Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data

This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification study of a plasma etching process. Small changes in the equipment part condition of the plasma equipment may cause an equipment fault, result...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 4; p. 1889
Main Authors: Choi, Jeong Eun, Seol, Da Hoon, Kim, Chan Young, Hong, Sang Jeen
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 08.02.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification study of a plasma etching process. Small changes in the equipment part condition of the plasma equipment may cause an equipment fault, resulting in a process anomaly. Thus, fault detection in the semiconductor process is essential for success in advanced process control. Two datasets that assume faults of the mass flow controller (MFC) in equipment components were acquired using optical emission spectroscopy (OES) in the plasma etching process of a silicon trench: The abnormal process changed by the MFC is assumed to be faults, and the minority class of Case 1 is the normal class, and that of Case 2 is the abnormal class. In each case, additional minority class data were generated using GANs to compensate for the degradation of model training due to class-imbalanced data. Comparisons of five existing fault detection algorithms with the augmented datasets showed improved modeling performances. Generating a dataset for the minority group using GANs is beneficial for class imbalance problems of OES datasets in fault detection for the semiconductor plasma equipment.
AbstractList This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification study of a plasma etching process. Small changes in the equipment part condition of the plasma equipment may cause an equipment fault, resulting in a process anomaly. Thus, fault detection in the semiconductor process is essential for success in advanced process control. Two datasets that assume faults of the mass flow controller (MFC) in equipment components were acquired using optical emission spectroscopy (OES) in the plasma etching process of a silicon trench: The abnormal process changed by the MFC is assumed to be faults, and the minority class of Case 1 is the normal class, and that of Case 2 is the abnormal class. In each case, additional minority class data were generated using GANs to compensate for the degradation of model training due to class-imbalanced data. Comparisons of five existing fault detection algorithms with the augmented datasets showed improved modeling performances. Generating a dataset for the minority group using GANs is beneficial for class imbalance problems of OES datasets in fault detection for the semiconductor plasma equipment.
This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification study of a plasma etching process. Small changes in the equipment part condition of the plasma equipment may cause an equipment fault, resulting in a process anomaly. Thus, fault detection in the semiconductor process is essential for success in advanced process control. Two datasets that assume faults of the mass flow controller (MFC) in equipment components were acquired using optical emission spectroscopy (OES) in the plasma etching process of a silicon trench: The abnormal process changed by the MFC is assumed to be faults, and the minority class of Case 1 is the normal class, and that of Case 2 is the abnormal class. In each case, additional minority class data were generated using GANs to compensate for the degradation of model training due to class-imbalanced data. Comparisons of five existing fault detection algorithms with the augmented datasets showed improved modeling performances. Generating a dataset for the minority group using GANs is beneficial for class imbalance problems of OES datasets in fault detection for the semiconductor plasma equipment.This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification study of a plasma etching process. Small changes in the equipment part condition of the plasma equipment may cause an equipment fault, resulting in a process anomaly. Thus, fault detection in the semiconductor process is essential for success in advanced process control. Two datasets that assume faults of the mass flow controller (MFC) in equipment components were acquired using optical emission spectroscopy (OES) in the plasma etching process of a silicon trench: The abnormal process changed by the MFC is assumed to be faults, and the minority class of Case 1 is the normal class, and that of Case 2 is the abnormal class. In each case, additional minority class data were generated using GANs to compensate for the degradation of model training due to class-imbalanced data. Comparisons of five existing fault detection algorithms with the augmented datasets showed improved modeling performances. Generating a dataset for the minority group using GANs is beneficial for class imbalance problems of OES datasets in fault detection for the semiconductor plasma equipment.
Audience Academic
Author Choi, Jeong Eun
Seol, Da Hoon
Hong, Sang Jeen
Kim, Chan Young
AuthorAffiliation Department of Electronics Engineering, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
AuthorAffiliation_xml – name: Department of Electronics Engineering, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
Author_xml – sequence: 1
  givenname: Jeong Eun
  orcidid: 0000-0002-5233-7364
  surname: Choi
  fullname: Choi, Jeong Eun
– sequence: 2
  givenname: Da Hoon
  surname: Seol
  fullname: Seol, Da Hoon
– sequence: 3
  givenname: Chan Young
  surname: Kim
  fullname: Kim, Chan Young
– sequence: 4
  givenname: Sang Jeen
  orcidid: 0000-0002-6576-690X
  surname: Hong
  fullname: Hong, Sang Jeen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850488$$D View this record in MEDLINE/PubMed
BookMark eNptks9v2yAUgNHUaW2zHfYPTJZ22Q5uscEGLpOy9MciVdth2xk94-eUzDYp4FT770eWLmqrCSQQfHzwHu-UHI1uRELeFvSMMUXPQ8koL6RUL8hJwUuey7KkR4_mx-Q0hDWlJWNMviLHrJYV5VKekPU1jugh2i1m83aLPoC30GdfMd47_yv_DAHb7AqmPmYXGNFE68bMjtl3HKxxYzuZ6Hx2eTfZzYBjzO5tvM0WPYSQL4cGehhNElxAhNfkZQd9wDcP44z8vLr8sfiS33y7Xi7mN7nhTMZclKwpKyhYV4qOcoFUMEBlsFAAKu0pJrpallyZglaVKkpohaC0aQpRC6jYjCz33tbBWm-8HcD_1g6s_rvg_EqDj9b0qIXYGZmsippyBAFScVpXXbqkQQ4muT7tXZupGbA1KUIP_RPp053R3uqV22qlapF6Enx4EHh3N2GIerDBYJ_ygm4KuhSSipoxzhL6_hm6dpMfU6oSJVTFJa921NmeWkEKwI6dS_ea1Nr9h2Bn0_pcJGEteUrWjLx7HMLh7f9qIAEf94DxLgSP3QEpqN7Vlz7UV2LPn7HGRtjVRHqF7f9z4g8hk9Ao
CitedBy_id crossref_primary_10_1007_s13202_025_01931_x
crossref_primary_10_3389_frai_2024_1429602
crossref_primary_10_1109_TIM_2024_3502828
crossref_primary_10_1109_TSM_2025_3569229
crossref_primary_10_1016_j_eswa_2025_128978
crossref_primary_10_1016_j_asoc_2025_113540
crossref_primary_10_3390_ma16083015
crossref_primary_10_1002_cjce_25129
crossref_primary_10_1088_1361_6501_ad8df5
crossref_primary_10_1109_TCPMT_2025_3549707
crossref_primary_10_1109_TPS_2024_3487896
Cites_doi 10.1109/TSM.2011.2175394
10.1109/TSM.2022.3161512
10.3390/rs13194011
10.1016/j.neunet.2020.10.004
10.1109/TSM.2019.2916374
10.1007/s10845-021-01806-y
10.1109/5.149445
10.3390/risks9030049
10.1063/1.328060
10.1016/j.ifacol.2016.07.102
10.3390/s21113880
10.1016/j.measen.2021.100046
10.1109/TSM.2021.3138918
10.1109/TASE.2020.2983061
10.3390/ma14113005
10.1109/TIE.2005.851663
10.1016/j.applthermaleng.2019.113933
10.1109/ICCV.2015.123
10.1016/j.neucom.2019.06.043
10.1016/j.compind.2012.10.002
10.3390/pr8091123
10.1109/TSM.2006.883595
10.1016/S1474-6670(17)43143-0
10.1016/j.eswa.2019.05.006
10.1109/66.857948
10.3390/s100605703
10.3390/electronics10080944
10.1109/JEDS.2018.2868465
10.1109/TSM.2021.3079211
10.1088/2058-6272/ac24f4
10.1016/j.jprocont.2012.01.012
10.1109/TSM.2016.2602226
10.1016/j.eswa.2009.05.053
10.1016/j.measurement.2019.107377
10.1016/j.engappai.2017.09.021
10.1149/1.1623772
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23041889
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_77a93b3851604ea7a894065fb29be4ac
PMC9967967
A743368429
36850488
10_3390_s23041889
Genre Journal Article
GrantInformation_xml – fundername: National Research Council of Science and Technology
  grantid: 1711121944, CRC-20-01-NFRI
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c438t-723b25a13f27f047e073ae9ce19aa93b2937f68249c1055912ad7700bb1767a53
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:51 EDT 2025
Tue Nov 04 02:06:31 EST 2025
Thu Oct 02 04:10:52 EDT 2025
Tue Oct 07 07:52:17 EDT 2025
Tue Nov 04 18:14:15 EST 2025
Mon Jul 21 05:44:24 EDT 2025
Sat Nov 29 07:13:32 EST 2025
Tue Nov 18 21:57:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords generative adversarial networks
machine learning
plasma etch
optical emission spectroscopy
fault detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-723b25a13f27f047e073ae9ce19aa93b2937f68249c1055912ad7700bb1767a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5233-7364
0000-0002-6576-690X
OpenAccessLink https://doaj.org/article/77a93b3851604ea7a894065fb29be4ac
PMID 36850488
PQID 2779548453
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_77a93b3851604ea7a894065fb29be4ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9967967
proquest_miscellaneous_2780763343
proquest_journals_2779548453
gale_infotracacademiconefile_A743368429
pubmed_primary_36850488
crossref_primary_10_3390_s23041889
crossref_citationtrail_10_3390_s23041889
PublicationCentury 2000
PublicationDate 20230208
PublicationDateYYYYMMDD 2023-02-08
PublicationDate_xml – month: 2
  year: 2023
  text: 20230208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lee (ref_21) 2016; 29
Fan (ref_24) 2019; 159
Yang (ref_8) 2010; 10
Choi (ref_34) 2021; 35
Jang (ref_20) 2019; 32
Yue (ref_12) 2000; 13
Goodlin (ref_7) 2003; 150
Puggini (ref_18) 2018; 67
Zhang (ref_30) 2020; 152
Kim (ref_33) 2021; 23
Oh (ref_28) 2019; 133
Maas (ref_37) 2013; 30
Ahn (ref_9) 2011; 11
Kim (ref_14) 2021; 34
Kim (ref_25) 2022; 35
ref_16
Khoshgoftaar (ref_26) 2022; 9
ref_38
ref_15
Sun (ref_27) 2022; 33
Gallagher (ref_4) 1997; 30
Lynn (ref_5) 2012; 22
Coburn (ref_11) 1980; 51
Kang (ref_19) 2009; 36
Park (ref_6) 2020; 8
Ravariu (ref_40) 2018; 6
Puggini (ref_13) 2016; 49
Suh (ref_29) 2021; 133
Hong (ref_10) 2011; 25
ref_23
Fan (ref_22) 2020; 17
Goodfellow (ref_36) 2014; 27
Hong (ref_17) 2005; 52
Lee (ref_1) 2006; 19
Bleakie (ref_2) 2013; 64
Ngwenduna (ref_32) 2021; 9
Elyan (ref_39) 2019; 361
Pradhan (ref_31) 2021; 13
Choi (ref_35) 2021; 16
Spanos (ref_3) 1992; 80
References_xml – volume: 25
  start-page: 83
  year: 2011
  ident: ref_10
  article-title: Fault Detection and Classification in Plasma Etch Equipment for Semiconductor Manufacturing e-Diagnostics
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2011.2175394
– volume: 35
  start-page: 174
  year: 2022
  ident: ref_25
  article-title: Machine Learning-Based Process-Level Fault Detection and Part-Level Fault Classification in Semiconductor Etch Equipment
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2022.3161512
– volume: 13
  start-page: 4011
  year: 2021
  ident: ref_31
  article-title: A New Integrated Approach for Landslide Data Balancing and Spatial Prediction Based on Generative Adversarial Networks (GAN)
  publication-title: Remote Sens.
  doi: 10.3390/rs13194011
– volume: 133
  start-page: 69
  year: 2021
  ident: ref_29
  article-title: CEGAN: Classification Enhancement Generative Adversarial Networks for Unraveling Data Imbalance Problems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.10.004
– volume: 32
  start-page: 293
  year: 2019
  ident: ref_20
  article-title: Denoised Residual Trace Analysis for Monitoring Semiconductor Process Faults
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2019.2916374
– volume: 33
  start-page: 2441
  year: 2022
  ident: ref_27
  article-title: An Imbalanced Data Learning Method for Tool Breakage Detection Based on Generative Adversarial Networks
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01806-y
– volume: 80
  start-page: 819
  year: 1992
  ident: ref_3
  article-title: Statistical Process Control in Semiconductor Manufacturing
  publication-title: Proc. IEEE
  doi: 10.1109/5.149445
– volume: 9
  start-page: 49
  year: 2021
  ident: ref_32
  article-title: Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks
  publication-title: Risks
  doi: 10.3390/risks9030049
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref_36
  article-title: Generative Adversarial Nets
  publication-title: Adv. Neur. Inform. Proc. Syst.
– volume: 51
  start-page: 3134
  year: 1980
  ident: ref_11
  article-title: Optical Emission Spectroscopy of Reactive Plasmas: A Method for Correlating Emission Intensities to Reactive Particle Density
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328060
– volume: 9
  start-page: 1
  year: 2022
  ident: ref_26
  article-title: The Use of Generative Adversarial Networks to Alleviate Class Imbalance in Tabular Data: A Survey
  publication-title: J. Big Data
– volume: 49
  start-page: 132
  year: 2016
  ident: ref_13
  article-title: Feature Selection for Anomaly Detection Using Optical Emission Spectroscopy
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.102
– ident: ref_23
  doi: 10.3390/s21113880
– volume: 16
  start-page: 100046
  year: 2021
  ident: ref_35
  article-title: Machine Learning-Based Virtual Metrology on Film Thickness in Amorphous Carbon Layer Deposition Process
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2021.100046
– volume: 30
  start-page: 3
  year: 2013
  ident: ref_37
  article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 35
  start-page: 128
  year: 2021
  ident: ref_34
  article-title: Virtual Metrology for Etch Profile in Silicon Trench Etching with SF6/O2/Ar Plasma
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2021.3138918
– volume: 17
  start-page: 1925
  year: 2020
  ident: ref_22
  article-title: Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing
  publication-title: IEEE Trans. Auto Sci. Eng.
  doi: 10.1109/TASE.2020.2983061
– ident: ref_15
  doi: 10.3390/ma14113005
– volume: 52
  start-page: 1063
  year: 2005
  ident: ref_17
  article-title: Neural-Network-Based Sensor Fusion of Optical Emission and Mass Spectroscopy Data for Real-Time Fault Detection in Reactive Ion Etching
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2005.851663
– volume: 159
  start-page: 113933
  year: 2019
  ident: ref_24
  article-title: Chiller Fault Diagnosis with Field Sensors Using the Technology of Imbalanced Data
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.113933
– ident: ref_38
  doi: 10.1109/ICCV.2015.123
– volume: 361
  start-page: 212
  year: 2019
  ident: ref_39
  article-title: MFC-GAN: Class-Imbalanced Dataset Classification Using Multiple Fake Class Generative Adversarial Network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.043
– volume: 64
  start-page: 203
  year: 2013
  ident: ref_2
  article-title: Feature Extraction, Condition Monitoring, and Fault Modeling in Semiconductor Manufacturing Systems
  publication-title: Comp. Ind.
  doi: 10.1016/j.compind.2012.10.002
– volume: 8
  start-page: 1123
  year: 2020
  ident: ref_6
  article-title: A Review on Fault Detection and Process Diagnostics in Industrial Processes
  publication-title: Processes
  doi: 10.3390/pr8091123
– volume: 19
  start-page: 432
  year: 2006
  ident: ref_1
  article-title: In Situ and Real-Time Monitoring of Plasma Process Chamber Component Qualities and Predictive Controlling of Wafer Yields
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2006.883595
– volume: 30
  start-page: 79
  year: 1997
  ident: ref_4
  article-title: Development and Benchmarking of Multivariate Statistical Process Control Tools for A Semiconductor Etch Process: Improving Robustness through Model Updating
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)43143-0
– volume: 133
  start-page: 1
  year: 2019
  ident: ref_28
  article-title: Oversampling Method Using Outlier Detectable Generative Adversarial Network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.006
– volume: 13
  start-page: 374
  year: 2000
  ident: ref_12
  article-title: Fault Detection of Plasma Etchers Using Optical Emission Spectra
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/66.857948
– volume: 10
  start-page: 5703
  year: 2010
  ident: ref_8
  article-title: Real-Time Plasma Process Condition Sensing and Abnormal Process Detection
  publication-title: Sensors
  doi: 10.3390/s100605703
– ident: ref_16
  doi: 10.3390/electronics10080944
– volume: 11
  start-page: 1
  year: 2011
  ident: ref_9
  article-title: Real-Time In-Situ Plasma Etch Process Monitoring for Sensor Based-Advanced Process Control
  publication-title: J. Semi. Technol. Sci.
– volume: 6
  start-page: 1115
  year: 2018
  ident: ref_40
  article-title: Vacuum Nano-Triode in Nothing-On-Insulator Configuration Working in Terahertz Domain
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2018.2868465
– volume: 34
  start-page: 408
  year: 2021
  ident: ref_14
  article-title: Use of Plasma Information in Machine-Learning-Based Fault Detection and Classification for Advanced Equipment Control
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2021.3079211
– volume: 23
  start-page: 125501
  year: 2021
  ident: ref_33
  article-title: Analysis of Optical Emission Spectroscopy Data during Silicon Etching in SF6/O2/Ar Plasma
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/ac24f4
– volume: 22
  start-page: 666
  year: 2012
  ident: ref_5
  article-title: Real-Time Virtual Metrology and Control for Plasma Etch
  publication-title: J. Proc. Contr.
  doi: 10.1016/j.jprocont.2012.01.012
– volume: 29
  start-page: 436
  year: 2016
  ident: ref_21
  article-title: Performance of Machine Learning Algorithms for Class-Imbalanced Process Fault Detection Problems
  publication-title: IEEE Trans. Semi. Manufac.
  doi: 10.1109/TSM.2016.2602226
– volume: 36
  start-page: 12554
  year: 2009
  ident: ref_19
  article-title: A Virtual Metrology System for Semiconductor Manufacturing
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.053
– volume: 152
  start-page: 107377
  year: 2020
  ident: ref_30
  article-title: Machinery Fault Diagnosis with Imbalanced Data Using Deep Generative Adversarial Networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107377
– volume: 67
  start-page: 126
  year: 2018
  ident: ref_18
  article-title: An Enhanced Variable Selection and Isolation Forest Based Methodology for Anomaly Detection with OES Data
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.09.021
– volume: 150
  start-page: G778
  year: 2003
  ident: ref_7
  article-title: Simultaneous Fault Detection and Classification for Semiconductor Manufacturing Tools
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1623772
SSID ssj0023338
Score 2.454772
Snippet This research proposes an application of generative adversarial networks (GANs) to solve the class imbalance problem in the fault detection and classification...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1889
SubjectTerms Algorithms
Control equipment
Etching equipment
fault detection
generative adversarial networks
Machine learning
optical emission spectroscopy
plasma etch
Plasma etching
Process controls
Sensors
Silicon wafers
Statistical methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPlGcJLcggJLhE9StxckJduiu4rCoeUm-R4zhlUUnaTZbfz4zjDbsC9VJplcN6ktjyzHjGnnwfIW_TSvLaMhYLUVex4lbHRksDl7xUqeVJrY0nm9DzeXZ-np-FDbculFWufaJ31FVrcY_8WGiN2GQqkR-urmNkjcLT1UChcZfsIlIZ6PnuZDo_-zKmXBIysAFPSEJyf9zhFijPkNN9YxXyYP3_uuSNNWm7XnJjAZrt37brD8mDEHrSk0FXHpE7rnlM9jYACZ-QnwMKNbpA6qmaO4MKSudDsXg8gTWvojOzuuzpqet9GVdDFw39ijX2bYPgse2STq9XC1-HRHGbl3rizfjzrxLLKC084NT05in5Ppt--_gpDmwMsVUy62MtZCkSw2UtdM2UduAcjMut47kxObRBoFOnGaRzFkk3cy5MpTVjZcl1qk0in5Gdpm3cc0JNwtJKuBLuA4VgGWRRleIVt6xMykyJiLxfz05hA1Q5MmZcFpCy4EQW40RG5M0oejXgc_xPaIJTPAogpLb_o11eFMFCC61xFBIi0JQpZ7TJcgh2khoGVjplbETeoYIUaPjQGWvC9wswJITQKk4gFpN4qgmvO1rrQRE8Qlf8VYKIvB6bwZbxgMY0rl2hTMbA30sFMgeDyo19RqIA9LYR0VvKuDWo7ZZm8cPjhUNKq-H34uZuHZL7AgzGV6RnR2SnX67cS3LP_u4X3fJVMKw_5ZUutw
  priority: 102
  providerName: ProQuest
Title Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data
URI https://www.ncbi.nlm.nih.gov/pubmed/36850488
https://www.proquest.com/docview/2779548453
https://www.proquest.com/docview/2780763343
https://pubmed.ncbi.nlm.nih.gov/PMC9967967
https://doaj.org/article/77a93b3851604ea7a894065fb29be4ac
Volume 23
WOSCitedRecordID wos000941753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAeEO8NLJVBSHCJ1rGTjHPcsq3Yw1YVD6mcIttxRNGSQpty5Lcz46RVKpC4IEU-JJPE9rw88eQbxl7llUpqJ0QsZV3FaeIgNqAMNoVNc5dkNZhQbAJmM71YFPNBqS_KCevggbuJOwMwhbIKFwa5SL0Bowv0QVltZWF9ahxZXwHFLpjqQy2FkVeHI6QwqD_b0KfPRFMt94H3CSD9f5rigS86zJMcOJ7pPXa3XzHy866n99kN3zxgxwMcwYfsawceTZaLhwrLG0NyxWddjnc8RldV8anZXrf8wrch-6rhy4Z_oNT4VUOYr6s1n_zYLkP6EKevszzUy4wvv1nKfnT4gAvTmkfs03Ty8e27uC-iELtU6TYGqazMTKJqCbVIwaNOG184nxSGZhbdPdS5xijMUa3MIpGmAhDC2gRyMJl6zI6aVeNPGDeZyCvpLd6HfBQag58qTarECZtZncqIvdlNbul6hHEqdHFdYqRBfCj3fIjYyz3p9w5W429EY-LQnoCQsMMJlI-yl4_yX_IRsdfE35L0FTvjTP_bAQ6JkK_Kc1xCKdqMxNed7kSg7BV5U0oAgsRLMxWxF_vLqIK0r2Iav9oSjRZoplWKNE86idn3mfD9yUhGDA5k6WBQh1ea5ZcA842RKODx9H_MwjN2R6JWhHRzfcqO2vXWP2e33c92uVmP2E1YQGj1iN0aT2bz96OgT9he_Zrgufnl1fzzbxb4JUQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NHRLwwPdHYYBBIHiJ5thOnDwgtNFVq7ZVlRjSeAqO40DRSLY2BfFP8Tdyl6ShFYi3PSBVfaivra_93Z3PPt8P4HmYST-3nHtC5JmnfKs9o6XBpzhVofWDXJuabEKPx9HJSTzZgJ_LuzBUVrn0ibWjzkpLe-TbQmvqTaYC-ebs3CPWKDpdXVJoNLA4cD--Y8o2fz0a4P_7Qojh3vHbfa9lFfCsklHlaSFTERhf5kLnXGmHIDcuts6PjYlxDAN2HkaYllgij4x9YTKtOU9TX4faEEsEuvxNhWDnPdicjI4mH7oUT2LG1_QvkjLm23PacvUj4pBfiXo1OcCfIWAlBq7XZ64EvOH1_-2nugHX2qU122ls4SZsuOIWXF1puHgbvjRdtsnFs5qKem7IANm4KYb3djGmZ2xoFqcVG7iqLlMr2LRg7-gOQVlQc9xyxvbOF9O6zorRNjariUW90deUykQtfsDAVOYOvL8QZe9CrygLdx-YCXiYCZfi-xDwPMIsMVN-5lueBmmkRB9eLdGQ2LYVOzGCnCaYkhFwkg44fXjWiZ41_Uf-JrRLkOoEqGV4_UI5-5S0HijRmrSQuMIOuXJGmyjGxVyQo2KpU8b24SUBMiHHhpOxpr2fgSpRi7BkB9eakk5t8eu2lrhLWo83T36Drg9Pu2H0VXQAZQpXLkgm4hjPpEKZew3EuzkTEQJFkz7oNfCvKbU-Ukw_1_3QMWXX-Hjw72k9gcv7x0eHyeFofPAQrgg01rr6PtqCXjVbuEdwyX6rpvPZ49aoGXy8aOP4BcrTiKM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgRA8cL8EBhgEgpeoju3EyQNCG11FNVRNAqS-BcdxWKeRbE0K4q_x6zjHuawViLc9IFV9qE9bn_ZcfOzj7yPkRZSLoDCM-ZwXuS8Do3ythIanJJORCcJCaUc2oWazeD5PDrfIr_4uDLZV9jHRBeq8MrhHPuJKITaZDMWo6NoiDseTt6dnPjJI4UlrT6fRmsiB_fkDyrf6zXQM__VLzif7n9699zuGAd9IETe-4iLjoQ5EwVXBpLJg8NomxgaJ1gmMQfIuohhKFINEkknAda4UY1kWqEhpZIyA8H8JIQUxKKj5ebEnoPZrkYyESNioxs3XIEY2-bX852gC_kwGa9lws1NzLfVNbvzPP9pNcr1bcNPd1kNukS1b3ibX1mAY75DjFnsbAz91BNW1Rreks7ZF3t-DTJ_TiV6dNHRsG9e8VtJFST_izYKqRMjcakn3z1YL131FcXObOrpRf_otw-ZRAx8w1o2-Sz5fiLL3yHZZlfYBoTpkUc5tBu8DN2Ax1I65DPLAsCzMYsk98rq3jNR0AO3IE3KSQqGGRpQORuSR54PoaYtK8jehPTSvQQCBxN0L1fJr2sWlVCnUQsC6O2LSaqXjBJZ4YQGKZVZq45FXaJwphjuYjNHdrQ1QCYHD0l1YgQo8y4Wv2-ltMO3iYJ2eG6BHng3DEMHwWEqXtlqhTMwgywkJMvdbcx_mjPQImGM8ojYcYUOpzZFyceRQ0qGQV_B4-O9pPSVXwCPSD9PZwSNylYPfupb8eIdsN8uVfUwum-_Nol4-cd5NyZeL9ozfTkaP0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Adversarial+Network-Based+Fault+Detection+in+Semiconductor+Equipment+with+Class-Imbalanced+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Choi%2C+Jeong+Eun&rft.au=Seol%2C+Da+Hoon&rft.au=Kim%2C+Chan+Young&rft.au=Hong%2C+Sang+Jeen&rft.date=2023-02-08&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fs23041889&rft_id=info%3Apmid%2F36850488&rft.externalDocID=36850488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon