Two-lbests based multi-objective particle swarm optimizer
The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size...
Gespeichert in:
| Veröffentlicht in: | Engineering optimization Jg. 43; H. 1; S. 1 - 17 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
01.01.2011
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0305-215X, 1029-0273 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms. |
|---|---|
| AbstractList | The global best (gbest) or local best (lbest) of every particle in state-of-the- art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms. [PUBLICATION ABSTRACT] The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is selected from the non-dominated solutions in the external archive. This approach emphasizes the elitism at the expense of diversity when the size of the current set of non-dominated solutions in the external archive is small. This article proposes that the gbests or lbests should be chosen from the top fronts in a non-domination sorted external archive of reasonably large size. In addition, a novel two local bests (lbest) based MOPSO (2LB-MOPSO) version is proposed to focus the search around small regions in the parameter space in the vicinity of the best existing fronts unlike the current MOPSO variants in which the pbest and gbest (or lbest) of a particle can be located far apart in the parameter space thereby potentially resulting in a chaotic search behaviour. Comparative evaluation using 19 multi-objectives test problems and 11 state-of-the-art multi-objective evolutionary algorithms ranks overall the 2LB-MOPSO as the best while two state-of-the-art MOPSO algorithms are ranked the worst with respect to other multi-objective evolutionary algorithms. |
| Author | Zhao, S. -Z. Suganthan, P. N. |
| Author_xml | – sequence: 1 givenname: S. -Z. surname: Zhao fullname: Zhao, S. -Z. organization: School of Electrical and Electronic Engineering , Nanyang Technological University – sequence: 2 givenname: P. N. surname: Suganthan fullname: Suganthan, P. N. email: epnsugan@ntu.edu.sg organization: School of Electrical and Electronic Engineering , Nanyang Technological University |
| BookMark | eNqFkE1rGzEQhkVJoHbSH9Db0ktz2XYk7Wq10Esw-SgYekmhNzErSyCjXbmSHCf99ZFxTja4MDCHeZ5h5p2TiylMhpDPFL5RkPAdOLSMthSACyk6Kj6QGQXW18A6fkFm-3ldgD8fyTylNQDlAHJG-qddqP1gUk7VgMmsqnHrs6vDsDY6u2dTbTBmp72p0g7jWIVNdqP7Z-I1ubTok_n03q_I7_u7p8Vjvfz18HNxu6x1w2WuBWd0QNYIu-oG08NqYCA1isb2hkmUvQYhLWUaey17SZFZbVEL4IPW5TV-Rb4e9m5i-Lsth6rRJW28x8mEbVKybYVkTDSFvDlL0pILK9Xu0S9H6Dps41T-UJJRUbAGCtQdIB1DStFYpV3G7MKUIzqvKKh99uok-2LSI3MT3Yjx9azz4-C4yYY44i5Ev1IZX32INuKkXVL8nN79Vz-xVH7J_A34Dqtg |
| CitedBy_id | crossref_primary_10_1177_1056789513518951 crossref_primary_10_1016_j_swevo_2025_102096 crossref_primary_10_1007_s12204_014_1484_8 crossref_primary_10_1007_s00500_014_1346_1 crossref_primary_10_4028_www_scientific_net_AMM_713_715_1777 crossref_primary_10_3390_e21090827 crossref_primary_10_1007_s00158_017_1690_8 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1155_2019_9367093 crossref_primary_10_1016_j_enconman_2011_12_006 crossref_primary_10_1007_s10489_019_01496_3 crossref_primary_10_1177_0021998314538871 crossref_primary_10_1016_j_ins_2012_06_007 crossref_primary_10_1109_TCYB_2017_2710133 crossref_primary_10_1155_2014_124136 crossref_primary_10_1016_j_asoc_2015_05_037 crossref_primary_10_1007_s10489_021_02665_z crossref_primary_10_1007_s11277_014_1776_1 crossref_primary_10_1016_j_eswa_2018_10_047 crossref_primary_10_1007_s00158_014_1125_8 crossref_primary_10_1016_j_swevo_2011_08_001 crossref_primary_10_1016_j_ins_2014_12_037 crossref_primary_10_1016_j_powtec_2013_08_005 crossref_primary_10_1007_s10489_014_0555_8 crossref_primary_10_1080_0305215X_2015_1111068 crossref_primary_10_3233_JIFS_202529 crossref_primary_10_1016_j_swevo_2011_03_001 crossref_primary_10_3390_aerospace11100793 crossref_primary_10_1007_s00521_014_1724_8 crossref_primary_10_1007_s00158_016_1499_x crossref_primary_10_1016_j_swevo_2011_11_005 crossref_primary_10_1007_s10409_017_0703_6 crossref_primary_10_1016_j_ceramint_2013_02_097 crossref_primary_10_1016_j_ins_2018_01_038 crossref_primary_10_1016_j_swevo_2014_01_001 crossref_primary_10_4018_IJSIR_2018040104 crossref_primary_10_1016_j_apm_2011_09_041 crossref_primary_10_1109_TSMC_2016_2523938 crossref_primary_10_1016_j_swevo_2019_04_010 crossref_primary_10_1016_j_ins_2011_04_003 crossref_primary_10_1016_j_jmapro_2013_08_004 crossref_primary_10_1016_j_powtec_2013_04_035 crossref_primary_10_3390_en16020604 crossref_primary_10_3390_e15125475 crossref_primary_10_1016_j_asoc_2021_107419 crossref_primary_10_1016_j_ceramint_2012_12_028 crossref_primary_10_1016_j_swevo_2013_05_004 crossref_primary_10_1016_j_ijepes_2014_02_017 crossref_primary_10_1016_j_swevo_2011_05_003 crossref_primary_10_1016_j_knosys_2022_109075 crossref_primary_10_1109_TEVC_2011_2166159 crossref_primary_10_1016_j_renene_2020_03_012 crossref_primary_10_1155_2015_762853 crossref_primary_10_1016_j_swevo_2017_03_005 crossref_primary_10_1155_2012_202906 crossref_primary_10_3390_w14152329 crossref_primary_10_1007_s11277_021_09192_7 crossref_primary_10_1631_jzus_C0910481 crossref_primary_10_1016_j_ceramint_2012_07_073 crossref_primary_10_1016_j_powtec_2013_07_032 crossref_primary_10_1155_2013_749256 crossref_primary_10_1177_0021998313492357 crossref_primary_10_1007_s00158_022_03404_9 crossref_primary_10_1016_j_jksuci_2020_12_014 crossref_primary_10_3390_en10121991 crossref_primary_10_1007_s40747_020_00159_y |
| Cites_doi | 10.1109/ICNC.2007.116 10.1007/978-1-4757-5184-0 10.1007/11844297_53 10.1109/CEC.2007.4424937 10.1007/978-3-540-70928-2_7 10.1007/978-3-540-31880-4_35 10.1016/j.ejor.2004.08.029 10.1109/TEVC.2005.857610 10.1109/CEC.2007.4424855 10.1080/03052150210915 10.1109/CEC.2007.4424941 10.1109/TEVC.2005.861417 10.1109/E-SCIENCE.2006.261049 10.1109/MHS.1995.494215 10.1109/CEC.2007.4424856 10.1109/CEC.2007.4424854 10.1109/4235.996017 10.1109/TEVC.2004.826067 10.1162/106365600568167 10.1145/1276958.1277109 10.1109/CEC.2007.4424939 10.1002/int.20128 10.1109/CEC.2007.4424940 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2011 Copyright Taylor & Francis Ltd. Jan 2011 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2011 – notice: Copyright Taylor & Francis Ltd. Jan 2011 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/03052151003686716 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-0273 |
| EndPage | 17 |
| ExternalDocumentID | 2224941111 10_1080_03052151003686716 469193 |
| Genre | Feature |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADUMR ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGBKS AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07I 1TA 4B5 AAYLN AAYXX ACTTO ADXEU AEHZU AEZBV AFBWG AFFNX AFION AGBLW AGVKY AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB ARCSS BGSSV BWMZZ C0- C5H CITATION CYRSC DAOYK DEXXA FETWF IFELN L8C LJTGL NUSFT OPCYK TAJZE TAP UB6 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c438t-6321ba246fd7be90db208ca64f9e28a89c068f12ca9c8981a2fcfac603bcc1083 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285200700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Fri Sep 05 09:14:24 EDT 2025 Fri Sep 05 11:19:05 EDT 2025 Wed Aug 13 09:48:57 EDT 2025 Tue Nov 18 22:23:41 EST 2025 Sat Nov 29 08:21:38 EST 2025 Mon Oct 20 23:45:45 EDT 2025 Mon May 13 12:10:10 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-6321ba246fd7be90db208ca64f9e28a89c068f12ca9c8981a2fcfac603bcc1083 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 821612740 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_03052151003686716 crossref_citationtrail_10_1080_03052151003686716 proquest_miscellaneous_1671271254 crossref_primary_10_1080_03052151003686716 proquest_journals_821612740 proquest_miscellaneous_855682264 |
| PublicationCentury | 2000 |
| PublicationDate | 1/1/2011 2011-01-00 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – month: 01 year: 2011 text: 1/1/2011 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0012 CIT0011 Deb K. (CIT0005) 2001 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 Sierra M. R. (CIT0026) 2006; 2 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Coello Coello C. A. (CIT0003) 2002 CIT0025 CIT0002 CIT0024 CIT0027 CIT0004 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0015 – ident: CIT0012 doi: 10.1109/ICNC.2007.116 – volume-title: Evolutionary algorithms for solving multi-objective problems year: 2002 ident: CIT0003 doi: 10.1007/978-1-4757-5184-0 – ident: CIT0002 doi: 10.1007/11844297_53 – ident: CIT0030 doi: 10.1109/CEC.2007.4424937 – ident: CIT0022 doi: 10.1007/978-3-540-70928-2_7 – ident: CIT0023 – ident: CIT0025 doi: 10.1007/978-3-540-31880-4_35 – ident: CIT0019 doi: 10.1016/j.ejor.2004.08.029 – ident: CIT0018 doi: 10.1109/TEVC.2005.857610 – ident: CIT0016 doi: 10.1109/CEC.2007.4424855 – ident: CIT0021 doi: 10.1080/03052150210915 – ident: CIT0028 doi: 10.1109/CEC.2007.4424941 – ident: CIT0007 doi: 10.1109/TEVC.2005.861417 – ident: CIT0011 doi: 10.1109/E-SCIENCE.2006.261049 – ident: CIT0014 – ident: CIT0020 – volume: 2 start-page: 287 year: 2006 ident: CIT0026 publication-title: International Journal of Computational Intelligence Research – ident: CIT0017 doi: 10.1109/MHS.1995.494215 – ident: CIT0010 – ident: CIT0029 doi: 10.1109/CEC.2007.4424856 – ident: CIT0024 doi: 10.1109/CEC.2007.4424854 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: CIT0005 – ident: CIT0006 doi: 10.1109/4235.996017 – ident: CIT0004 doi: 10.1109/TEVC.2004.826067 – ident: CIT0013 doi: 10.1162/106365600568167 – ident: CIT0001 doi: 10.1145/1276958.1277109 – ident: CIT0009 doi: 10.1109/CEC.2007.4424939 – ident: CIT0008 doi: 10.1002/int.20128 – ident: CIT0027 doi: 10.1109/CEC.2007.4424940 |
| SSID | ssj0013008 |
| Score | 2.236446 |
| Snippet | The global best (gbest) or local best (lbest) of every particle in state-of-the-art multi-objective particle swarm optimization (MOPSO) implementations is... The global best (gbest) or local best (lbest) of every particle in state-of-the- art multi-objective particle swarm optimization (MOPSO) implementations is... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Archives Atoms & subatomic particles Chaos theory Comparative analysis Evolutionary algorithms Expenses external archive Genetic algorithms multi-objective evolutionary algorithm multi-objective particle swarm optimization Optimization Optimization algorithms Searching State of the art Tests two lbests multi-objective particle swarm optimization (2LB-MOPSO) |
| Title | Two-lbests based multi-objective particle swarm optimizer |
| URI | https://www.tandfonline.com/doi/abs/10.1080/03052151003686716 https://www.proquest.com/docview/821612740 https://www.proquest.com/docview/1671271254 https://www.proquest.com/docview/855682264 |
| Volume | 43 |
| WOSCitedRecordID | wos000285200700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH6IeNCDuzhujOBJCGaS6TQ5ilg8iYeKvQ1JmoDSdqQzteKv92UWbV16UMht3ptsb8ny8j2As0SyRBttiTTCkJg5SnTM-8Q5ljCJCqW4KpNNtG9vRa8n7-rYnLwOq_R7aFcBRZS22iu30nkTEXfhZdR7Ko-l4uHZPOA2un2vlt3Ow-cdAi3z0XlqguS95k7zpz_MeaU5zNJvNrp0PJ2NfzZ5E9brFWd4WYnIFizZ0TaszeAQ7oDsTjMy0Fh5Hnq31g_LOEOS6afKHobPtYSF-VSNh2GGhmb4-GbHu3Dfue5e3ZA6pwIxMRcFSTiLtGJx4vptbSXta0aFUUnspGVCCWloIlzEjMLJkyJSzBmnTEK5Nga7wvdgeZSN7D6EcdzG5RmzaAZw9LmRCvvHNFpPwVEu2gHQZkxTUwOO-7wXgzRqcEm_jkoA5x8szxXaxiJiOjtRaVEecbgqH8l38rR4LQJoLWDhC6o6bIQgrXU8TwXD1TJu6mkApx9fUTn9jYsa2WySpxEyMyytOIDwFxrhMeD8c-aDPzbuEFarg25fjmC5GE_sMayYl-IxH5-UOvEOSzkGlA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qi0R7YG1FCoUgcUKycOyMxz5WiBFVYdTDVMwtsj22NAgmaBIK6q_vcxbKOgeQfMtzvL3Nz_b3APaFYsJY44iy0pKUeUpMykfEeyaYQoHSXFfJJrr9vhwO1a8m4FY01yrDHtrXQBGVrg7CHYLR7ZW4w8CkwVQFMJWAzybmYKGDdjZg5w965_9PEWiVkS6QE6QftqeaL_3ikV16hFr6TEtXpqe38t5Or8Jy43TG32suWYMPbrIOnx5AEW6AGtzm5NJg60UcLNsorq4aktxc1Coxvm6YLC5u9fQqzlHXXI3_uuln-N07HhydkCatArEplyURnCVGs1T4Udc4RUeGUWm1SL1yTGqpLBXSJ8xqXD8lE8289doKyo21OBT-BeYn-cRtQpymXfTQmENNgH4Xt0rj-JhBBSo5skY3AtpOamYbzPGQ-uIyS1po0qezEsHBfZXrGnBjFjF9uFJZWUU5fJ2S5Dl5Vt6VEXRmVOEzmtpquSBrxLzIJEOHGff1NIK9-68on-HQRU9cflNkCVZmWDppBPErNDLAwIUXzV_f2LldWDoZnJ1mpz_6P7fgYx33DmUb5svpjfsGi_ZPOS6mO5WA_APv9Aq- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCo4AKVFDY-SSpyQrDp28NpHBKxAVCsOi9hbZDu2RAWb1SaUqr-ecR48CuyhlXzLOH7Ny_b4G4BdoZgw1jiirLQkZZ4Sk_KceM8EUyhQmus62URvMJCjkTpvY3PKNqwy7KF9AxRR6-og3JPcdxFx3wOPBksVsFQCPJt4BwvoNovA4MP-5eMlAq0T0gVygvSj7lLztV88M0vPQEtfKOna8vRX_rPPq7DcupzxQcMjH2HOjddg6QkQ4SdQw7uCXBtsvIyDXcvjOtCQFOZnoxDjScticXmnpzdxgZrm5uqPm36Gi_7x8PCEtEkViE25rIjgLDGapcLnPeMUzQ2j0mqReuWY1FJZKqRPmNW4ekommnnrtRWUG2txKHwd5sfF2H2BOE176J8xh3oAvS5ulcbxMYPqU3JkjF4EtJvTzLaI4yHxxXWWdMCkf89KBHsPVSYN3MYsYvp0obKqPuPwTUKSl-RZ9buKYH9GFT6jqc2OCbJWyMtMMnSXcVdPI_j28BWlM1y56LErbssswcoMy34aQfwGjQwgcOE988Y_dm4HPpwf9bMfp4OzTVhsDr1D2YL5anrrtuG9_VVdldOvtXjcA7mQCXA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-lbests+based+multi-objective+particle+swarm+optimizer&rft.jtitle=Engineering+optimization&rft.au=Zhao%2C+S-Z&rft.au=Suganthan%2C+P+N&rft.date=2011-01-01&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1080%2F03052151003686716&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |