Fuzzy C-Means clustering and LSTM-based magnitude prediction of earthquakes in the Aegean region of Türkiye

Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 33889 - 24
Hauptverfasser: Aloraini, Badr, Cekim, Hatice Oncel, Karakavak, Hatice Nur, Ozel, Gamze
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 30.09.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.
AbstractList Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.
Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.
Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71-4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.
Abstract Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake magnitudes is essential for effective risk mitigation and structural resilience. This study proposes an integrated methodology combining clustering, statistical modeling, and deep learning techniques for the analysis and forecasting of earthquake magnitudes. Initially, earthquakes are classified into three distinct regions using the Fuzzy C-Means (FCM) clustering algorithm. For each region, statistical distributions are applied to characterize magnitude behavior. Subsequently, the Long Short-Term Memory (LSTM) model is used to predict future earthquake magnitudes. The joint application of these three methods provides a comprehensive framework for regional seismic analysis. The findings suggest that the Gumbel distribution offers the best fit for modeling return periods of earthquakes with magnitudes greater than Mwg 5.18, where Mwg denotes the global moment magnitude. Estimated return periods range from 2.56 to 3.63 years in the first region, 2.53 to 3.55 years in the second region, and 2.71–4.22 years in the third region, based on probability levels between 25 and 95%. The LSTM model forecasts that the third region is likely to experience relatively stronger seismic activity, with maximum magnitudes ranging from 2.4 to 6.5 between October 2021 and March 2029. For the same period, expected magnitudes in the first and second regions range from 2.0 to 5.7. These forecasts are supported by model performance metrics that confirm the projected magnitudes are within an acceptable and reliable range of accuracy for medium-term seismic forecasting.
ArticleNumber 33889
Author Cekim, Hatice Oncel
Aloraini, Badr
Karakavak, Hatice Nur
Ozel, Gamze
Author_xml – sequence: 1
  givenname: Badr
  surname: Aloraini
  fullname: Aloraini, Badr
  organization: Department of Mathematics, College of Science and Humanities, Shaqra University
– sequence: 2
  givenname: Hatice Oncel
  surname: Cekim
  fullname: Cekim, Hatice Oncel
  email: oncelhatice@hacettepe.edu.tr
  organization: Department of Statistics, Hacettepe University
– sequence: 3
  givenname: Hatice Nur
  surname: Karakavak
  fullname: Karakavak, Hatice Nur
  organization: Department of Statistics, Hacettepe University
– sequence: 4
  givenname: Gamze
  surname: Ozel
  fullname: Ozel, Gamze
  organization: Department of Statistics, Hacettepe University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41028055$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvFCEYhompsbX2D3gwJF68jDIwzAzHZtNqk208uJ4JAx9TtrOwhZk029_mzT8mu7NW40EuEPJ8Ly95XqMTHzwg9LYkH0vC2k-pKrloC0J5QRrO2uLxBTqjpOIFZZSe_HU-RRcprUlenIqqFK_QaVUS2hLOz9BwPT097fCiuAXlE9bDlEaIzvdYeYOX31a3RacSGLxRvXfjZABvIxinRxc8DhaDiuPdw6TuIWHn8XgH-BL6HIYj9Edm9fNHvHc7eINeWjUkuDju5-j79dVq8aVYfv18s7hcFrpi7Vg0nRF1axgXXWsEp5WgxNK6JJ3m2tRMMdNQyqCxFmqrajC6tEQTCxxE3XF2jm7mXBPUWm6j26i4k0E5ebgIsZe5tdMDyJbUlgDnjImqUqzpgGplFNiqzaHC5KwPc9Y2hocJ0ig3LmkYBuUhTEkyynOzmguR0ff_oOswRZ9_eqAI2SvJ1LsjNXUbMM_1fjvJAJ0BHUNKEewzUhK5dy9n9zK7lwf38jEPsXkobff2IP55-z9TvwADLLF0
Cites_doi 10.1103/PhysRevLett.92.108501
10.1007/s11069-014-1264-7
10.1007/s10518-016-0005-6
10.1016/j.ijdrr.2021.102642
10.1007/s00024-011-0439-3
10.1046/j.1365-246X.2000.00211.x
10.1007/s10950-006-9012-4
10.1080/095400999116340
10.1029/JB084iB05p02348
10.1016/j.soildyn.2022.107663
10.1007/s00531-018-1655-1
10.1029/92JB01891
10.1785/BSSA0340040185
10.1029/2009GL040233
10.1029/JB090iB07p05479
10.1785/0220180259
10.1007/s000240050161
10.3126/bmcjsr.v7i1.73058
10.3906/yer-1511-7
10.1007/s10518-009-9147-0
10.1007/s40098-024-01147-6
10.3390/rs15164098
10.1088/1742-6596/1361/1/012015
10.1080/19475705.2019.1629106
10.1007/978-3-0348-8677-2_15
10.1186/s40623-016-0435-z
10.1016/0040-1951(83)90295-0
10.63898/WNKZ4526
10.3906/yer-2101-9
10.1109/ICOSP.2006.346109
10.1029/2003JB002667
10.1142/9781860944024
10.1080/09853111.2001.11432432
10.1109/TETC.2017.2699169
10.5194/nhess-21-2059-2021
10.4108/eai.24-1-2018.2292388
10.3389/feart.2023.1082832
10.1029/2003JB002879
10.1016/0169-2070(95)00621-4
10.1007/s00024-003-2397-x
10.3389/feart.2020.582797
10.1016/j.neucom.2018.09.082
10.1002/(SICI)1099-1034(200001/03)35:1<1::AID-GJ834>3.0.CO;2-A
10.33096/ilkom.v16i2.2333.210-220
10.1785/BSSA0890051147
10.1016/j.apr.2019.09.009
10.1007/978-1-4471-3675-0
10.1785/0120000844
10.1007/s10706-024-03062-2
10.1007/s10518-016-0041-2
10.1029/1999JB900115
10.1126/science.275.5306.1616
10.1785/gssrl.72.3.373
10.1109/ISDFS58141.2023.10131766
10.1017/9781316681473
10.1016/j.asoc.2012.10.014
10.1007/s00024-010-0085-1
10.1080/01621459.1988.10478560
10.1145/3386723.3387865
10.1016/j.renene.2021.09.067
10.1785/BSSA0580051583
10.1371/journal.pone.0140395
10.1007/s00521-020-04867-x
10.1049/sfw2.12066
10.1016/j.physa.2018.11.061
10.1144/gsjgs.136.3.0269
10.1785/0120000841
10.1038/s41467-020-17591-w
10.1007/978-981-16-2712-5_16
10.1038/279590a0
10.1785/BSSA0610051275
10.1029/96JB00177
10.1007/s00024-020-02576-z
10.1046/j.1365-246x.2002.01594.x
10.1007/s12145-023-00961-5
10.1007/s13198-022-01808-w
10.1016/0098-3004(84)90020-7
10.1162/neco.1997.9.8.1735
10.1016/j.jksuci.2024.102068
10.1007/s00024-021-02693-3
10.1144/SP327.8
10.1785/BSSA0640020393
10.3906/yer-2101-14
10.1007/s12665-023-11162-0
10.1029/2000JB900408
10.1785/0120180338
10.1093/bioinformatics/btg119
10.1186/s00015-022-00408-x
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-07538-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_806f0e5533944a37be2cadaef48c1f9d
41028055
10_1038_s41598_025_07538_w
Genre Journal Article
GeographicLocations Nepal
Anatolia
Turkey
GeographicLocations_xml – name: Nepal
– name: Anatolia
– name: Turkey
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-7bd968d359b8d9524920f2610bc5cd63a3d7223e7ffe6fa6edc1f0c0fe5e96b53
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586154900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:20:18 EDT 2025
Mon Oct 06 16:23:40 EDT 2025
Tue Oct 07 07:53:47 EDT 2025
Sat Oct 04 02:10:24 EDT 2025
Sat Nov 29 07:20:49 EST 2025
Wed Oct 01 06:55:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gumbel distribution
Earthquake magnitudes
Fuzzy C-Means clustering
Long-short term memory
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-7bd968d359b8d9524920f2610bc5cd63a3d7223e7ffe6fa6edc1f0c0fe5e96b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3256002045?pq-origsite=%requestingapplication%
PMID 41028055
PQID 3256002045
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_806f0e5533944a37be2cadaef48c1f9d
proquest_miscellaneous_3256106599
proquest_journals_3256002045
pubmed_primary_41028055
crossref_primary_10_1038_s41598_025_07538_w
springer_journals_10_1038_s41598_025_07538_w
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Y Ogata (7538_CR79) 1999; 104
N Mozafari (7538_CR12) 2022; 115
AF Cabalar (7538_CR43) 2019; 10
SM Mousavi (7538_CR21) 2020; 11
7538_CR38
TM Yegulalp (7538_CR28) 1974; 64
P Novianti (7538_CR103) 2017; 3
YY Kagan (7538_CR70) 1999; 89
GK Shrivastava (7538_CR95) 2023; 14
7538_CR36
DD Wackerly (7538_CR73) 2008
M Mirrashid (7538_CR26) 2014; 74
N Sarica (7538_CR46) 2000; 35
VF Pisarenko (7538_CR83) 2003; 160
İ Ermiş (7538_CR13) 2024; 4
M Aryal (7538_CR23) 2024; 7
SL Kramer (7538_CR82) 1996
S Coles (7538_CR41) 2001
CA Cornell (7538_CR81) 1968; 58
T Uzelli (7538_CR11) 2021; 30
T Ye (7538_CR24) 2024; 15
GG Dogan (7538_CR5) 2021; 178
H Berhich (7538_CR32) 2023; 122
ID Gupta (7538_CR75) 2002; 39
D Dembele (7538_CR63) 2003; 19
AO Oncel (7538_CR71) 2001; 106
D Vere-Jones (7538_CR78) 1995; 11
JC Bezdek (7538_CR40) 1984; 10
R Bilham (7538_CR1) 2009; 7
K Li (7538_CR66) 2015; 10
J Cao (7538_CR86) 2019; 519
K Sesetyan (7538_CR39) 2018; 16
7538_CR58
7538_CR51
V Roche (7538_CR45) 2019; 108
IE Livieris (7538_CR91) 2020; 32
Ç Tepe (7538_CR10) 2021; 30
B Gutenberg (7538_CR67) 1944; 34
CH Scholz (7538_CR15) 2019
7538_CR64
7538_CR65
Y Wu (7538_CR94) 2022; 181
Y Ogata (7538_CR77) 1988; 83
S Wiemer (7538_CR53) 2001; 72
7538_CR3
B Sadhukhan (7538_CR33) 2023; 11
A Pınar (7538_CR55) 2016; 68
7538_CR61
Q Kong (7538_CR20) 2019; 90
A Barka (7538_CR4) 2002; 92
YY Kagan (7538_CR17) 2002; 148
A Kijko (7538_CR85) 1998; 152
Q Wang (7538_CR22) 2017; 8
M Båth (7538_CR30) 1983; 98
F Subhan (7538_CR93) 2022; 16
HN Karakavak (7538_CR60) 2025; 43
M Karcı (7538_CR102) 2022; 5
Y Dilek (7538_CR47) 2009; 327
A Berhich (7538_CR107) 2021; 10
TC Hanks (7538_CR59) 1979; 84
E Bozkurt (7538_CR2) 2001; 14
C Unal (7538_CR37) 2023; 16
A Sagheer (7538_CR92) 2019; 323
J Reyes (7538_CR97) 2013; 13
7538_CR106
C Frohlich (7538_CR69) 1993; 98
7538_CR88
E Bayrak (7538_CR6) 2023; 82
7538_CR108
Ö Emre (7538_CR50) 2018; 16
7538_CR89
A Berhich (7538_CR25) 2023; 165
7538_CR80
7538_CR101
AMC Sengör (7538_CR49) 1979; 136
7538_CR16
KH Coban (7538_CR9) 2020; 177
7538_CR18
J Jia (7538_CR99) 2023; 15
7538_CR96
FT Kadirioğlu (7538_CR54) 2016; 25
7538_CR98
AMC Sengör (7538_CR48) 1979; 279
AO Oncel (7538_CR72) 2002; 92
M Asim (7538_CR19) 2017; 8
R Kamat (7538_CR104) 2017; 10
R Das (7538_CR57) 2019; 109
7538_CR90
Á Corral (7538_CR76) 2004; 92
KL Kaila (7538_CR29) 1971; 61
P Rodriguez (7538_CR87) 1999; 11
PM Paradisopoulou (7538_CR7) 2010; 167
A Aryal (7538_CR34) 2024; 119
A Pranolo (7538_CR100) 2024; 16
P Govender (7538_CR62) 2020; 11
D Kalafat (7538_CR35) 2011
P Reasenberg (7538_CR52) 1985; 90
C Lomnitz (7538_CR74) 1994
R Jena (7538_CR31) 2021; 66
T Korbar (7538_CR44) 2020; 8
7538_CR27
IH Rifa (7538_CR105) 2020; 13
Y Bayrak (7538_CR8) 2012; 169
D Sornette (7538_CR84) 1996; 101
RJ Geller (7538_CR14) 1997; 275
S Hochreiter (7538_CR42) 1997; 9
AO Oncel (7538_CR68) 2000; 143
EM Scordilis (7538_CR56) 2006; 10
References_xml – volume: 122
  year: 2023
  ident: 7538_CR32
  publication-title: Eng. Appl. Artif. Intell.
– volume: 92
  year: 2004
  ident: 7538_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.108501
– volume: 74
  start-page: 1577
  year: 2014
  ident: 7538_CR26
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1264-7
– volume: 16
  start-page: 3193
  year: 2018
  ident: 7538_CR39
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-016-0005-6
– volume: 66
  year: 2021
  ident: 7538_CR31
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102642
– volume: 169
  start-page: 1859
  year: 2012
  ident: 7538_CR8
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-011-0439-3
– volume-title: A revised and extended earthquake catalog for Turkey
  year: 2011
  ident: 7538_CR35
– volume: 143
  start-page: 501
  year: 2000
  ident: 7538_CR68
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2000.00211.x
– volume: 10
  start-page: 225
  year: 2006
  ident: 7538_CR56
  publication-title: J. Seismol.
  doi: 10.1007/s10950-006-9012-4
– volume: 11
  start-page: 5
  year: 1999
  ident: 7538_CR87
  publication-title: Connect. Sci.
  doi: 10.1080/095400999116340
– volume: 84
  start-page: 2348
  year: 1979
  ident: 7538_CR59
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB084iB05p02348
– volume: 165
  year: 2023
  ident: 7538_CR25
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2022.107663
– volume: 108
  start-page: 301
  year: 2019
  ident: 7538_CR45
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-018-1655-1
– volume: 98
  start-page: 631
  year: 1993
  ident: 7538_CR69
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/92JB01891
– volume: 34
  start-page: 185
  year: 1944
  ident: 7538_CR67
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0340040185
– ident: 7538_CR18
  doi: 10.1029/2009GL040233
– ident: 7538_CR38
– volume: 90
  start-page: 5479
  year: 1985
  ident: 7538_CR52
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB090iB07p05479
– ident: 7538_CR101
– volume: 90
  start-page: 3
  year: 2019
  ident: 7538_CR20
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220180259
– volume: 152
  start-page: 413
  year: 1998
  ident: 7538_CR85
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s000240050161
– volume-title: Mathematical statistics with applications
  year: 2008
  ident: 7538_CR73
– volume: 7
  start-page: 12
  year: 2024
  ident: 7538_CR23
  publication-title: BMC J. Sci. Res.
  doi: 10.3126/bmcjsr.v7i1.73058
– volume: 25
  start-page: 300
  year: 2016
  ident: 7538_CR54
  publication-title: Turk. J. Earth Sci.
  doi: 10.3906/yer-1511-7
– volume: 7
  start-page: 839
  year: 2009
  ident: 7538_CR1
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-009-9147-0
– volume: 8
  start-page: 206
  year: 2017
  ident: 7538_CR19
  publication-title: IJACSA
– ident: 7538_CR58
  doi: 10.1007/s40098-024-01147-6
– volume: 15
  start-page: 4098
  year: 2023
  ident: 7538_CR99
  publication-title: Remote Sens.
  doi: 10.3390/rs15164098
– ident: 7538_CR64
  doi: 10.1088/1742-6596/1361/1/012015
– volume: 10
  start-page: 1822
  year: 2019
  ident: 7538_CR43
  publication-title: Geomatics Nat. Hazards Risk.
  doi: 10.1080/19475705.2019.1629106
– ident: 7538_CR16
  doi: 10.1007/978-3-0348-8677-2_15
– volume: 68
  start-page: 1
  year: 2016
  ident: 7538_CR55
  publication-title: Earth, Planets and Space
  doi: 10.1186/s40623-016-0435-z
– volume: 98
  start-page: 165
  year: 1983
  ident: 7538_CR30
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(83)90295-0
– volume: 39
  start-page: 311
  year: 2002
  ident: 7538_CR75
  publication-title: ISET J. Earthq. Technol.
  doi: 10.63898/WNKZ4526
– volume: 30
  start-page: 758
  year: 2021
  ident: 7538_CR11
  publication-title: Turk. J. Earth Sci.
  doi: 10.3906/yer-2101-9
– ident: 7538_CR61
  doi: 10.1109/ICOSP.2006.346109
– ident: 7538_CR3
  doi: 10.1029/2003JB002667
– ident: 7538_CR108
  doi: 10.1142/9781860944024
– volume: 14
  start-page: 3
  year: 2001
  ident: 7538_CR2
  publication-title: Geodin. Acta
  doi: 10.1080/09853111.2001.11432432
– volume: 8
  start-page: 148
  year: 2017
  ident: 7538_CR22
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2017.2699169
– ident: 7538_CR51
  doi: 10.5194/nhess-21-2059-2021
– ident: 7538_CR65
  doi: 10.4108/eai.24-1-2018.2292388
– volume: 11
  start-page: 1082832
  year: 2023
  ident: 7538_CR33
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2023.1082832
– ident: 7538_CR80
  doi: 10.1029/2003JB002879
– volume: 13
  start-page: 194
  year: 2020
  ident: 7538_CR105
  publication-title: Media Stat.
– volume: 11
  start-page: 503
  year: 1995
  ident: 7538_CR78
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(95)00621-4
– volume: 160
  start-page: 2343
  year: 2003
  ident: 7538_CR83
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-003-2397-x
– volume: 8
  year: 2020
  ident: 7538_CR44
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2020.582797
– volume: 323
  start-page: 203
  year: 2019
  ident: 7538_CR92
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.082
– volume: 5
  start-page: 23
  year: 2022
  ident: 7538_CR102
  publication-title: Artif. Intell. Stud.
– volume: 35
  start-page: 1
  year: 2000
  ident: 7538_CR46
  publication-title: Geol. J.
  doi: 10.1002/(SICI)1099-1034(200001/03)35:1<1::AID-GJ834>3.0.CO;2-A
– volume: 16
  start-page: 210
  year: 2024
  ident: 7538_CR100
  publication-title: ILKOM J. Ilm.
  doi: 10.33096/ilkom.v16i2.2333.210-220
– volume: 10
  start-page: 1
  year: 2021
  ident: 7538_CR107
  publication-title: Int. J. High Perform. Syst. Archit.
– volume: 89
  start-page: 1147
  year: 1999
  ident: 7538_CR70
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0890051147
– volume: 11
  start-page: 40
  year: 2020
  ident: 7538_CR62
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.09.009
– volume-title: An Introduction to Statistical Modeling of Extreme Values
  year: 2001
  ident: 7538_CR41
  doi: 10.1007/978-1-4471-3675-0
– ident: 7538_CR88
– volume: 92
  start-page: 339
  year: 2002
  ident: 7538_CR72
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120000844
– volume: 43
  start-page: 1
  year: 2025
  ident: 7538_CR60
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-024-03062-2
– volume: 16
  start-page: 3229
  year: 2018
  ident: 7538_CR50
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-016-0041-2
– volume: 104
  start-page: 17995
  year: 1999
  ident: 7538_CR79
  publication-title: J. Geophys. Res. Solid Earth.
  doi: 10.1029/1999JB900115
– volume: 275
  start-page: 1616
  year: 1997
  ident: 7538_CR14
  publication-title: Science
  doi: 10.1126/science.275.5306.1616
– volume: 72
  start-page: 373
  year: 2001
  ident: 7538_CR53
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.72.3.373
– volume-title: Fundamentals of earthquake prediction
  year: 1994
  ident: 7538_CR74
– ident: 7538_CR98
  doi: 10.1109/ISDFS58141.2023.10131766
– volume-title: The mechanics of earthquakes and faulting
  year: 2019
  ident: 7538_CR15
  doi: 10.1017/9781316681473
– volume: 13
  start-page: 1314
  year: 2013
  ident: 7538_CR97
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.10.014
– volume: 167
  start-page: 1013
  year: 2010
  ident: 7538_CR7
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-010-0085-1
– volume: 83
  start-page: 9
  year: 1988
  ident: 7538_CR77
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478560
– ident: 7538_CR106
  doi: 10.1145/3386723.3387865
– volume: 181
  start-page: 554
  year: 2022
  ident: 7538_CR94
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2021.09.067
– volume: 58
  start-page: 1583
  year: 1968
  ident: 7538_CR81
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0580051583
– volume: 10
  year: 2015
  ident: 7538_CR66
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140395
– volume: 32
  start-page: 17351
  year: 2020
  ident: 7538_CR91
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04867-x
– volume: 16
  start-page: 516
  year: 2022
  ident: 7538_CR93
  publication-title: IET Softw.
  doi: 10.1049/sfw2.12066
– volume: 519
  start-page: 127
  year: 2019
  ident: 7538_CR86
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.11.061
– volume: 136
  start-page: 269
  year: 1979
  ident: 7538_CR49
  publication-title: J. Geol. Soc.
  doi: 10.1144/gsjgs.136.3.0269
– volume: 92
  start-page: 43
  year: 2002
  ident: 7538_CR4
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120000841
– volume: 119
  start-page: 77
  year: 2024
  ident: 7538_CR34
  publication-title: Nat. Hazards
– volume: 3
  start-page: 81
  year: 2017
  ident: 7538_CR103
  publication-title: Int. J. Adv. Intell. Inform.
– volume: 11
  start-page: 3952
  year: 2020
  ident: 7538_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17591-w
– volume: 4
  start-page: 59
  year: 2024
  ident: 7538_CR13
  publication-title: Türkiye. J. Artif. Intell. Data Sci.
– volume-title: Geotechnical earthquake engineering
  year: 1996
  ident: 7538_CR82
– ident: 7538_CR27
  doi: 10.1007/978-981-16-2712-5_16
– volume: 15
  start-page: 112
  year: 2024
  ident: 7538_CR24
  publication-title: Geosci. Front.
– volume: 279
  start-page: 590
  year: 1979
  ident: 7538_CR48
  publication-title: Nature
  doi: 10.1038/279590a0
– volume: 61
  start-page: 1275
  year: 1971
  ident: 7538_CR29
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0610051275
– volume: 101
  start-page: 13883
  year: 1996
  ident: 7538_CR84
  publication-title: J. Geophys. Res. Solid Earth.
  doi: 10.1029/96JB00177
– ident: 7538_CR89
– volume: 177
  start-page: 5133
  year: 2020
  ident: 7538_CR9
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-020-02576-z
– volume: 148
  start-page: 520
  year: 2002
  ident: 7538_CR17
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.2002.01594.x
– volume: 16
  start-page: 1
  year: 2023
  ident: 7538_CR37
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-023-00961-5
– volume: 14
  start-page: 391
  year: 2023
  ident: 7538_CR95
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-022-01808-w
– volume: 10
  start-page: 191
  year: 1984
  ident: 7538_CR40
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 9
  start-page: 1735
  year: 1997
  ident: 7538_CR42
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 7538_CR96
  doi: 10.1016/j.jksuci.2024.102068
– volume: 10
  start-page: 250
  year: 2017
  ident: 7538_CR104
  publication-title: J. Chem. Pharm. Sci.
– volume: 178
  start-page: 785
  year: 2021
  ident: 7538_CR5
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-021-02693-3
– volume: 327
  start-page: 127
  year: 2009
  ident: 7538_CR47
  publication-title: Geol. Soc. London Special Publ.
  doi: 10.1144/SP327.8
– ident: 7538_CR90
– volume: 64
  start-page: 393
  year: 1974
  ident: 7538_CR28
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0640020393
– ident: 7538_CR36
– volume: 30
  start-page: 779
  year: 2021
  ident: 7538_CR10
  publication-title: Turk. J. Earth Sci.
  doi: 10.3906/yer-2101-14
– volume: 82
  start-page: 470
  year: 2023
  ident: 7538_CR6
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-023-11162-0
– volume: 106
  start-page: 21827
  year: 2001
  ident: 7538_CR71
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2000JB900408
– volume: 109
  start-page: 1542
  year: 2019
  ident: 7538_CR57
  publication-title: Bull. Seism. Soc. Am.
  doi: 10.1785/0120180338
– volume: 19
  start-page: 973
  year: 2003
  ident: 7538_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– volume: 115
  start-page: 1
  year: 2022
  ident: 7538_CR12
  publication-title: Swiss J. Geosci.
  doi: 10.1186/s00015-022-00408-x
SSID ssj0000529419
Score 2.460251
Snippet Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of earthquake...
Abstract Türkiye is highly susceptible to earthquakes due to its active tectonic structure and the presence of major fault lines. The accurate estimation of...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 33889
SubjectTerms 704/172
704/2151
704/4111
Accuracy
Cluster analysis
Deep learning
Earthquake magnitudes
Earthquake prediction
Earthquakes
Fault lines
Fuzzy C-Means clustering
Genetic algorithms
Gumbel distribution
Humanities and Social Sciences
Long short-term memory
multidisciplinary
Neural networks
Optimization techniques
Probability distribution
Regions
Risk reduction
Science
Science (multidisciplinary)
Seismic activity
Statistical analysis
Statistical models
Time series
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiDeBFhmJG1j1xo_Yx7ZixYFWSCxSb5ZjT2DVNlt2N1Tb38aNP1ZPnF2KAHHhGj9kz2dnPmvsbwh5hfmMy1hrlqiAZFJFzazQIxZQjU7Xwoch2UR1fGxOTuyHG6m-8E5YlgfOhtszXDccVGIlVkovqhrK4KOHRpowamzEvy-v7I3DVFb1Lq0c2eGVDBdmb5E8Fb4mKxVLXjLt8stfPFEv2P8nlvlbhLR3PON75O7AGOl-Hul9cgvaB-R2ziG5ekjOxt3V1YoesiNIXoeGsw6lD1JP1LeRvv84OWLoqSI993hRqItAL-YYnUFE6Kyhaakvv3zt_Cks6LSliRDSfficOqOYtCHXmfz4Pj-druAR-TR-Ozl8x4YUCixIYZasqqPVJgplaxOtQmB4kw5NvA4qRC28iFUiCFA1DejGa4jJqDzwBhRYXSvxmGy1sxaeEpraeyFKYwKU0htlg8fTFkhvua1tXZDXa3O6i6yU4foItzAuG98l47ve-O6yIAdo8U1NVLnuPyTs3YC9-xf2BdlZ4-WGrbdwoidxqLJfkJeb4rRpMBLiW5h1uc4II8q2IE8yzpuRSKRcXKXWb9bA_-z87xN69j8m9JzcKfsVivdRdsjWct7BLtkO35bTxfxFv8SvAcT__oo
  priority: 102
  providerName: Directory of Open Access Journals
Title Fuzzy C-Means clustering and LSTM-based magnitude prediction of earthquakes in the Aegean region of Türkiye
URI https://link.springer.com/article/10.1038/s41598-025-07538-w
https://www.ncbi.nlm.nih.gov/pubmed/41028055
https://www.proquest.com/docview/3256002045
https://www.proquest.com/docview/3256106599
https://doaj.org/article/806f0e5533944a37be2cadaef48c1f9d
Volume 15
WOSCitedRecordID wos001586154900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfA8CozISb2AtiZ3EfkLbtAokWlVQpPJkObYzqo2kSxqm7m_jjX8Mn5N2Qny88OKHxLYu-t35LnfnO4ReQj_j2OQpcaYAIywxKRE0jYiGanRpTpXum01kkwmfz8W0d7g1fVrl5kz0B7WpNPjID6jXzVA8_c3ygkDXKIiu9i00dtDAWTYRpHSN4-nWxwJRLBaJ_q5MSPlB4_QV3CmLE-J0pZP1y1_0kS_b_ydb87c4qVc_o7v_S_g9dKc3PPFhxyn30Q1bPkC3ulaU64fofNReXa3xMRlbp7ywPm-hgoIjBavS4PcfZ2MCCs_grwryjVpj8bKGIA8Ai6sCO4lZfblo1Zlt8KLEzq7Eh_bUbYah90M3Z_bje322WNtH6NPoZHb8lvSdGIhmlK9IlhuRckMTkXMjEsA3LNy_V5jrRJuUKmoyZ2fYrChsWqjUGh0VoQ4Lm1iR5gndQ7tlVdonCLv1itKYc21jpngitIKfNsuUCEUu8gC92uAhl13BDekD5ZTLDj3p0JMePXkZoCOAbDsTimX7B1V9KnvZkzxMi9AmzrAVjCma5TbWyihbMO7IFCZA-xvkZC_BjbyGLUAvtq-d7EFARZW2ars5EQSmRYAed4yypYSB5RYmbvXrDedcb_73D3r6b1qeoduxZ15IWNlHu6u6tc_RTf1ttWjqIdrJ5pkf-RANjk4m0w9D72QYermAMXPjYPpuPP38ExlkEp4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoILb2iggJHgBFazseO1DwiVwqpVd1eVWKTejGM77aol2SYbVtsfxS_gxh_Dk8dWiMetB66JHY3jzzNjz3g-hF4An3FkE068K8AIiy0nkvIeMVCNjidUm5Zsoj8ei8NDebCGvnV3YSCtstOJtaK2uYEz8i1a22Yonv52dkaANQqiqx2FRgOLfbdc-C1b-WbvvZ_fl1E0-DDZ2SUtqwAxjIo56SdWcmFpLBNhZQyyhqnfR4SJiY3lVFPb9zbT9dPU8VRzZ00vDU2YuthJngBLhFf5VxhUFoNUwehgdaYDUTPWk-3dnJCKrdLbR7jDFsXE22avWxa_2L-aJuBPvu1vcdna3A1u_W8_6ja62TrWeLtZCXfQmsvuomsN1ebyHjodVOfnS7xDRs4bZ2xOK6gQ4YeOdWbx8ONkRMCgW_xFQz5VZR2eFRDEAuDiPMV-RPPjs0qfuBJPM-z9ZrztjvzHMHBbNG0mP74XJ9Olu48-XcpQH6D1LM_cBsK-v6Y0EsK4iGkRS6NhU-qYlqFMZBKgV938q1lTUETViQBUqAYtyqNF1WhRiwC9A4isWkIx8PpBXhypVrcoEfI0dLF33CVjmvYTFxlttUuZ8GJKG6DNDimq1VCluoBJgJ6vXnvdAgEjnbm8atr0IPAuA_SwAeZKEgaeaRj73q87pF58_O8DevRvWZ6h67uT0VAN98b7j9GNqF44kJyzidbnReWeoKvm63xaFk_rlYfR58tG8E_6zGof
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFBAX3tBAASPBCaxs1t6NfUCotEREbaJIBKmcjNf2tlHLJk2yROlPQ9z4Y8zsIxXiceuB6669Gns_z4w94_kIeY58xqFLYgaugGAicjFTPG4zi9Xo4oQbW5FNdAYDeXiohhvkW30XBtMqa51YKGo3sXhG3uKFbcbi6a20SosY7nXfTM8YMkhhpLWm0yghsu9XS9i-zV_39uBfvwjD7rvR7ntWMQwwK7hcsE7iVCwdj1QinYpQ7iCFPUWQ2Mi6mBvuOmA_fSdNfZya2DvbTgMbpD7yKk6QMQLU_ya45CJskM1hrz_8tD7hwRiaaKvqpk7AZWsO1hJvtIURA0sNmmb5izUsSAP-5On-FqUtjF_35v88bbfIjcrlpjvlGrlNNnx2h1wtSThXd8lpNz8_X9Fd1vdgtqk9zbF2BEwDNZmjBx9GfYam3tEvBjOtcufpdIbhLYQ0naQURrQ4PsvNiZ_TcUbBo6Y7_gg-RpH1omwz-vF9djJe-Xvk46UM9T5pZJPMbxEK_Q3noZTWh8LISFmD21UvjApUopImeVljQU_LUiO6SBHgUpfI0YAcXSBHL5vkLcJl3RLLhBcPJrMjXWkdLYM4DXwELr0SwvBO4kNrnPGpkCCmck2yXaNGV7prri8g0yTP1q9B62AoyWR-kpdt2hiSV03yoATpWhKBPmsQQe9XNWovPv73AT38tyxPyTUArj7oDfYfkethsYYwa2ebNBaz3D8mV-zXxXg-e1ItQ0o-XzaEfwL5fXRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-Means+clustering+and+LSTM-based+magnitude+prediction+of+earthquakes+in+the+Aegean+region+of+T%C3%BCrkiye&rft.jtitle=Scientific+reports&rft.au=Aloraini%2C+Badr&rft.au=Cekim%2C+Hatice+Oncel&rft.au=Karakavak%2C+Hatice+Nur&rft.au=Ozel%2C+Gamze&rft.date=2025-09-30&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=33889&rft_id=info:doi/10.1038%2Fs41598-025-07538-w&rft_id=info%3Apmid%2F41028055&rft.externalDocID=41028055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon