Fuzzy C-Means clustering and LSTM-based magnitude prediction of earthquakes in the Aegean region of Türkiye
Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clus...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 33889 - 24 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
30.09.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting. |
|---|---|
| AbstractList | Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting. Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting. Abstract Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting. Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting. |
| ArticleNumber | 33889 |
| Author | Cekim, Hatice Oncel Aloraini, Badr Karakavak, Hatice Nur Ozel, Gamze |
| Author_xml | – sequence: 1 givenname: Badr surname: Aloraini fullname: Aloraini, Badr organization: Department of Mathematics, College of Science and Humanities, Shaqra University – sequence: 2 givenname: Hatice Oncel surname: Cekim fullname: Cekim, Hatice Oncel email: oncelhatice@hacettepe.edu.tr organization: Department of Statistics, Hacettepe University – sequence: 3 givenname: Hatice Nur surname: Karakavak fullname: Karakavak, Hatice Nur organization: Department of Statistics, Hacettepe University – sequence: 4 givenname: Gamze surname: Ozel fullname: Ozel, Gamze organization: Department of Statistics, Hacettepe University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41028055$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFvFCEYhompsbX2D3gwJF68jDIwzAzHZtNqk208uJ4JAx9TtrOwhZk029_mzT8mu7NW40EuEPJ8Ly95XqMTHzwg9LYkH0vC2k-pKrloC0J5QRrO2uLxBTqjpOIFZZSe_HU-RRcprUlenIqqFK_QaVUS2hLOz9BwPT097fCiuAXlE9bDlEaIzvdYeYOX31a3RacSGLxRvXfjZABvIxinRxc8DhaDiuPdw6TuIWHn8XgH-BL6HIYj9Edm9fNHvHc7eINeWjUkuDju5-j79dVq8aVYfv18s7hcFrpi7Vg0nRF1axgXXWsEp5WgxNK6JJ3m2tRMMdNQyqCxFmqrajC6tEQTCxxE3XF2jm7mXBPUWm6j26i4k0E5ebgIsZe5tdMDyJbUlgDnjImqUqzpgGplFNiqzaHC5KwPc9Y2hocJ0ig3LmkYBuUhTEkyynOzmguR0ff_oOswRZ9_eqAI2SvJ1LsjNXUbMM_1fjvJAJ0BHUNKEewzUhK5dy9n9zK7lwf38jEPsXkobff2IP55-z9TvwADLLF0 |
| Cites_doi | 10.1103/PhysRevLett.92.108501 10.1007/s11069-014-1264-7 10.1007/s10518-016-0005-6 10.1016/j.ijdrr.2021.102642 10.1007/s00024-011-0439-3 10.1046/j.1365-246X.2000.00211.x 10.1007/s10950-006-9012-4 10.1080/095400999116340 10.1029/JB084iB05p02348 10.1016/j.soildyn.2022.107663 10.1007/s00531-018-1655-1 10.1029/92JB01891 10.1785/BSSA0340040185 10.1029/2009GL040233 10.1029/JB090iB07p05479 10.1785/0220180259 10.1007/s000240050161 10.3126/bmcjsr.v7i1.73058 10.3906/yer-1511-7 10.1007/s10518-009-9147-0 10.1007/s40098-024-01147-6 10.3390/rs15164098 10.1088/1742-6596/1361/1/012015 10.1080/19475705.2019.1629106 10.1007/978-3-0348-8677-2_15 10.1186/s40623-016-0435-z 10.1016/0040-1951(83)90295-0 10.63898/WNKZ4526 10.3906/yer-2101-9 10.1109/ICOSP.2006.346109 10.1029/2003JB002667 10.1142/9781860944024 10.1080/09853111.2001.11432432 10.1109/TETC.2017.2699169 10.5194/nhess-21-2059-2021 10.4108/eai.24-1-2018.2292388 10.3389/feart.2023.1082832 10.1029/2003JB002879 10.1016/0169-2070(95)00621-4 10.1007/s00024-003-2397-x 10.3389/feart.2020.582797 10.1016/j.neucom.2018.09.082 10.1002/(SICI)1099-1034(200001/03)35:1<1::AID-GJ834>3.0.CO;2-A 10.33096/ilkom.v16i2.2333.210-220 10.1785/BSSA0890051147 10.1016/j.apr.2019.09.009 10.1007/978-1-4471-3675-0 10.1785/0120000844 10.1007/s10706-024-03062-2 10.1007/s10518-016-0041-2 10.1029/1999JB900115 10.1126/science.275.5306.1616 10.1785/gssrl.72.3.373 10.1109/ISDFS58141.2023.10131766 10.1017/9781316681473 10.1016/j.asoc.2012.10.014 10.1007/s00024-010-0085-1 10.1080/01621459.1988.10478560 10.1145/3386723.3387865 10.1016/j.renene.2021.09.067 10.1785/BSSA0580051583 10.1371/journal.pone.0140395 10.1007/s00521-020-04867-x 10.1049/sfw2.12066 10.1016/j.physa.2018.11.061 10.1144/gsjgs.136.3.0269 10.1785/0120000841 10.1038/s41467-020-17591-w 10.1007/978-981-16-2712-5_16 10.1038/279590a0 10.1785/BSSA0610051275 10.1029/96JB00177 10.1007/s00024-020-02576-z 10.1046/j.1365-246x.2002.01594.x 10.1007/s12145-023-00961-5 10.1007/s13198-022-01808-w 10.1016/0098-3004(84)90020-7 10.1162/neco.1997.9.8.1735 10.1016/j.jksuci.2024.102068 10.1007/s00024-021-02693-3 10.1144/SP327.8 10.1785/BSSA0640020393 10.3906/yer-2101-14 10.1007/s12665-023-11162-0 10.1029/2000JB900408 10.1785/0120180338 10.1093/bioinformatics/btg119 10.1186/s00015-022-00408-x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-07538-w |
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_806f0e5533944a37be2cadaef48c1f9d 41028055 10_1038_s41598_025_07538_w |
| Genre | Journal Article |
| GeographicLocations | Nepal Anatolia Turkey |
| GeographicLocations_xml | – name: Nepal – name: Anatolia – name: Turkey |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-7bd968d359b8d9524920f2610bc5cd63a3d7223e7ffe6fa6edc1f0c0fe5e96b53 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586154900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Oct 13 19:20:18 EDT 2025 Mon Oct 06 16:23:40 EDT 2025 Tue Oct 07 07:53:47 EDT 2025 Sat Oct 04 02:10:24 EDT 2025 Sat Nov 29 07:20:49 EST 2025 Wed Oct 01 06:55:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gumbel distribution Earthquake magnitudes Fuzzy C-Means clustering Long-short term memory |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-7bd968d359b8d9524920f2610bc5cd63a3d7223e7ffe6fa6edc1f0c0fe5e96b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3256002045?pq-origsite=%requestingapplication% |
| PMID | 41028055 |
| PQID | 3256002045 |
| PQPubID | 2041939 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_806f0e5533944a37be2cadaef48c1f9d proquest_miscellaneous_3256106599 proquest_journals_3256002045 pubmed_primary_41028055 crossref_primary_10_1038_s41598_025_07538_w springer_journals_10_1038_s41598_025_07538_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Y Ogata (7538_CR79) 1999; 104 N Mozafari (7538_CR12) 2022; 115 AF Cabalar (7538_CR43) 2019; 10 SM Mousavi (7538_CR21) 2020; 11 7538_CR38 TM Yegulalp (7538_CR28) 1974; 64 P Novianti (7538_CR103) 2017; 3 YY Kagan (7538_CR70) 1999; 89 GK Shrivastava (7538_CR95) 2023; 14 7538_CR36 DD Wackerly (7538_CR73) 2008 M Mirrashid (7538_CR26) 2014; 74 N Sarica (7538_CR46) 2000; 35 VF Pisarenko (7538_CR83) 2003; 160 İ Ermiş (7538_CR13) 2024; 4 M Aryal (7538_CR23) 2024; 7 SL Kramer (7538_CR82) 1996 S Coles (7538_CR41) 2001 CA Cornell (7538_CR81) 1968; 58 T Uzelli (7538_CR11) 2021; 30 T Ye (7538_CR24) 2024; 15 GG Dogan (7538_CR5) 2021; 178 H Berhich (7538_CR32) 2023; 122 ID Gupta (7538_CR75) 2002; 39 D Dembele (7538_CR63) 2003; 19 AO Oncel (7538_CR71) 2001; 106 D Vere-Jones (7538_CR78) 1995; 11 JC Bezdek (7538_CR40) 1984; 10 R Bilham (7538_CR1) 2009; 7 K Li (7538_CR66) 2015; 10 J Cao (7538_CR86) 2019; 519 K Sesetyan (7538_CR39) 2018; 16 7538_CR58 7538_CR51 V Roche (7538_CR45) 2019; 108 IE Livieris (7538_CR91) 2020; 32 Ç Tepe (7538_CR10) 2021; 30 B Gutenberg (7538_CR67) 1944; 34 CH Scholz (7538_CR15) 2019 7538_CR64 7538_CR65 Y Wu (7538_CR94) 2022; 181 Y Ogata (7538_CR77) 1988; 83 S Wiemer (7538_CR53) 2001; 72 7538_CR3 B Sadhukhan (7538_CR33) 2023; 11 A Pınar (7538_CR55) 2016; 68 7538_CR61 Q Kong (7538_CR20) 2019; 90 A Barka (7538_CR4) 2002; 92 YY Kagan (7538_CR17) 2002; 148 A Kijko (7538_CR85) 1998; 152 Q Wang (7538_CR22) 2017; 8 M Båth (7538_CR30) 1983; 98 F Subhan (7538_CR93) 2022; 16 HN Karakavak (7538_CR60) 2025; 43 M Karcı (7538_CR102) 2022; 5 Y Dilek (7538_CR47) 2009; 327 A Berhich (7538_CR107) 2021; 10 TC Hanks (7538_CR59) 1979; 84 E Bozkurt (7538_CR2) 2001; 14 C Unal (7538_CR37) 2023; 16 A Sagheer (7538_CR92) 2019; 323 J Reyes (7538_CR97) 2013; 13 7538_CR106 C Frohlich (7538_CR69) 1993; 98 7538_CR88 E Bayrak (7538_CR6) 2023; 82 7538_CR108 Ö Emre (7538_CR50) 2018; 16 7538_CR89 A Berhich (7538_CR25) 2023; 165 7538_CR80 7538_CR101 AMC Sengör (7538_CR49) 1979; 136 7538_CR16 KH Coban (7538_CR9) 2020; 177 7538_CR18 J Jia (7538_CR99) 2023; 15 7538_CR96 FT Kadirioğlu (7538_CR54) 2016; 25 7538_CR98 AMC Sengör (7538_CR48) 1979; 279 AO Oncel (7538_CR72) 2002; 92 M Asim (7538_CR19) 2017; 8 R Kamat (7538_CR104) 2017; 10 R Das (7538_CR57) 2019; 109 7538_CR90 Á Corral (7538_CR76) 2004; 92 KL Kaila (7538_CR29) 1971; 61 P Rodriguez (7538_CR87) 1999; 11 PM Paradisopoulou (7538_CR7) 2010; 167 A Aryal (7538_CR34) 2024; 119 A Pranolo (7538_CR100) 2024; 16 P Govender (7538_CR62) 2020; 11 D Kalafat (7538_CR35) 2011 P Reasenberg (7538_CR52) 1985; 90 C Lomnitz (7538_CR74) 1994 R Jena (7538_CR31) 2021; 66 T Korbar (7538_CR44) 2020; 8 7538_CR27 IH Rifa (7538_CR105) 2020; 13 Y Bayrak (7538_CR8) 2012; 169 D Sornette (7538_CR84) 1996; 101 RJ Geller (7538_CR14) 1997; 275 S Hochreiter (7538_CR42) 1997; 9 AO Oncel (7538_CR68) 2000; 143 EM Scordilis (7538_CR56) 2006; 10 |
| References_xml | – volume: 122 year: 2023 ident: 7538_CR32 publication-title: Eng. Appl. Artif. Intell. – volume: 92 year: 2004 ident: 7538_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.108501 – volume: 74 start-page: 1577 year: 2014 ident: 7538_CR26 publication-title: Nat. Hazards doi: 10.1007/s11069-014-1264-7 – volume: 16 start-page: 3193 year: 2018 ident: 7538_CR39 publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-016-0005-6 – volume: 66 year: 2021 ident: 7538_CR31 publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2021.102642 – volume: 169 start-page: 1859 year: 2012 ident: 7538_CR8 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-011-0439-3 – volume-title: A revised and extended earthquake catalog for Turkey year: 2011 ident: 7538_CR35 – volume: 143 start-page: 501 year: 2000 ident: 7538_CR68 publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2000.00211.x – volume: 10 start-page: 225 year: 2006 ident: 7538_CR56 publication-title: J. Seismol. doi: 10.1007/s10950-006-9012-4 – volume: 11 start-page: 5 year: 1999 ident: 7538_CR87 publication-title: Connect. Sci. doi: 10.1080/095400999116340 – volume: 84 start-page: 2348 year: 1979 ident: 7538_CR59 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB084iB05p02348 – volume: 165 year: 2023 ident: 7538_CR25 publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2022.107663 – volume: 108 start-page: 301 year: 2019 ident: 7538_CR45 publication-title: Int. J. Earth Sci. doi: 10.1007/s00531-018-1655-1 – volume: 98 start-page: 631 year: 1993 ident: 7538_CR69 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/92JB01891 – volume: 34 start-page: 185 year: 1944 ident: 7538_CR67 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0340040185 – ident: 7538_CR18 doi: 10.1029/2009GL040233 – ident: 7538_CR38 – volume: 90 start-page: 5479 year: 1985 ident: 7538_CR52 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB090iB07p05479 – ident: 7538_CR101 – volume: 90 start-page: 3 year: 2019 ident: 7538_CR20 publication-title: Seismol. Res. Lett. doi: 10.1785/0220180259 – volume: 152 start-page: 413 year: 1998 ident: 7538_CR85 publication-title: Pure Appl. Geophys. doi: 10.1007/s000240050161 – volume-title: Mathematical statistics with applications year: 2008 ident: 7538_CR73 – volume: 7 start-page: 12 year: 2024 ident: 7538_CR23 publication-title: BMC J. Sci. Res. doi: 10.3126/bmcjsr.v7i1.73058 – volume: 25 start-page: 300 year: 2016 ident: 7538_CR54 publication-title: Turk. J. Earth Sci. doi: 10.3906/yer-1511-7 – volume: 7 start-page: 839 year: 2009 ident: 7538_CR1 publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-009-9147-0 – volume: 8 start-page: 206 year: 2017 ident: 7538_CR19 publication-title: IJACSA – ident: 7538_CR58 doi: 10.1007/s40098-024-01147-6 – volume: 15 start-page: 4098 year: 2023 ident: 7538_CR99 publication-title: Remote Sens. doi: 10.3390/rs15164098 – ident: 7538_CR64 doi: 10.1088/1742-6596/1361/1/012015 – volume: 10 start-page: 1822 year: 2019 ident: 7538_CR43 publication-title: Geomatics Nat. Hazards Risk. doi: 10.1080/19475705.2019.1629106 – ident: 7538_CR16 doi: 10.1007/978-3-0348-8677-2_15 – volume: 68 start-page: 1 year: 2016 ident: 7538_CR55 publication-title: Earth, Planets and Space doi: 10.1186/s40623-016-0435-z – volume: 98 start-page: 165 year: 1983 ident: 7538_CR30 publication-title: Tectonophysics doi: 10.1016/0040-1951(83)90295-0 – volume: 39 start-page: 311 year: 2002 ident: 7538_CR75 publication-title: ISET J. Earthq. Technol. doi: 10.63898/WNKZ4526 – volume: 30 start-page: 758 year: 2021 ident: 7538_CR11 publication-title: Turk. J. Earth Sci. doi: 10.3906/yer-2101-9 – ident: 7538_CR61 doi: 10.1109/ICOSP.2006.346109 – ident: 7538_CR3 doi: 10.1029/2003JB002667 – ident: 7538_CR108 doi: 10.1142/9781860944024 – volume: 14 start-page: 3 year: 2001 ident: 7538_CR2 publication-title: Geodin. Acta doi: 10.1080/09853111.2001.11432432 – volume: 8 start-page: 148 year: 2017 ident: 7538_CR22 publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2017.2699169 – ident: 7538_CR51 doi: 10.5194/nhess-21-2059-2021 – ident: 7538_CR65 doi: 10.4108/eai.24-1-2018.2292388 – volume: 11 start-page: 1082832 year: 2023 ident: 7538_CR33 publication-title: Front. Earth Sci. doi: 10.3389/feart.2023.1082832 – ident: 7538_CR80 doi: 10.1029/2003JB002879 – volume: 13 start-page: 194 year: 2020 ident: 7538_CR105 publication-title: Media Stat. – volume: 11 start-page: 503 year: 1995 ident: 7538_CR78 publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(95)00621-4 – volume: 160 start-page: 2343 year: 2003 ident: 7538_CR83 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-003-2397-x – volume: 8 year: 2020 ident: 7538_CR44 publication-title: Front. Earth Sci. doi: 10.3389/feart.2020.582797 – volume: 323 start-page: 203 year: 2019 ident: 7538_CR92 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.082 – volume: 5 start-page: 23 year: 2022 ident: 7538_CR102 publication-title: Artif. Intell. Stud. – volume: 35 start-page: 1 year: 2000 ident: 7538_CR46 publication-title: Geol. J. doi: 10.1002/(SICI)1099-1034(200001/03)35:1<1::AID-GJ834>3.0.CO;2-A – volume: 16 start-page: 210 year: 2024 ident: 7538_CR100 publication-title: ILKOM J. Ilm. doi: 10.33096/ilkom.v16i2.2333.210-220 – volume: 10 start-page: 1 year: 2021 ident: 7538_CR107 publication-title: Int. J. High Perform. Syst. Archit. – volume: 89 start-page: 1147 year: 1999 ident: 7538_CR70 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0890051147 – volume: 11 start-page: 40 year: 2020 ident: 7538_CR62 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.09.009 – volume-title: An Introduction to Statistical Modeling of Extreme Values year: 2001 ident: 7538_CR41 doi: 10.1007/978-1-4471-3675-0 – ident: 7538_CR88 – volume: 92 start-page: 339 year: 2002 ident: 7538_CR72 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120000844 – volume: 43 start-page: 1 year: 2025 ident: 7538_CR60 publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-024-03062-2 – volume: 16 start-page: 3229 year: 2018 ident: 7538_CR50 publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-016-0041-2 – volume: 104 start-page: 17995 year: 1999 ident: 7538_CR79 publication-title: J. Geophys. Res. Solid Earth. doi: 10.1029/1999JB900115 – volume: 275 start-page: 1616 year: 1997 ident: 7538_CR14 publication-title: Science doi: 10.1126/science.275.5306.1616 – volume: 72 start-page: 373 year: 2001 ident: 7538_CR53 publication-title: Seismol. Res. Lett. doi: 10.1785/gssrl.72.3.373 – volume-title: Fundamentals of earthquake prediction year: 1994 ident: 7538_CR74 – ident: 7538_CR98 doi: 10.1109/ISDFS58141.2023.10131766 – volume-title: The mechanics of earthquakes and faulting year: 2019 ident: 7538_CR15 doi: 10.1017/9781316681473 – volume: 13 start-page: 1314 year: 2013 ident: 7538_CR97 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.10.014 – volume: 167 start-page: 1013 year: 2010 ident: 7538_CR7 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-010-0085-1 – volume: 83 start-page: 9 year: 1988 ident: 7538_CR77 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478560 – ident: 7538_CR106 doi: 10.1145/3386723.3387865 – volume: 181 start-page: 554 year: 2022 ident: 7538_CR94 publication-title: Renew. Energy. doi: 10.1016/j.renene.2021.09.067 – volume: 58 start-page: 1583 year: 1968 ident: 7538_CR81 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0580051583 – volume: 10 year: 2015 ident: 7538_CR66 publication-title: PLoS ONE doi: 10.1371/journal.pone.0140395 – volume: 32 start-page: 17351 year: 2020 ident: 7538_CR91 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04867-x – volume: 16 start-page: 516 year: 2022 ident: 7538_CR93 publication-title: IET Softw. doi: 10.1049/sfw2.12066 – volume: 519 start-page: 127 year: 2019 ident: 7538_CR86 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2018.11.061 – volume: 136 start-page: 269 year: 1979 ident: 7538_CR49 publication-title: J. Geol. Soc. doi: 10.1144/gsjgs.136.3.0269 – volume: 92 start-page: 43 year: 2002 ident: 7538_CR4 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120000841 – volume: 119 start-page: 77 year: 2024 ident: 7538_CR34 publication-title: Nat. Hazards – volume: 3 start-page: 81 year: 2017 ident: 7538_CR103 publication-title: Int. J. Adv. Intell. Inform. – volume: 11 start-page: 3952 year: 2020 ident: 7538_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17591-w – volume: 4 start-page: 59 year: 2024 ident: 7538_CR13 publication-title: Türkiye. J. Artif. Intell. Data Sci. – volume-title: Geotechnical earthquake engineering year: 1996 ident: 7538_CR82 – ident: 7538_CR27 doi: 10.1007/978-981-16-2712-5_16 – volume: 15 start-page: 112 year: 2024 ident: 7538_CR24 publication-title: Geosci. Front. – volume: 279 start-page: 590 year: 1979 ident: 7538_CR48 publication-title: Nature doi: 10.1038/279590a0 – volume: 61 start-page: 1275 year: 1971 ident: 7538_CR29 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0610051275 – volume: 101 start-page: 13883 year: 1996 ident: 7538_CR84 publication-title: J. Geophys. Res. Solid Earth. doi: 10.1029/96JB00177 – ident: 7538_CR89 – volume: 177 start-page: 5133 year: 2020 ident: 7538_CR9 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-020-02576-z – volume: 148 start-page: 520 year: 2002 ident: 7538_CR17 publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.2002.01594.x – volume: 16 start-page: 1 year: 2023 ident: 7538_CR37 publication-title: Earth Sci. Inform. doi: 10.1007/s12145-023-00961-5 – volume: 14 start-page: 391 year: 2023 ident: 7538_CR95 publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-022-01808-w – volume: 10 start-page: 191 year: 1984 ident: 7538_CR40 publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 9 start-page: 1735 year: 1997 ident: 7538_CR42 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 7538_CR96 doi: 10.1016/j.jksuci.2024.102068 – volume: 10 start-page: 250 year: 2017 ident: 7538_CR104 publication-title: J. Chem. Pharm. Sci. – volume: 178 start-page: 785 year: 2021 ident: 7538_CR5 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-021-02693-3 – volume: 327 start-page: 127 year: 2009 ident: 7538_CR47 publication-title: Geol. Soc. London Special Publ. doi: 10.1144/SP327.8 – ident: 7538_CR90 – volume: 64 start-page: 393 year: 1974 ident: 7538_CR28 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0640020393 – ident: 7538_CR36 – volume: 30 start-page: 779 year: 2021 ident: 7538_CR10 publication-title: Turk. J. Earth Sci. doi: 10.3906/yer-2101-14 – volume: 82 start-page: 470 year: 2023 ident: 7538_CR6 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-023-11162-0 – volume: 106 start-page: 21827 year: 2001 ident: 7538_CR71 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2000JB900408 – volume: 109 start-page: 1542 year: 2019 ident: 7538_CR57 publication-title: Bull. Seism. Soc. Am. doi: 10.1785/0120180338 – volume: 19 start-page: 973 year: 2003 ident: 7538_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – volume: 115 start-page: 1 year: 2022 ident: 7538_CR12 publication-title: Swiss J. Geosci. doi: 10.1186/s00015-022-00408-x |
| SSID | ssj0000529419 |
| Score | 2.4601727 |
| Snippet | Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake... Abstract Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 33889 |
| SubjectTerms | 704/172 704/2151 704/4111 Accuracy Cluster analysis Deep learning Earthquake magnitudes Earthquake prediction Earthquakes Fault lines Fuzzy C-Means clustering Genetic algorithms Gumbel distribution Humanities and Social Sciences Long short-term memory multidisciplinary Neural networks Optimization techniques Probability distribution Regions Risk reduction Science Science (multidisciplinary) Seismic activity Statistical analysis Statistical models Time series Trends |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSQuiG8CLTISN7DqrPNhH9uKFQdaIbFIvVmOPYZV22zZ3VBtfxs3_lhn4uxSBIgL18SxnHm251kzfsPYqxBMhLJQogFoBHkIYaT3IkDhCw0KXWrsi03Ux8f65MR8uFHqi3LCkjxwMtyellWUUCIrMUXhVN3AyLvgIBba59EE2n1lbW4cppKq98gUuRluyUil9xY4DrpNNioFeklc5Ze_eKJesP9PLPO3CGnveMb32N2BMfL9NNL77Ba0D9jtVENy9ZCdjburqxU_FEeAXof7s46kD7An7trA33-cHAnyVIGfO0oU6gLwizlFZwgRPoscp_ryy9fOncKCT1uOhJDvw2fsjFPRhtRm8uP7_HS6gkfs0_jt5PCdGEooCF8ovRR1E0ylgypNo4MpSR5QRjw0ycaXPlTKqVAjQYA6RqiiqyCgUaWXiB-YqinVY7bVzlp4yjhuhMZjgwootw8apwC5S-N0Lj04lWfs9dqc9iIpZdg-wq20Tca3aHzbG99eZuyALL5pSSrX_QPE3g7Y239hn7GdNV52WHoLq3oSRyr7GXu5eY2LhiIhroVZl9rkFFE2GXuScN6MpCDKJUv8-s0a-J-d__2Hnv2PH3rO7oz6GUr5KDtsaznvYJdt-2_L6WL-op_i1-pEAYY priority: 102 providerName: Directory of Open Access Journals |
| Title | Fuzzy C-Means clustering and LSTM-based magnitude prediction of earthquakes in the Aegean region of Türkiye |
| URI | https://link.springer.com/article/10.1038/s41598-025-07538-w https://www.ncbi.nlm.nih.gov/pubmed/41028055 https://www.proquest.com/docview/3256002045 https://www.proquest.com/docview/3256106599 https://doaj.org/article/806f0e5533944a37be2cadaef48c1f9d |
| Volume | 15 |
| WOSCitedRecordID | wos001586154900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RBiQuvAuGEi0SN1jVzvqxe0Jt1QgkEkUQpHCy1rvjErU4aRJTpb-NG3-MmbWTCvG4cNmDPbbGmpmdzzOzM4y9dE6XkMRSFACFIA8hdGitcBDbWIFEl1r6YRPZcKgmEz1qA27Ltqxysyf6jdrNLMXID6T3zdQ8_c38QtDUKMqutiM0dlgHkU1EJV2D3mgbY6EsVhzp9qxMKNXBErmhM2W9RKCvRFu__MUf-bb9f8Kav-VJvfvp3_1fxu-xOy3w5IeNptxnN6B6wG41oyjXD9l5v766WvNjMQB0Xtye19RBAVnhpnL8_cfxQJDDc_yroXqj2gGfLyjJQ4Lls5Kjxay-XNTmDJZ8WnHElfwQTvFlnGY_NDTjH98XZ9M1PGKf-ifj47eincQgbCzVSmSF06lyMtGFcjqhLoNhif9eYWET61JppMsQZ0BWlpCWJgVnozK0IaoB6LRI5B7brWYVPGEc91NtkSAFKhGEwkhACFQYFYUWjIwC9mojj3zeNNzIfaJcqryRXo7Sy7308suAHZHItpTULNtfmC1O89b2chWmZQgJAlsdx0ZmBfSscQbKWCGb2gVsfyO5vLXgZX4ttoC92N5G26OEiqlgVjc0ESWmdcAeN4qy5SQm5BYm-PTrjeZcv_zvH_T037w8Y7d7XnmpYGWf7a4WNTxnN-231XS56LKdbJL5VXVZ5-hkOPrQ9UGGrrcLWjNcO6N3g9Hnn7BmFYs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoILb-hCASPBCawmcZKNDwiVwqpVd1eVWKTejGNP2lVLdpvdsNr-KH4BN_4YM3lshXjceuCaOJYn_jzf2DOeYeyFcyqDKJQiBUgFMYRQnrXCQWjDBCRSalYVm-gOh8nhoTpYY9_auzAUVtnqxEpRu4mlM_ItWXEzJU9_Oz0TVDWKvKttCY0aFvuwXOCWbfZm7z3O78sg6H0Y7eyKpqqAsKFM5qKbOhUnTkYqTZyKKGOel-E-wkttZF0sjXRd5EzoZhnEmYnBWT_zrIcigYpTqhKBKv9KSJnFKFQwOFid6ZDXLPRVczfHk8nWDKWnO2xBJJCbUbcsfuG_qkzAn2zb3_yyFd31bv1vP-o2u9kY1ny7Xgl32Brkd9m1utTm8h477ZXn50u-IwaA5MztaUkZIlB0bnLH-x9HA0GE7vgXQ_FUpQM-LciJRcDlk4yjRPPjs9KcwIyPc452M9-GI-yMU22Lus3ox_fiZLyE--zTpYj6gK3nkxw2GEe-UBYbxEAhkJAaCWjipSbxPQtG-h32qp1_Pa0TiugqEEAmukaLRrToCi160WHvCCKrlpQMvHowKY50o1t04sWZBxEa7ioMjeymEFjjDGRhgsNUrsM2W6ToRkPN9AVMOuz56jXqFnIYmRwmZd3GJ8e76rCHNTBXIwnJMvUi_Pp1i9SLzv8u0KN_j-UZu747GvR1f2-4_5jdCKqFQ8E5m2x9XpTwhF21X-fjWfG0Wnmcfb5sBP8EthZtDA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFBAX3tBAASPBCVbZrHc36wNCpSUiahNFIkjlZLz2uI1aNmmSJUp_GuLGH2NmH6kQj1sPXHe9lsf7eb6xZzzD2HNrpYMoFF4KkHrEEJ70jfEshCZMQCCluqLYRGcwSA4P5XCDfavvwlBYZa0TC0VtJ4bOyFui4GZKnt5yVVjEcK_7ZnrmUQUp8rTW5TRKiOzDaonbt_nr3h7-6xdB0H032n3vVRUGPBOKZOF1UivjxIpIpomVEWXP8x3uKfzURMbGQgvbQf6EjnMQOx2DNW3nGx_FAxmnVDEC1f8mmuRh0GCbw15_-Gl9wkM-tLAtq5s6vkhac5wLutEWRB4yNWqa5S9sWBQN-JOl-5uXtiC_7s3_edpusRuVyc13yjVym21AdoddLYtwru6y025-fr7iu14fkLa5Oc0pdwROA9eZ5QcfRn2PqN7yL5oirXILfDoj9xZBmk8cR4kWx2e5PoE5H2ccLWq-A0fYGaeqF2Wb0Y_vs5PxCu6xj5ci6n3WyCYZbDGOTCINNoiBgiMh1QLQ-Et10vYNaNFuspc1FtS0TDWiihABkagSOQqRowrkqGWTvSW4rFtSmvDiwWR2pCqtoxI_dj5EaNLLMNSik0JgtNXgwgSHKW2TbdeoUZXumqsLyDTZs_Vr1DrkStIZTPKyTZtc8rLJHpQgXY8kJJvVj_DrVzVqLzr_u0AP_z2Wp-waAlcd9Ab7j9j1oFhDFLWzzRqLWQ6P2RXzdTGez55Uy5Czz5cN4Z_fNndV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-Means+clustering+and+LSTM-based+magnitude+prediction+of+earthquakes+in+the+Aegean+region+of+T%C3%BCrkiye&rft.jtitle=Scientific+reports&rft.au=Aloraini%2C+Badr&rft.au=Cekim%2C+Hatice+Oncel&rft.au=Karakavak%2C+Hatice+Nur&rft.au=Ozel%2C+Gamze&rft.date=2025-09-30&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=33889&rft_id=info:doi/10.1038%2Fs41598-025-07538-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |