Two-lbests based multi-objective particle swarm optimizer

The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering optimization Jg. 43; H. 1; S. 1 - 17
Hauptverfasser: Zhao, S. -Z., Suganthan, P. N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 01.01.2011
Taylor & Francis Ltd
Schlagworte:
ISSN:0305-215X, 1029-0273
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms.
AbstractList The global best (gbest) or local best (lbest) of every particle in state-of-the- art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms. [PUBLICATION ABSTRACT]
The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms.
Author Zhao, S. -Z.
Suganthan, P. N.
Author_xml – sequence: 1
  givenname: S. -Z.
  surname: Zhao
  fullname: Zhao, S. -Z.
  organization: School of Electrical and Electronic Engineering , Nanyang Technological University
– sequence: 2
  givenname: P. N.
  surname: Suganthan
  fullname: Suganthan, P. N.
  email: epnsugan@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering , Nanyang Technological University
BookMark eNqFkE1rGzEQhkVJoHbSH9Db0ktz2XYk7Wq10Esw-SgYekmhNzErSyCjXbmSHCf99ZFxTja4MDCHeZ5h5p2TiylMhpDPFL5RkPAdOLSMthSACyk6Kj6QGQXW18A6fkFm-3ldgD8fyTylNQDlAHJG-qddqP1gUk7VgMmsqnHrs6vDsDY6u2dTbTBmp72p0g7jWIVNdqP7Z-I1ubTok_n03q_I7_u7p8Vjvfz18HNxu6x1w2WuBWd0QNYIu-oG08NqYCA1isb2hkmUvQYhLWUaey17SZFZbVEL4IPW5TV-Rb4e9m5i-Lsth6rRJW28x8mEbVKybYVkTDSFvDlL0pILK9Xu0S9H6Dps41T-UJJRUbAGCtQdIB1DStFYpV3G7MKUIzqvKKh99uok-2LSI3MT3Yjx9azz4-C4yYY44i5Ev1IZX32INuKkXVL8nN79Vz-xVH7J_A34Dqtg
CitedBy_id crossref_primary_10_1177_1056789513518951
crossref_primary_10_1016_j_swevo_2025_102096
crossref_primary_10_1007_s12204_014_1484_8
crossref_primary_10_1007_s00500_014_1346_1
crossref_primary_10_4028_www_scientific_net_AMM_713_715_1777
crossref_primary_10_3390_e21090827
crossref_primary_10_1007_s00158_017_1690_8
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1155_2019_9367093
crossref_primary_10_1016_j_enconman_2011_12_006
crossref_primary_10_1007_s10489_019_01496_3
crossref_primary_10_1177_0021998314538871
crossref_primary_10_1016_j_ins_2012_06_007
crossref_primary_10_1109_TCYB_2017_2710133
crossref_primary_10_1155_2014_124136
crossref_primary_10_1016_j_asoc_2015_05_037
crossref_primary_10_1007_s10489_021_02665_z
crossref_primary_10_1007_s11277_014_1776_1
crossref_primary_10_1016_j_eswa_2018_10_047
crossref_primary_10_1007_s00158_014_1125_8
crossref_primary_10_1016_j_swevo_2011_08_001
crossref_primary_10_1016_j_ins_2014_12_037
crossref_primary_10_1016_j_powtec_2013_08_005
crossref_primary_10_1007_s10489_014_0555_8
crossref_primary_10_1080_0305215X_2015_1111068
crossref_primary_10_3233_JIFS_202529
crossref_primary_10_1016_j_swevo_2011_03_001
crossref_primary_10_3390_aerospace11100793
crossref_primary_10_1007_s00521_014_1724_8
crossref_primary_10_1007_s00158_016_1499_x
crossref_primary_10_1016_j_swevo_2011_11_005
crossref_primary_10_1007_s10409_017_0703_6
crossref_primary_10_1016_j_ceramint_2013_02_097
crossref_primary_10_1016_j_ins_2018_01_038
crossref_primary_10_1016_j_swevo_2014_01_001
crossref_primary_10_4018_IJSIR_2018040104
crossref_primary_10_1016_j_apm_2011_09_041
crossref_primary_10_1109_TSMC_2016_2523938
crossref_primary_10_1016_j_swevo_2019_04_010
crossref_primary_10_1016_j_ins_2011_04_003
crossref_primary_10_1016_j_jmapro_2013_08_004
crossref_primary_10_1016_j_powtec_2013_04_035
crossref_primary_10_3390_en16020604
crossref_primary_10_3390_e15125475
crossref_primary_10_1016_j_asoc_2021_107419
crossref_primary_10_1016_j_ceramint_2012_12_028
crossref_primary_10_1016_j_swevo_2013_05_004
crossref_primary_10_1016_j_ijepes_2014_02_017
crossref_primary_10_1016_j_swevo_2011_05_003
crossref_primary_10_1016_j_knosys_2022_109075
crossref_primary_10_1109_TEVC_2011_2166159
crossref_primary_10_1016_j_renene_2020_03_012
crossref_primary_10_1155_2015_762853
crossref_primary_10_1016_j_swevo_2017_03_005
crossref_primary_10_1155_2012_202906
crossref_primary_10_3390_w14152329
crossref_primary_10_1007_s11277_021_09192_7
crossref_primary_10_1631_jzus_C0910481
crossref_primary_10_1016_j_ceramint_2012_07_073
crossref_primary_10_1016_j_powtec_2013_07_032
crossref_primary_10_1155_2013_749256
crossref_primary_10_1177_0021998313492357
crossref_primary_10_1007_s00158_022_03404_9
crossref_primary_10_1016_j_jksuci_2020_12_014
crossref_primary_10_3390_en10121991
crossref_primary_10_1007_s40747_020_00159_y
Cites_doi 10.1109/ICNC.2007.116
10.1007/978-1-4757-5184-0
10.1007/11844297_53
10.1109/CEC.2007.4424937
10.1007/978-3-540-70928-2_7
10.1007/978-3-540-31880-4_35
10.1016/j.ejor.2004.08.029
10.1109/TEVC.2005.857610
10.1109/CEC.2007.4424855
10.1080/03052150210915
10.1109/CEC.2007.4424941
10.1109/TEVC.2005.861417
10.1109/E-SCIENCE.2006.261049
10.1109/MHS.1995.494215
10.1109/CEC.2007.4424856
10.1109/CEC.2007.4424854
10.1109/4235.996017
10.1109/TEVC.2004.826067
10.1162/106365600568167
10.1145/1276958.1277109
10.1109/CEC.2007.4424939
10.1002/int.20128
10.1109/CEC.2007.4424940
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
Copyright Taylor & Francis Ltd. Jan 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: Copyright Taylor & Francis Ltd. Jan 2011
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03052151003686716
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 17
ExternalDocumentID 2224941111
10_1080_03052151003686716
469193
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07I
1TA
4B5
AAYLN
AAYXX
ACTTO
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBLW
AGVKY
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
ARCSS
BGSSV
BWMZZ
C0-
C5H
CITATION
CYRSC
DAOYK
DEXXA
FETWF
IFELN
L8C
LJTGL
NUSFT
OPCYK
TAJZE
TAP
UB6
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c438t-6321ba246fd7be90db208ca64f9e28a89c068f12ca9c8981a2fcfac603bcc1083
IEDL.DBID TFW
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285200700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Fri Sep 05 09:14:24 EDT 2025
Fri Sep 05 11:19:05 EDT 2025
Wed Aug 13 09:48:57 EDT 2025
Tue Nov 18 22:23:41 EST 2025
Sat Nov 29 08:21:38 EST 2025
Mon Oct 20 23:45:45 EDT 2025
Mon May 13 12:10:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6321ba246fd7be90db208ca64f9e28a89c068f12ca9c8981a2fcfac603bcc1083
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 821612740
PQPubID 23500
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_03052151003686716
crossref_citationtrail_10_1080_03052151003686716
proquest_miscellaneous_1671271254
crossref_primary_10_1080_03052151003686716
proquest_journals_821612740
proquest_miscellaneous_855682264
PublicationCentury 2000
PublicationDate 1/1/2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 1/1/2011
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2011
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0012
CIT0011
Deb K. (CIT0005) 2001
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
Sierra M. R. (CIT0026) 2006; 2
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Coello Coello C. A. (CIT0003) 2002
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
– ident: CIT0012
  doi: 10.1109/ICNC.2007.116
– volume-title: Evolutionary algorithms for solving multi-objective problems
  year: 2002
  ident: CIT0003
  doi: 10.1007/978-1-4757-5184-0
– ident: CIT0002
  doi: 10.1007/11844297_53
– ident: CIT0030
  doi: 10.1109/CEC.2007.4424937
– ident: CIT0022
  doi: 10.1007/978-3-540-70928-2_7
– ident: CIT0023
– ident: CIT0025
  doi: 10.1007/978-3-540-31880-4_35
– ident: CIT0019
  doi: 10.1016/j.ejor.2004.08.029
– ident: CIT0018
  doi: 10.1109/TEVC.2005.857610
– ident: CIT0016
  doi: 10.1109/CEC.2007.4424855
– ident: CIT0021
  doi: 10.1080/03052150210915
– ident: CIT0028
  doi: 10.1109/CEC.2007.4424941
– ident: CIT0007
  doi: 10.1109/TEVC.2005.861417
– ident: CIT0011
  doi: 10.1109/E-SCIENCE.2006.261049
– ident: CIT0014
– ident: CIT0020
– volume: 2
  start-page: 287
  year: 2006
  ident: CIT0026
  publication-title: International Journal of Computational Intelligence Research
– ident: CIT0017
  doi: 10.1109/MHS.1995.494215
– ident: CIT0010
– ident: CIT0029
  doi: 10.1109/CEC.2007.4424856
– ident: CIT0024
  doi: 10.1109/CEC.2007.4424854
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: CIT0005
– ident: CIT0006
  doi: 10.1109/4235.996017
– ident: CIT0004
  doi: 10.1109/TEVC.2004.826067
– ident: CIT0013
  doi: 10.1162/106365600568167
– ident: CIT0001
  doi: 10.1145/1276958.1277109
– ident: CIT0009
  doi: 10.1109/CEC.2007.4424939
– ident: CIT0008
  doi: 10.1002/int.20128
– ident: CIT0027
  doi: 10.1109/CEC.2007.4424940
SSID ssj0013008
Score 2.236446
Snippet The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is...
The global best (gbest) or local best (lbest) of every particle in state-of-the- art multi-objective particle swarm optimization (MOPSO) implementations is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Archives
Atoms & subatomic particles
Chaos theory
Comparative analysis
Evolutionary algorithms
Expenses
external archive
Genetic algorithms
multi-objective evolutionary algorithm
multi-objective particle swarm optimization
Optimization
Optimization algorithms
Searching
State of the art
Tests
two lbests multi-objective particle swarm optimization (2LB-MOPSO)
Title Two-lbests based multi-objective particle swarm optimizer
URI https://www.tandfonline.com/doi/abs/10.1080/03052151003686716
https://www.proquest.com/docview/821612740
https://www.proquest.com/docview/1671271254
https://www.proquest.com/docview/855682264
Volume 43
WOSCitedRecordID wos000285200700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH6IeNCDuzhujOBJCGaS6TQ5ilg8iYeKvQ1JmoDSdqQzteKv92UWbV16UMht3ptsb8ny8j2As0SyRBttiTTCkJg5SnTM-8Q5ljCJCqW4KpNNtG9vRa8n7-rYnLwOq_R7aFcBRZS22iu30nkTEXfhZdR7Ko-l4uHZPOA2un2vlt3Ow-cdAi3z0XlqguS95k7zpz_MeaU5zNJvNrp0PJ2NfzZ5E9brFWd4WYnIFizZ0TaszeAQ7oDsTjMy0Fh5Hnq31g_LOEOS6afKHobPtYSF-VSNh2GGhmb4-GbHu3Dfue5e3ZA6pwIxMRcFSTiLtGJx4vptbSXta0aFUUnspGVCCWloIlzEjMLJkyJSzBmnTEK5Nga7wvdgeZSN7D6EcdzG5RmzaAZw9LmRCvvHNFpPwVEu2gHQZkxTUwOO-7wXgzRqcEm_jkoA5x8szxXaxiJiOjtRaVEecbgqH8l38rR4LQJoLWDhC6o6bIQgrXU8TwXD1TJu6mkApx9fUTn9jYsa2WySpxEyMyytOIDwFxrhMeD8c-aDPzbuEFarg25fjmC5GE_sMayYl-IxH5-UOvEOSzkGlA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qi0R7YG1FCoUgcUKycOyMxz5WiBFVYdTDVMwtsj22NAgmaBIK6q_vcxbKOgeQfMtzvL3Nz_b3APaFYsJY44iy0pKUeUpMykfEeyaYQoHSXFfJJrr9vhwO1a8m4FY01yrDHtrXQBGVrg7CHYLR7ZW4w8CkwVQFMJWAzybmYKGDdjZg5w965_9PEWiVkS6QE6QftqeaL_3ikV16hFr6TEtXpqe38t5Or8Jy43TG32suWYMPbrIOnx5AEW6AGtzm5NJg60UcLNsorq4aktxc1Coxvm6YLC5u9fQqzlHXXI3_uuln-N07HhydkCatArEplyURnCVGs1T4Udc4RUeGUWm1SL1yTGqpLBXSJ8xqXD8lE8289doKyo21OBT-BeYn-cRtQpymXfTQmENNgH4Xt0rj-JhBBSo5skY3AtpOamYbzPGQ-uIyS1po0qezEsHBfZXrGnBjFjF9uFJZWUU5fJ2S5Dl5Vt6VEXRmVOEzmtpquSBrxLzIJEOHGff1NIK9-68on-HQRU9cflNkCVZmWDppBPErNDLAwIUXzV_f2LldWDoZnJ1mpz_6P7fgYx33DmUb5svpjfsGi_ZPOS6mO5WA_APv9Aq-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCo4AKVFDY-SSpyQrDp28NpHBKxAVCsOi9hbZDu2RAWb1SaUqr-ecR48CuyhlXzLOH7Ny_b4G4BdoZgw1jiirLQkZZ4Sk_KceM8EUyhQmus62URvMJCjkTpvY3PKNqwy7KF9AxRR6-og3JPcdxFx3wOPBksVsFQCPJt4BwvoNovA4MP-5eMlAq0T0gVygvSj7lLztV88M0vPQEtfKOna8vRX_rPPq7DcupzxQcMjH2HOjddg6QkQ4SdQw7uCXBtsvIyDXcvjOtCQFOZnoxDjScticXmnpzdxgZrm5uqPm36Gi_7x8PCEtEkViE25rIjgLDGapcLnPeMUzQ2j0mqReuWY1FJZKqRPmNW4ekommnnrtRWUG2txKHwd5sfF2H2BOE176J8xh3oAvS5ulcbxMYPqU3JkjF4EtJvTzLaI4yHxxXWWdMCkf89KBHsPVSYN3MYsYvp0obKqPuPwTUKSl-RZ9buKYH9GFT6jqc2OCbJWyMtMMnSXcVdPI_j28BWlM1y56LErbssswcoMy34aQfwGjQwgcOE988Y_dm4HPpwf9bMfp4OzTVhsDr1D2YL5anrrtuG9_VVdldOvtXjcA7mQCXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-lbests+based+multi-objective+particle+swarm+optimizer&rft.jtitle=Engineering+optimization&rft.au=Zhao%2C+S-Z&rft.au=Suganthan%2C+P+N&rft.date=2011-01-01&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1080%2F03052151003686716&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon