Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China
The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally intensive regions like Beijing and Tianjin, China. Traditional methods for AET estimation, whether empirical or physically based, often face...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 37548 - 18 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
28.10.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally intensive regions like Beijing and Tianjin, China. Traditional methods for AET estimation, whether empirical or physically based, often face limitations due to high data requirements, limited scalability, and sensitivity to input uncertainties. This creates a critical research gap in providing reliable AET predictions under data-limited conditions. To address this, we evaluated the efficacy of integrating four advanced machine learning (ML) models: Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensemble Tree, and Neural Network, with Bayesian hyperparameter optimization for AET modeling using the high-resolution TerraClimate dataset spanning 1958–2022. Key meteorological variables, including maximum and minimum temperature (T
max
and T
min
), solar radiation (SR), wind speed (WS), vapor pressure deficit (VPD), and precipitation (PPT), were selected through rigorous correlation and multicollinearity analyses. Model performance was assessed using the coefficient of determination (R
2
), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) on a 75:25 train-test split. Results demonstrate that the optimizable GPR model achieved the highest predictive accuracy (RMSE = 5.54, R
2
= 0.98 on test data), outperforming other ML approaches and traditional empirical models. PPT, T
min
, and T
max
emerged as the most influential predictors for AET. Our findings reveal that ML models, particularly when optimized via Bayesian techniques, yield a robust, scalable, and data-efficient alternative for AET estimation in regions with limited meteorological records. This study establishes a new benchmark for AET modeling, with significant implications for irrigation scheduling, drought monitoring, and integrated water management in the North China Plain and comparable agro-ecological regions. |
|---|---|
| AbstractList | The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally intensive regions like Beijing and Tianjin, China. Traditional methods for AET estimation, whether empirical or physically based, often face limitations due to high data requirements, limited scalability, and sensitivity to input uncertainties. This creates a critical research gap in providing reliable AET predictions under data-limited conditions. To address this, we evaluated the efficacy of integrating four advanced machine learning (ML) models: Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensemble Tree, and Neural Network, with Bayesian hyperparameter optimization for AET modeling using the high-resolution TerraClimate dataset spanning 1958–2022. Key meteorological variables, including maximum and minimum temperature (Tmax and Tmin), solar radiation (SR), wind speed (WS), vapor pressure deficit (VPD), and precipitation (PPT), were selected through rigorous correlation and multicollinearity analyses. Model performance was assessed using the coefficient of determination (R2), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) on a 75:25 train-test split. Results demonstrate that the optimizable GPR model achieved the highest predictive accuracy (RMSE = 5.54, R2 = 0.98 on test data), outperforming other ML approaches and traditional empirical models. PPT, Tmin, and Tmax emerged as the most influential predictors for AET. Our findings reveal that ML models, particularly when optimized via Bayesian techniques, yield a robust, scalable, and data-efficient alternative for AET estimation in regions with limited meteorological records. This study establishes a new benchmark for AET modeling, with significant implications for irrigation scheduling, drought monitoring, and integrated water management in the North China Plain and comparable agro-ecological regions. The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally intensive regions like Beijing and Tianjin, China. Traditional methods for AET estimation, whether empirical or physically based, often face limitations due to high data requirements, limited scalability, and sensitivity to input uncertainties. This creates a critical research gap in providing reliable AET predictions under data-limited conditions. To address this, we evaluated the efficacy of integrating four advanced machine learning (ML) models: Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensemble Tree, and Neural Network, with Bayesian hyperparameter optimization for AET modeling using the high-resolution TerraClimate dataset spanning 1958–2022. Key meteorological variables, including maximum and minimum temperature (T max and T min ), solar radiation (SR), wind speed (WS), vapor pressure deficit (VPD), and precipitation (PPT), were selected through rigorous correlation and multicollinearity analyses. Model performance was assessed using the coefficient of determination (R 2 ), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) on a 75:25 train-test split. Results demonstrate that the optimizable GPR model achieved the highest predictive accuracy (RMSE = 5.54, R 2 = 0.98 on test data), outperforming other ML approaches and traditional empirical models. PPT, T min , and T max emerged as the most influential predictors for AET. Our findings reveal that ML models, particularly when optimized via Bayesian techniques, yield a robust, scalable, and data-efficient alternative for AET estimation in regions with limited meteorological records. This study establishes a new benchmark for AET modeling, with significant implications for irrigation scheduling, drought monitoring, and integrated water management in the North China Plain and comparable agro-ecological regions. Abstract The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally intensive regions like Beijing and Tianjin, China. Traditional methods for AET estimation, whether empirical or physically based, often face limitations due to high data requirements, limited scalability, and sensitivity to input uncertainties. This creates a critical research gap in providing reliable AET predictions under data-limited conditions. To address this, we evaluated the efficacy of integrating four advanced machine learning (ML) models: Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensemble Tree, and Neural Network, with Bayesian hyperparameter optimization for AET modeling using the high-resolution TerraClimate dataset spanning 1958–2022. Key meteorological variables, including maximum and minimum temperature (Tmax and Tmin), solar radiation (SR), wind speed (WS), vapor pressure deficit (VPD), and precipitation (PPT), were selected through rigorous correlation and multicollinearity analyses. Model performance was assessed using the coefficient of determination (R2), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) on a 75:25 train-test split. Results demonstrate that the optimizable GPR model achieved the highest predictive accuracy (RMSE = 5.54, R2 = 0.98 on test data), outperforming other ML approaches and traditional empirical models. PPT, Tmin, and Tmax emerged as the most influential predictors for AET. Our findings reveal that ML models, particularly when optimized via Bayesian techniques, yield a robust, scalable, and data-efficient alternative for AET estimation in regions with limited meteorological records. This study establishes a new benchmark for AET modeling, with significant implications for irrigation scheduling, drought monitoring, and integrated water management in the North China Plain and comparable agro-ecological regions. |
| ArticleNumber | 37548 |
| Author | Zerouali, Bilel Elsadek, Elsayed Ahmed Cao, Xinchun Aslam, Muhammad Rizwan Elbeltagi, Ahmed Salem, Ali Emami, Hojjat Gautam, Vinay Kumar Srivastava, Aman |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Elbeltagi fullname: Elbeltagi, Ahmed organization: College of Agricultural Science and Engineering, Hohai University, Agricultural Engineering Dept., Faculty of Agriculture, Mansoura University – sequence: 2 givenname: Aman surname: Srivastava fullname: Srivastava, Aman organization: Formerly, Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology (IIT) Bombay – sequence: 3 givenname: Xinchun surname: Cao fullname: Cao, Xinchun email: caoxinchun@hhu.edu.cn organization: College of Agricultural Science and Engineering, Hohai University, Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University – sequence: 4 givenname: Vinay Kumar surname: Gautam fullname: Gautam, Vinay Kumar organization: School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, (Imphal) – sequence: 5 givenname: Bilel surname: Zerouali fullname: Zerouali, Bilel organization: Laboratory of Architecture, Cities and Environment, Department of Hydraulic, Faculty of Civil Engineering and Architecture, University of Chlef, Hassiba Benbouali – sequence: 6 givenname: Muhammad Rizwan surname: Aslam fullname: Aslam, Muhammad Rizwan organization: College of Environmental and Resource Sciences, Zhejiang University – sequence: 7 givenname: Ali surname: Salem fullname: Salem, Ali email: salem.ali@mik.pte.hu organization: Civil Engineering Department, Faculty of Engineering, Minia University, Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs – sequence: 8 givenname: Hojjat surname: Emami fullname: Emami, Hojjat organization: Department of Computer Engineering, Bonab University – sequence: 9 givenname: Elsayed Ahmed surname: Elsadek fullname: Elsadek, Elsayed Ahmed organization: Biosystems Engineering Department, University of Arizona, Agricultural and Biosystems Engineering Department, College of Agriculture, Damietta University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41152585$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1TAQhS1UREvpH2CBIrFhE_AzyV3CFY9KldjA2ho7k-CrxA62Q3XZ8NcxN6UgFnjjsfWdM2P5PCZnPngk5CmjLxkV3askmdp1NeWq5pwJWh8fkAtOZTkKzs_-qs_JVUoHWpbiO8l2j8i5ZExx1akL8uMNHDE58HVYspvdd-yrGewX57GaEKJ3fqxMCCmnCmxeYarwGywhR_BpcRGyC75aIvbOnkrnq1vIGOuUI6ZU7GCMzq5TXmMRRxwLlaowVPvSBJ6QhwNMCa_u9kvy-d3bT_sP9c3H99f71ze1laLLdSfkwMBQ2-5axppGUiiVYNSagRujsG0tAG8EUGhaA9h31DBOQaLqgXFxSa433z7AQS_RzRCPOoDTp4sQRw0xOzuhNsow0bIGQVrZcIS2UYxiZwDkINlQvF5sXksMX1dMWc8uWZwm8BjWpAUvA8qOKlXQ5_-gh7BGX156olgn2x0r1LM7ajUz9vfj_f6mAvANsDGkFHG4RxjVv-KgtzjoEgd9ioM-FpHYRKnAfsT4p_d_VD8BNbK5ew |
| Cites_doi | 10.3390/su14052601 10.1007/s41060-025-00762-7 10.1007/s13201-023-01941-2 10.1016/j.jhydrol.2023.129361 10.1016/j.agrformet.2023.109513 10.1016/j.eiar.2022.106861 10.1016/j.ecolind.2017.12.047 10.1016/j.heliyon.2023.e15355 10.1016/j.agwat.2024.108673 10.1016/j.heliyon.2023.e18819 10.1007/s13369-012-0214-5 10.3390/rs12020332 10.1002/ird.2707 10.1175/JHM-D-19-0298.1 10.17694/bajece.679662 10.1016/j.agrformet.2023.109579 10.1016/j.agwat.2022.108038 10.1002/hyp.7439 10.1007/s00271-020-00680-5 10.1016/j.agwat.2020.106210 10.3390/w15061149 10.1016/j.compag.2022.106687 10.3390/agronomy13020609 10.1016/j.wen.2021.10.002 10.1016/j.fcr.2017.10.009 10.1007/978-3-030-89010-0_10 10.1007/978-3-642-20617-7_6563 10.1007/s13201-024-02308-x 10.1016/j.atmosres.2023.107107 10.1007/s13201-023-01942-1 10.1016/j.catena.2025.109314 10.1007/s40031-021-00684-5 10.1016/j.agwat.2020.106454 10.1016/j.jhydrol.2016.10.022 10.1007/s11356-022-21410-8 10.3390/rs13122393 10.1007/s00704-025-05406-1 10.1007/s11704-019-8208-z 10.3390/w15030450 10.1016/j.rineng.2024.103135 10.1038/s41598-025-05985-z 10.3390/hydrology9070123 10.2166/nh.2023.040 10.1080/24749508.2024.2429842 10.1016/j.agwat.2023.108499 10.1007/s11269-022-03067-7 10.1109/TCYB.2022.3164542 10.3390/su14105771 10.1016/j.ejrh.2025.102339 10.1016/j.geoderma.2025.117440 10.1080/19443994.2012.748443 10.1007/s00704-024-04862-5 10.1007/s11442-013-1015-9 10.1145/3018896.3065830 10.1007/s11269-023-03674-y 10.1016/j.ecolind.2023.110837 10.1016/j.agwat.2021.107343 10.1080/19475705.2025.2468850 10.1016/j.ejrh.2024.102043 10.3390/ijerph192013127 10.1016/j.jhydrol.2020.125286 10.1016/j.jhydrol.2019.03.028 10.1016/j.jhydrol.2016.02.053 10.2166/wst.2023.137 10.1080/02626667.2022.2083511 10.1007/s00271-025-01019-8 10.1016/j.ecolind.2025.114012 10.3390/info15040235 10.1016/j.envc.2022.100483 10.1007/s00521-023-08466-4 10.3390/earth4030038 10.1029/2021WR031069 10.1007/s10845-024-02405-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-22130-y |
| DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic Proquest Open Access Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_b5b13716ea4c462ea76510e8baa4f41f 41152585 10_1038_s41598_025_22130_y |
| Genre | Journal Article |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-834f1ab0c797116640a797310cbf2bb5e77caa263a0a67baed80b120a4e5da123 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604676500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 19:21:16 EST 2025 Wed Oct 29 17:09:51 EDT 2025 Wed Oct 29 07:54:49 EDT 2025 Mon Nov 03 01:48:52 EST 2025 Wed Nov 05 20:58:46 EST 2025 Wed Oct 29 01:23:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Data-driven evapotranspiration Agricultural hydrology Irrigation scheduling Bayesian optimization Climate data modeling Agricultural water management |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-834f1ab0c797116640a797310cbf2bb5e77caa263a0a67baed80b120a4e5da123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3266184791?pq-origsite=%requestingapplication% |
| PMID | 41152585 |
| PQID | 3266184791 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b5b13716ea4c462ea76510e8baa4f41f proquest_miscellaneous_3266448055 proquest_journals_3266184791 pubmed_primary_41152585 crossref_primary_10_1038_s41598_025_22130_y springer_journals_10_1038_s41598_025_22130_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-28 |
| PublicationDateYYYYMMDD | 2025-10-28 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Sui (22130_CR5) 2018; 215 J Luo (22130_CR66) 2022 E Elsadek (22130_CR1) 2023; 13 A Elbeltagi (22130_CR28) 2023; 35 GA Araujo-Carrillo (22130_CR39) 2025; 156 Y Agrawal (22130_CR31) 2022; 36 AA Abro (22130_CR47) 2020; 8 S Li (22130_CR54) 2016; 543 AG Bafti (22130_CR71) 2024; 297 EA Elsadek (22130_CR6) 2025 X Dong (22130_CR48) 2020; 14 SS Eslamian (22130_CR53) 2012; 37 X Shao (22130_CR22) 2022; 58 S Wanniarachchi (22130_CR3) 2022; 9 K Xue (22130_CR14) 2023; 337 DM D’Addona (22130_CR51) 2014 22130_CR57 P Rai (22130_CR30) 2022; 14 PS Tulla (22130_CR78) 2024; 155 MY Chia (22130_CR33) 2022; 261 N Paciolla (22130_CR16) 2023; 339 E-SM El-kenawy (22130_CR27) 2022; 29 P Paredes (22130_CR18) 2020; 240 S Wang (22130_CR36) 2018; 87 A Elbeltagi (22130_CR42) 2024; 56 T Suwanlertcharoen (22130_CR17) 2023; 15 S Hu (22130_CR37) 2022; 97 T Wang (22130_CR61) 2023; 53 22130_CR50 L Zhao (22130_CR4) 2013; 23 Z Abda (22130_CR29) 2022; 67 K Sharma (22130_CR9) 2021; 243 R Li (22130_CR75) 2025; 259 W Cai (22130_CR24) 2021; 13 M Sabino (22130_CR58) 2023; 4 L Yin (22130_CR64) 2023; 154 EA Elsadek (22130_CR7) 2024; 292 22130_CR49 SL Dingman (22130_CR52) 2015 M Jamei (22130_CR35) 2022; 193 A Elbeltagi (22130_CR68) 2023; 15 E Gomaa (22130_CR25) 2023; 9 A Rani (22130_CR60) 2022; 7 J Li (22130_CR63) 2020; 21 M Al-Mukhtar (22130_CR77) 2024; 38 A Elbeltagi (22130_CR2) 2024; 14 LW Rizkallah (22130_CR43) 2025 C Niu (22130_CR32) 2023; 54 EA Elsadek (22130_CR8) 2023 H Rahimikhoob (22130_CR13) 2020; 38 R Kins (22130_CR45) 2025; 36 22130_CR40 K Gudulas (22130_CR56) 2013; 51 E Zoratipour (22130_CR21) 2023; 13 AG Hamedani (22130_CR69) 2021; 4 M Kadkhodazadeh (22130_CR10) 2022; 14 Y Yang (22130_CR38) 2025; 178 Y Zhang (22130_CR55) 2023; 289 S Lu (22130_CR74) 2025; 460 H-J Kim (22130_CR20) 2023; 275 B Cemek (22130_CR23) 2023; 13 GI Ezenne (22130_CR15) 2023; 25 A Husnain (22130_CR46) 2024; 24 LB Ferreira (22130_CR65) 2019; 572 H Darabi (22130_CR19) 2023; 54 J Rajput (22130_CR70) 2023; 87 R Guido (22130_CR44) 2024; 15 Y Feng (22130_CR67) 2016; 536 B Zerouali (22130_CR26) 2023; 9 B Wu (22130_CR62) 2023; 619 Z Chen (22130_CR72) 2020; 591 22130_CR76 AF Tarı (22130_CR11) 2022; 71 A Ahmadi (22130_CR73) 2025; 59 AS Sumant (22130_CR34) 2022; 103 B Wu (22130_CR12) 2020; 12 K Oukaddour (22130_CR41) 2025; 16 M Achite (22130_CR79) 2025; 15 J Estévez (22130_CR59) 2009; 23 |
| References_xml | – volume: 14 start-page: 2601 year: 2022 ident: 22130_CR10 publication-title: Sustainability doi: 10.3390/su14052601 – year: 2025 ident: 22130_CR43 publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-025-00762-7 – volume: 13 start-page: 137 year: 2023 ident: 22130_CR21 publication-title: Appl. Water Sci. doi: 10.1007/s13201-023-01941-2 – volume: 619 start-page: 129361 year: 2023 ident: 22130_CR62 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129361 – volume: 337 start-page: 109513 year: 2023 ident: 22130_CR14 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2023.109513 – volume: 97 start-page: 106861 year: 2022 ident: 22130_CR37 publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2022.106861 – volume: 87 start-page: 107 year: 2018 ident: 22130_CR36 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.12.047 – volume: 9 start-page: e15355 year: 2023 ident: 22130_CR26 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15355 – volume: 292 year: 2024 ident: 22130_CR7 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2024.108673 – volume: 9 start-page: e18819 year: 2023 ident: 22130_CR25 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e18819 – volume: 37 start-page: 935 year: 2012 ident: 22130_CR53 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-012-0214-5 – volume: 12 start-page: 332 year: 2020 ident: 22130_CR12 publication-title: Remote Sens. doi: 10.3390/rs12020332 – volume: 71 start-page: 948 year: 2022 ident: 22130_CR11 publication-title: Irrig. Drain. doi: 10.1002/ird.2707 – volume: 21 start-page: 891 year: 2020 ident: 22130_CR63 publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-19-0298.1 – volume: 8 start-page: 181 year: 2020 ident: 22130_CR47 publication-title: Balk. J. Electr. Comput. Eng. doi: 10.17694/bajece.679662 – volume: 339 start-page: 109579 year: 2023 ident: 22130_CR16 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2023.109579 – volume: 275 start-page: 108038 year: 2023 ident: 22130_CR20 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.108038 – volume: 23 start-page: 3342 year: 2009 ident: 22130_CR59 publication-title: Hydrol. Process. doi: 10.1002/hyp.7439 – volume: 38 start-page: 389 year: 2020 ident: 22130_CR13 publication-title: Irrig. Sci. doi: 10.1007/s00271-020-00680-5 – volume: 240 start-page: 106210 year: 2020 ident: 22130_CR18 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106210 – ident: 22130_CR40 – volume: 15 start-page: 1149 issue: 6 year: 2023 ident: 22130_CR68 publication-title: Water doi: 10.3390/w15061149 – volume: 193 start-page: 106687 year: 2022 ident: 22130_CR35 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106687 – volume: 13 start-page: 609 year: 2023 ident: 22130_CR1 publication-title: Agronomy doi: 10.3390/agronomy13020609 – volume: 4 start-page: 149 year: 2021 ident: 22130_CR69 publication-title: Water Energy Nexus doi: 10.1016/j.wen.2021.10.002 – volume: 215 start-page: 132 year: 2018 ident: 22130_CR5 publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2017.10.009 – ident: 22130_CR50 doi: 10.1007/978-3-030-89010-0_10 – start-page: 911 volume-title: CIRP Encyclopedia of Production Engineering year: 2014 ident: 22130_CR51 doi: 10.1007/978-3-642-20617-7_6563 – volume: 14 start-page: 256 year: 2024 ident: 22130_CR2 publication-title: Appl. Water Sci. doi: 10.1007/s13201-024-02308-x – volume: 297 start-page: 107107 year: 2024 ident: 22130_CR71 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2023.107107 – volume: 13 start-page: 136 year: 2023 ident: 22130_CR23 publication-title: Appl. Water Sci. doi: 10.1007/s13201-023-01942-1 – volume: 259 start-page: 109314 year: 2025 ident: 22130_CR75 publication-title: Catena doi: 10.1016/j.catena.2025.109314 – volume: 25 start-page: 173 year: 2023 ident: 22130_CR15 publication-title: J. Agrometeorol. – volume: 103 start-page: 831 year: 2022 ident: 22130_CR34 publication-title: J. Inst. Eng. Ser. B doi: 10.1007/s40031-021-00684-5 – volume: 243 start-page: 106454 year: 2021 ident: 22130_CR9 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106454 – volume: 543 start-page: 450 year: 2016 ident: 22130_CR54 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.10.022 – volume: 29 start-page: 81279 year: 2022 ident: 22130_CR27 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21410-8 – volume: 13 start-page: 2393 year: 2021 ident: 22130_CR24 publication-title: Remote Sens. doi: 10.3390/rs13122393 – volume: 156 start-page: 205 year: 2025 ident: 22130_CR39 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-025-05406-1 – volume: 14 start-page: 241 year: 2020 ident: 22130_CR48 publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 15 start-page: 450 year: 2023 ident: 22130_CR17 publication-title: Water doi: 10.3390/w15030450 – volume: 24 start-page: 103135 year: 2024 ident: 22130_CR46 publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103135 – volume: 15 start-page: 20179 issue: 1 year: 2025 ident: 22130_CR79 publication-title: Scientific Reports doi: 10.1038/s41598-025-05985-z – volume: 9 start-page: 123 year: 2022 ident: 22130_CR3 publication-title: Hydrology doi: 10.3390/hydrology9070123 – volume: 54 start-page: 945 year: 2023 ident: 22130_CR32 publication-title: Hydrol. Res. doi: 10.2166/nh.2023.040 – ident: 22130_CR76 doi: 10.1080/24749508.2024.2429842 – volume: 289 start-page: 108499 year: 2023 ident: 22130_CR55 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108499 – volume: 36 start-page: 1025 year: 2022 ident: 22130_CR31 publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03067-7 – volume: 53 start-page: 5677 year: 2023 ident: 22130_CR61 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3164542 – volume: 14 start-page: 5771 year: 2022 ident: 22130_CR30 publication-title: Sustainability doi: 10.3390/su14105771 – volume: 54 start-page: 549 year: 2023 ident: 22130_CR19 publication-title: Phys. Geogr. Res. – volume: 59 start-page: 102339 year: 2025 ident: 22130_CR73 publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2025.102339 – volume: 460 start-page: 117440 year: 2025 ident: 22130_CR74 publication-title: Geoderma doi: 10.1016/j.geoderma.2025.117440 – volume: 51 start-page: 2945 year: 2013 ident: 22130_CR56 publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2012.748443 – volume: 155 start-page: 4023 issue: 5 year: 2024 ident: 22130_CR78 publication-title: Theoretical and Applied Climatology doi: 10.1007/s00704-024-04862-5 – volume: 23 start-page: 359 year: 2013 ident: 22130_CR4 publication-title: J. Geogr. Sci. doi: 10.1007/s11442-013-1015-9 – ident: 22130_CR49 doi: 10.1145/3018896.3065830 – volume: 38 start-page: 343 issue: 1 year: 2024 ident: 22130_CR77 publication-title: Water Resources Management doi: 10.1007/s11269-023-03674-y – volume: 154 start-page: 110837 year: 2023 ident: 22130_CR64 publication-title: China. Ecol. Indic. doi: 10.1016/j.ecolind.2023.110837 – volume: 261 start-page: 107343 year: 2022 ident: 22130_CR33 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107343 – volume: 16 start-page: 246850 year: 2025 ident: 22130_CR41 publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2025.2468850 – volume: 56 start-page: 102043 year: 2024 ident: 22130_CR42 publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2024.102043 – volume-title: Physical Hydrology year: 2015 ident: 22130_CR52 – year: 2022 ident: 22130_CR66 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph192013127 – volume-title: Study on the In-Field Water Balance and the Projected Impacts of Climate Change on Rice Yields in the Nile River Delta year: 2023 ident: 22130_CR8 – ident: 22130_CR57 – volume: 591 start-page: 125286 year: 2020 ident: 22130_CR72 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125286 – volume: 572 start-page: 556 year: 2019 ident: 22130_CR65 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.028 – volume: 536 start-page: 376 year: 2016 ident: 22130_CR67 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.053 – volume: 87 start-page: 2504 year: 2023 ident: 22130_CR70 publication-title: Water Sci. Technol. doi: 10.2166/wst.2023.137 – volume: 67 start-page: 1328 year: 2022 ident: 22130_CR29 publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2022.2083511 – year: 2025 ident: 22130_CR6 publication-title: Irrig. Sci. doi: 10.1007/s00271-025-01019-8 – volume: 178 start-page: 114012 year: 2025 ident: 22130_CR38 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2025.114012 – volume: 15 start-page: 235 year: 2024 ident: 22130_CR44 publication-title: Information doi: 10.3390/info15040235 – volume: 7 start-page: 100483 year: 2022 ident: 22130_CR60 publication-title: India. Environ. Chall. doi: 10.1016/j.envc.2022.100483 – volume: 35 start-page: 14799 year: 2023 ident: 22130_CR28 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08466-4 – volume: 4 start-page: 714 year: 2023 ident: 22130_CR58 publication-title: Brazil. Earth doi: 10.3390/earth4030038 – volume: 58 start-page: e2021WR031069 year: 2022 ident: 22130_CR22 publication-title: Water Resour. Res. doi: 10.1029/2021WR031069 – volume: 36 start-page: 3483 year: 2025 ident: 22130_CR45 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-024-02405-3 |
| SSID | ssj0000529419 |
| Score | 2.4627047 |
| Snippet | The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and agriculturally... Abstract The accurate estimation of actual evapotranspiration (AET) is crucial for sustainable water resource management, especially in water-scarce and... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 37548 |
| SubjectTerms | 704/106/242 704/106/694 704/172/4081 704/242 Agricultural hydrology Agricultural water management Artificial intelligence Bayesian analysis Bayesian optimization Climate change Climate data modeling Data-driven evapotranspiration Datasets Drought Environmental monitoring Evapotranspiration Humanities and Social Sciences Irrigation scheduling Learning algorithms Machine learning Mathematical models multidisciplinary Neural networks Resource management Science Science (multidisciplinary) Solar radiation Vapor pressure Water management Water resources management Wind speed |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yKHgRv62uEsGbls1Xk_ToiounxYPC3sKkTZZ32NdH293lefFfd5L0PVdUvHgrSQhJ5jedCZOZHyFvWKchRFTAJkSGFxQDtReC116zaBrfAPN9Jpswp6f27Kz9fIPqK70JK-WBy8Ed-cZziU59ANUpLQIYjTAK1gOoqHhMf19m2huXqVLVW7SKt0uWDJP2aEJLlbLJRFPjWiSrt79Yolyw_09e5m8R0mx4Tu6Te4vHSN-XlT4gt8L6IblTOCS3j8j3Y9iGlAlZD6j9F6tvoacX-YVkoAslxDlFV3qaJwo5W4SGK9gMc65qvioAoJsxBWzy52pNr9EBHeuSRoLTwfm4r9BBE5MDIpUOkWbu7cfk68nHLx8-1QurQt0paefaShU5eNaZ1nCutWJgEn8V63wU3jfBmA5AaAkMtPEQess8FwxUaHpAQ_eEHKyHdXhGqBBtb4wPIGJUUWrbReaDZh69Ctt3siJvdyfsNqV4hstBb2ldkYdDebgsD7etyHESwn5kKnydGxAOboGD-xccKnK4E6FbtHFyMnkhaIZbXpHX-27UoxQcgXUYLssYvKqypqnI0yL6_UoUTyxRFnve7bDwc_K_b-j5_9jQC3JXJNCiuRT2kBzM42V4SW53V_NqGl9l1P8AgXIHzw priority: 102 providerName: Directory of Open Access Journals |
| Title | Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China |
| URI | https://link.springer.com/article/10.1038/s41598-025-22130-y https://www.ncbi.nlm.nih.gov/pubmed/41152585 https://www.proquest.com/docview/3266184791 https://www.proquest.com/docview/3266448055 https://doaj.org/article/b5b13716ea4c462ea76510e8baa4f41f |
| Volume | 15 |
| WOSCitedRecordID | wos001604676500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLki98C5dKCsjcYOojuPEzgmxqBUcuooQSMspGif2ag9NliQtWi78dcZONhXiceFiRbEVOZqnZzzzEfKSFQkYiwIYG8vwgCIh0JyHgU6YlbGOgenSg03I5VKtVmk2BNza4VrlXid6RV3WhYuRn0bOkqAqTcM326-BQ41y2dUBQuOATF2nMj4h08XZMvs4RllcHkuE6VAtwyJ12qLFclVlPA5wTxELdr9YJN-4_0_e5m-ZUm-Azu_979bvk7uD60nf9rzygNwy1UNypwej3D0iPxawM66kMqhRjVxuvpuSXvqrloYO2BJrij5527UUfNkJNdewrTvfHn3TcxLdNi7z4x83Ff2GnmwT9PUo-DlYN2OrD-ogIZDlaW2pB_F-TD6fn3169z4Y4BmCQkSqC1QkbAiaFTKVYZgkgoF0QFis0JZrHRspCwCeRMAgkRpMqZgOOQNh4hLQYh6RSVVX5phQztNSSm2AWytslKjCMm0SptE9UWURzcirPYnybd-FI_fZ80jlPUFzJGjuCZrvZmThqDiudB20_Yu6WeeDQOY61mGEh0UDohAJNyATVE9GaQBhRWhn5GRPzHwQ6za_oeSMvBinUSBdlgUqU1_1a_DMy-J4Rp70vDPuRIQObkrhzOs9M918_O8_9PTfe3lGDrnjZ7SoXJ2QSddcmefkdnHdbdpmTg7kSvpRzQfxmPvIA44XPHOjxHGafbjIvvwE60sdPQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQguvKELBYwEJ4jqV2LvASEWWrVqWVWoSL2ZcWKv9tBkm2xbLRf-Eb8R20m2QjxuPXCLkiiyk28-z2Q88yH0kuQZWOcNMLWO-ABFQmIYo4nJiJOpSYGYIopNyMlEHR-PDtfQj74WJmyr7DkxEnVR5eEf-RYPK4mn0hF9Nz9NgmpUyK72EhotLPbt8sKHbM3bvY_--75ibGf76MNu0qkKJLngapEoLhwFQ3I5kpRmmSAgg34TyY1jxqRWyhyAZRwIZNKALRQxlBEQNi2AhkYHnvLXBRepGKD18fbk8PPqr07Imwk66qpzCFdbjV8hQxUbSxP_DjhJlr-sgFEo4E_e7W-Z2bjg7dz-317VHXSrc63x-9YW7qI1W95D11uxzeV99H0MSxtKRpPK0-TJ7Jst8EncSmpxp50xxT7maBYNhlhWg-05zKtFbP8-ay0Fz-uQ2YqHsxJfeE-9Ttp6G_84mNarViY4SF54k8aVw1Gk_AH6ciWzf4gGZVXaDYQZGxVSGgvMOeF4pnJHjM2I8e6XKnI-RK97SOh522VEx90BXOkWQNoDSEcA6eUQjQNqVneGDuHxRFVPdUc42qSGch8MWxC5yJgFmXn6tcoACCeoG6LNHjy6o61GXyJniF6sLnvCCVkkKG111t7jY3qSpkP0qMXqaiSCBjkt5a-86cF7-fC_T-jxv8fyHN3YPfp0oA_2JvtP0E0WbMl7D0xtosGiPrNP0bX8fDFr6medOWL09aph_RPvXXOV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqLSAu5RsWChgJThCt7Tix94AQpaxYFVZ7AKmc0nFir_bQzTbZtlou_C9-HWMn2QrxceuBW5REkZ28eZ7JeOYR8pzlKViHBphYxzBAURAZIXhkUuZUYhJgpghiE2oy0YeHw-kW-dHVwvhtlR0nBqIuytz_Ix_EfiVBKh3ygWu3RUz3R2-WJ5FXkPKZ1k5Oo4HIgV2fY_hWvx7v47d-IcTo_ed3H6JWYSDKZaxXkY6l42BYroaK8zSVDJTXcmK5ccKYxCqVA4g0BgapMmALzQwXDKRNCuC-6QHS_za65EL2yPZ0_Gn6dfOHx-fQJB-2lTos1oMaV0tf0SaSCN9HzKL1L6thEA34k6f7W5Y2LH6jG__za7tJdlqXm75tbOQW2bKL2-RqI8K5vkO-78Ha-lLSqET6PJ5_swU9DltMLW01NWYUY5F6VVMI5TbUnsGyXIW28PPGguiy8hmvcDhf0HP04KuoqcPBx8Gs2rQ4oV4KA02dlo4G8fK75MulzP4e6S3KhX1AqBDDQiljQTgnXZzq3DFjU2bQLdNFHvfJyw4e2bLpPpKFXQOxzhowZQimLIApW_fJnkfQ5k7fOTycKKtZ1hJRZhLDYwySLchcpsKCSpGWrTYA0knu-mS3A1LW0lmdXaCoT55tLiMR-ewSLGx52tyDsT5Lkj653-B2MxLJvcyWxiuvOiBfPPzvE3r477E8JdcQy9nH8eTgEbkuvFmhUyH0LumtqlP7mFzJz1bzunrSWiYlR5eN6p-i_3yH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian-optimized+machine+learning+boosts+actual+evapotranspiration+prediction+in+water-stressed+agricultural+regions+of+China&rft.jtitle=Scientific+reports&rft.au=Elbeltagi%2C+Ahmed&rft.au=Srivastava%2C+Aman&rft.au=Cao%2C+Xinchun&rft.au=Gautam%2C+Vinay+Kumar&rft.date=2025-10-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-22130-y&rft.externalDocID=10_1038_s41598_025_22130_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |