistical Planning and Inference, 161, 91–108.
– reference: SimpsonDGMinimum Hellinger distance estimation for the analysis of count dataJournal of the American Statistical Association19878280280790998510.1080/01621459.1987.104785010633.62029
– reference: Basu, A., Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: Efficiency, distributions and robustness. Annals of the Institute of Statistical Mathematics, 46, 683–705.
– reference: Patra, S., Maji, A., Basu, A., Pardo, L. (2013). The power divergence and the density power divergence families: The mathematical connection. Sankhya B, 75, 16–28.
– reference: LindsayBGEfficiency versus robustness: The case for minimum Hellinger distance and related methodsAnnals of Statistics19942210811114129255710.1214/aos/11763255120807.62030
– reference: Mattheou, K., Leeb, S., Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. Journal of Statistical Planning and Inference, 139, 228–235.
– reference: Tamura, R. N., Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance. Journal of the American Statistical Association, 81, 223–229.
– reference: Fujisawa, H., Eguchi., S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053–2081.
– reference: Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.
– reference: Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559.
– reference: Broniatowski, M., Toma, A., Vajda, I. (2012). Decomposable pseudodistances and applications in statistical estimation. Journal of Statistical Planning and Inference, 142, 2574–2585.
– reference: CsiszárIEine informations theoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen KettenPublications of the Mathematical Institute of the Hungarian Academy of Sciences19633851070124.08703
– reference: StiglerSMDo robust estimators work with real data?Annals of Statistics197751055109845520510.1214/aos/11763439970374.62050(with discussion)
– reference: GhoshAAsymptotic properties of minimum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-divergence estimator for discrete modelsSankhya A201577380407340012010.1007/s13171-014-0063-21322.62093
– reference: Simpson, D. G., Carroll, R. J., Ruppert, D. (1987). M-estimation for discrete data: Asymptotic distribution theory and implications. Annals of Statistics, 15, 657–669.
– reference: Ali, S. M., Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society B, 28, 131–142.
– reference: Woodruff, R. C., Mason, J. M., Valencia, R., Zimmering, S. (1984). Chemical mutagenesis testing in drosophila I: Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories. Environmental and Molecular Mutagenesis, 6, 189–202.
– reference: PardoLStatistical inference based on divergences2006Boca RatonCRC/Chapman-Hall1118.62008
– reference: BeranRJMinimum Hellinger distance estimates for parametric modelsAnnals of Statistics1977544546344870010.1214/aos/11763438420381.62028
– reference: Ghosh, A., Basu, A. (2018). A new family of divergences originating from model adequacy tests and application to robust statistical inference. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2018.2794537.
– reference: LehmannELTheory of point estimation1983New YorkWiley10.1007/978-1-4757-2769-20522.62020
– reference: Vonta, F., Karagrigoriou, A. (2010). Generalized measures of divergences in survival analysis and reliability. Journal of Applied Probability, 47, 216–234.
– reference: Ghosh, A., Harris, I. R., Maji, A., Basu, A., Pardo, L. (2017). A generalized divergence for statistical inference. Bernoulli, 23, 2746–2783.
– reference: Ghosh, A., Basu, A. (2016). Testing composite null hypotheses based on S-divergences. Statistics and Probability Letters, 114, 38–47.
– reference: Cressie, N., Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society B, 46, 440–464.
– reference: Park, C., Basu, A. (2004). Minimum disparity estimation: Asymptotic normality and breakdown point results. Bulletin of Informatics and Cybernetics, 36, 19–33. (special issue in Honor of Professor Takashi Yanagawa).
– reference: Ghosh, A., Maji, A., Basu, A. (2013). Robust inference based on divergences in reliability systems. In I. Frenkel, A. Karagrigoriou, A. Lisnianski, A. Kleyner (Eds.), Applied reliability engineering and risk analysis. probabilistic models and statistical inference. Dedicated to the Centennial of the birth of Boris Gnedenko. New York: Wiley.
– reference: Jana, S., Basu, A. (2018). A characterization of all single-integral, non-kernel divergence estimators. Technical Report, ISRU/2018/1. Kolkata: Indian Statistical Institute.
– ident: 678_CR15
  doi: 10.1109/TIT.2018.2794537
– ident: 678_CR16
  doi: 10.1016/j.jspi.2015.01.003
– ident: 678_CR9
  doi: 10.1111/j.2517-6161.1984.tb01318.x
– ident: 678_CR1
  doi: 10.1111/j.2517-6161.1966.tb00626.x
– ident: 678_CR24
  doi: 10.1016/j.jspi.2008.04.022
– ident: 678_CR2
  doi: 10.1093/biomet/85.3.549
– ident: 678_CR28
  doi: 10.1002/0471725382
– volume: 84
  start-page: 107
  year: 1989
  ident: 678_CR30
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1989.10478744
– ident: 678_CR14
  doi: 10.1016/j.spl.2016.02.007
– ident: 678_CR34
  doi: 10.1239/jap/1269610827
– ident: 678_CR7
– volume-title: Statistical inference based on divergences
  year: 2006
  ident: 678_CR25
– volume: 82
  start-page: 802
  year: 1987
  ident: 678_CR29
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478501
– ident: 678_CR8
  doi: 10.1016/j.jspi.2012.03.019
– ident: 678_CR4
  doi: 10.1007/s10463-012-0372-y
– ident: 678_CR5
  doi: 10.1201/b10956
– ident: 678_CR19
– ident: 678_CR33
  doi: 10.1080/01621459.1986.10478264
– ident: 678_CR17
  doi: 10.3150/16-BEJ826
– ident: 678_CR27
  doi: 10.1007/s13571-012-0050-3
– ident: 678_CR20
– ident: 678_CR31
  doi: 10.1214/aos/1176350367
– ident: 678_CR35
  doi: 10.1002/em.2860060207
– ident: 678_CR3
  doi: 10.1007/BF00773476
– volume: 5
  start-page: 1055
  year: 1977
  ident: 678_CR32
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176343997
– volume: 5
  start-page: 445
  year: 1977
  ident: 678_CR6
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176343842
– volume: 22
  start-page: 1081
  year: 1994
  ident: 678_CR23
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176325512
– ident: 678_CR26
  doi: 10.5109/12576
– volume: 3
  start-page: 85
  year: 1963
  ident: 678_CR10
  publication-title: Publications of the Mathematical Institute of the Hungarian Academy of Sciences
– volume-title: Theory of point estimation
  year: 1983
  ident: 678_CR22
  doi: 10.1007/978-1-4757-2769-2
– volume: 2
  start-page: 299
  year: 1967
  ident: 678_CR11
  publication-title: Studia Scientiarum Mathematicarum Hungarica
– ident: 678_CR12
  doi: 10.1016/j.jmva.2008.02.004
– volume: 77
  start-page: 380
  year: 2015
  ident: 678_CR13
  publication-title: Sankhya A
  doi: 10.1007/s13171-014-0063-2
– ident: 678_CR18
– ident: 678_CR21
  doi: 10.1093/biomet/88.3.865
SSID ssj0003232
Score 2.217474
Snippet This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also...
This paper describes a family of divergences, named herein as the C-divergence family, which is a generalized version of the power divergence family and also...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1289
SubjectTerms Computer simulation
Divergence
Economic models
Economics
Estimators
Finance
Hypothesis testing
Influence functions
Insurance
Management
Mathematics
Mathematics and Statistics
Statistical inference
Statistics
Statistics for Business
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86BefBj6k4nZKDJyWQtfk8ylC8OMQvdittkoIgnaybf78vbbOpTEFvbV8Swkvy3i99eb8gdCb6sK1SJie5yRwBfxuRtA_rSrBcAH6GLQA31WUTcjhUo5G-a_K4y3DaPYQkK0v9KdmN-ZhjXxFvYQlfRWvg7ZRfjfcPz3PzG0dxQxHuDQyXIZS5rImvzmiBML8FRStfc739r17uoK0GWuLLei7sohVXdNBGyDwuO2jzds7RCm9tjzNrmuY95PPAZuUUl-EbNPQScgGxd3UWjwsM1fGAWH-WoyLxxPX_kX30dH31OLghzc0KxLBYTYlmxvPsaGOps_5BUms4t1ZZQ4XRNjJZapTMfVQzEpkSMXVxBv48c7FyPD5ArWJcuEOE0zzzEEVkIuPMQguAIQVLjUsl407zLqJBxYlpaMf97RevyYIw2assAZUlXmUJVDmfV3mrOTd-K9wL45Y0y69MIio1pwI873IxbMWFVkqwpWJAtJJKmKdRF12EUV6If-zK0Z9KH6M2gC9dHwzsodZ0MnMnaN28wzBPTqs5_QHj6u1I
  priority: 102
  providerName: Springer Nature
Title Robust statistical inference based on the C-divergence family
URI https://link.springer.com/article/10.1007/s10463-018-0678-5
https://www.proquest.com/docview/2079506847
https://www.proquest.com/docview/2274698864
https://www.proquest.com/docview/3267076602
Volume 71
WOSCitedRecordID wos000481796100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: 7WY
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: M0C
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: P5Z
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: K7-
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: M7S
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: BENPR
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: M2O
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: M2P
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1572-9052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003232
  issn: 0020-3157
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWdIfusEe2Ym2zwIedNgiTZevh09AFKQYMyYJkj2wXw5ZkYMCQtHHS31_SjwQr0lx2IQzLEgST4kOUPgK8VSGGVcYWrLC5Z2hvBctCXFcqLhT6zxgCSFsVm9DjsZnPk0mz4VY2xypbnVgpare0tEf-Ad0MjTG34uLj9Q2jqlGUXW1KaBzBcShESHL-RbOtJo5E1KCFk66Rus1q1lfnYspghoaRvmbyX7u0czbv5Ucrs3P17H8n_ByeNg5ncFlLyAt45BddeDLaorWWXTghj7MGbH4JdCNsU66Dsn2Hnf-0twIDMnouWC4C7B4MmKNTHRWcZ1DvlLyC71fDb4PPrKmxwGwcmTVLYkuIO4l13Dt60NxZKZ0zznJlEydsnlmjC8pvCpUbFXEf5WjZcx8ZL6NT6CyWC_8agqzIyVlRucpl7HAE9CZVnFmf6Vj6RJ4Bb_9wahsAcqqD8TfdQScTU1JkSkpMSbHLu22X6xp949DHvZYRabMQy1RwnUiu0Abvb8agXCXGqHhv846HZ_C-FYRd84NTOT882AWcoN-V1GcCe9BZrzb-DTy2t8jXVR-O9M9ffTj-NBxPpv1KopGO-ICo-FrRCVE9QzqRv5FOZz_uAPnZ_DU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BTtwwEB0hqFQ4QAtFXQqtD-2llVWvYzvOoUJoKQIBqx6oxC0ktiMhVbtAdlvxU3wjM0m8qyLKjUNvURxbSTyeefbMvAH4aPq4rbKu4pUrA0d7K3nRx3VlVGUQP-MWQLum2EQ6HNrz8-zHAtzFXBgKq4w6sVHUfuzojPwrwowU99xGyN2ra05Vo8i7GktotGJxHG7_4Jat_na0j_P7ScqD72eDQ95VFeBOJXbCM-WIYyZzXgRPF6nwTmvvrXfCuMxLVxbOphV59KQprUlESEq0ZWVIbKAqEajyl5TC5UChgmIw0_yJTDp2ctJtOo1e1DZVT5HHtG852Qeu_7aDc3D7wB_bmLmDtf_tB72C1Q5Qs712BbyGhTBah5XTGRttvQ7LhKhbQuoNoIy3aT1hdbyHnS9j1iMjo-7ZeMSwOxtwT1ErDV0pa0-C3sDPZ_mYTVgcjUfhLbCiKgmMmdKUWnkcAdGyUYULRap0yHQPRJzR3HUE61Tn41c-p4YmIchRCHISghy7fJ51uWrZRZ56eDtOfN4pmjqXIs20MIgxHm-WKZUItUY92jyXmR58iYI3b_7nq2w9PdgHeHl4dnqSnxwNj9_BMmLMrI1_3IbFyc007MAL9xvn-OZ9s34YXDy3PN4DWspQYg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688HjwWBWPVfvgkxK22yZp-iiri6Iuggf7VtokBUGq2NXf78y22VVZBfGtbQ7C5JhvOplvAA5lG80qpXOW68wy1LcBS9u4ryTPJeJnNAGEHiabiHo91e_HN3We09LddncuySqmgViaikHrxeStT4FvnPyPbcXotGViGmY55Qwic_32YXQUh0FY04XTYSMi59ac1MVXxTRGm98cpEO9013594hXYbmGnN5JtUbWYMoWDVhwEcllA5auR9yt-LZI-LOib14Hig97Kwde6b5hR48uRtAjFWi858LD5l6HGbrjMST39Kr_Jhtw3z2765yzOuMC0zxUAxZzTfw7sTa-NfQQ-UYLYYwy2pc6NoHOUq2inLydgcyUDH0bZqjnMxsqK8JNmCmeC7sFXppnBF1kJjPBDfaA2FLyVNs04sLGYht8J-5E13TklBXjKRkTKZPIEhRZQiJLsMnRqMlLxcXxW-Wmm8Ok3pZlEvhRLHyJGnlyMZroMlZK8onFiHQjP8L1G2zDsZvxcfGPQ9n5U-0DmL857SZXF73LXVhEfBZXdwebMDN4fbN7MKffccZf94dL_QNiYvkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+statistical+inference+based+on+the+C-divergence+family&rft.jtitle=Annals+of+the+Institute+of+Statistical+Mathematics&rft.au=Maji%2C+Avijit&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.au=Pardo%2C+Leandro&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0020-3157&rft.eissn=1572-9052&rft.volume=71&rft.issue=5&rft.spage=1289&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10463-018-0678-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-3157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-3157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-3157&client=summon