Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification algorithms

The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 34534 - 23
Hauptverfasser: Corda, John Valerian, Karthikeyan, A., Zuber, Mohammad, Jacob, Meera, Ramos, Amith, Hosapatna, Mamatha, Dsouza, Anne, Pandey, Akhilesh Kumar, Ankolekar, Vrinda Hari
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 03.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.
AbstractList Abstract The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.
The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms-k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms-k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.
The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.
ArticleNumber 34534
Author Ramos, Amith
Zuber, Mohammad
Pandey, Akhilesh Kumar
Corda, John Valerian
Jacob, Meera
Karthikeyan, A.
Hosapatna, Mamatha
Dsouza, Anne
Ankolekar, Vrinda Hari
Author_xml – sequence: 1
  givenname: John Valerian
  surname: Corda
  fullname: Corda, John Valerian
  organization: Department of Mechanical Engineering, Moodlakatte Institute of Technology
– sequence: 2
  givenname: A.
  surname: Karthikeyan
  fullname: Karthikeyan, A.
  organization: Department of Computer Science & Engineering (Data Science), Moodlakatte Institute of Technology
– sequence: 3
  givenname: Mohammad
  surname: Zuber
  fullname: Zuber, Mohammad
  organization: Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education
– sequence: 4
  givenname: Meera
  surname: Jacob
  fullname: Jacob, Meera
  organization: Department of Anatomy, Yenepoya Medical College
– sequence: 5
  givenname: Amith
  surname: Ramos
  fullname: Ramos, Amith
  organization: Department of Anatomy & Medical Imaging, American University of Antigua College of Medicine
– sequence: 6
  givenname: Mamatha
  surname: Hosapatna
  fullname: Hosapatna, Mamatha
  organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education
– sequence: 7
  givenname: Anne
  surname: Dsouza
  fullname: Dsouza, Anne
  organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education
– sequence: 8
  givenname: Akhilesh Kumar
  surname: Pandey
  fullname: Pandey, Akhilesh Kumar
  organization: Department of Community Medicine, Kasturba Medical College, Manipal Academy of Higher Education
– sequence: 9
  givenname: Vrinda Hari
  surname: Ankolekar
  fullname: Ankolekar, Vrinda Hari
  email: vrindaank2016@gmail.com
  organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41044255$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAltiwCcS32FmiqsCRKrEA1pZjTxIfOfbBTiT6KjwtTlMKYoEly6PxN79nxvO8OgsxQFW9xM1b3FD5LjPMO1k3hNdYSIpr-qS6IA3jNaGEnP1ln1dXOR-bsjjpGO6eVecMN4wRzi-qnzd5cbNeXAwoDijDj1V7ZN0c02lyed6c2q5-QdM664DKtq73kLeLL3FdJnQonnITkxtdQGt2YUQl2XqGJTmDTjrpYkLKqMQWATO5AMiDTmFDjdc5u8GZPQntx6K0THN-UT0dtM9w9XBeVt8-3Hy9_lTffv54uH5_WxtG5VLzASSRlgyWG4M5gQZwZ6nArRj6tpVGUGk4E4MQomW67QdbSu8FExQ4oUAvq8Oua6M-qlMq7Uh3Kmqn7h0xjUqnxRkPSmAriOxlD41lndSdZbYVnDFu7MBg03qza51S_L5CXtTssgHvdYC4ZkUJF6X3mLGCvv4HPcY1hVLpRrUd7zopC_XqgVr7Gexjer9_sABkB0yKOScYHhHcqG1S1D4pqkyKup8URUsQ3YNygcMI6c_b_4n6BRXxwf4
Cites_doi 10.3390/diagnostics13091553
10.2196/jmir.6533
10.1007/978-3-642-28994-1_5
10.1520/JFS2003385
10.1038/s41598-024-72013-x
10.7759/cureus.63481
10.1016/j.jas.2006.09.004
10.1111/1556-4029.13534
10.1002/1099-1212(200011/12)10:6<426::AID-OA533>3.0.CO;2-#
10.1007/s00414-023-02981-8
10.1016/j.compbiomed.2020.104151
10.1016/j.jchb.2013.05.003
10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X
10.1016/j.bspc.2024.107417
10.1007/s00521-024-10468-9
10.1016/j.jchb.2007.01.001
10.1111/j.1556-4029.2006.00270.x
10.1007/s00414-024-03359-0
10.1186/s12874-019-0681-4
10.1016/j.jflm.2017.08.011
10.1016/j.bspc.2014.12.005
10.3390/diagnostics13142342
10.1007/s00414-024-03268-2
10.4103/0975-1475.195113
10.1038/nature21056
10.1016/j.jflm.2011.02.014
10.1186/s12874-023-01920-w
10.3390/info14010054
10.1007/s00414-024-03255-7
10.1155/2021/4832864
10.4103/0975-1475.109885
10.1038/s41598-024-59556-9
10.1155/2022/8302674
10.1016/j.forsciint.2008.03.014
10.1016/j.forsciint.2004.09.111
10.1046/j.1469-7580.1999.19540491.x
10.4103/NJCA.NJCA_112_21
10.1111/1556-4029.12845
10.1038/s41598-024-74475-5
10.1155/2021/6679512
10.1186/s40537-023-00857-7
10.1016/j.forsciint.2019.109873
10.1002/ajpa.20425
10.1007/s00414-020-02460-4
10.1002/ca.10028
10.1111/j.1556-4029.2010.01599.x
10.1127/anthranz/2023/1733
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-17831-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
Engineering
Anthropology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_71d728b8be0d498a9d4d675445cdf4ee
41044255
10_1038_s41598_025_17831_3
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: Manipal Academy of Higher Education, Manipal
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-5fe828d2fd5cc152e0e19d37167fb668c738c547f77764a6bfd425b7473e523e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587516300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:21:21 EDT 2025
Tue Oct 07 05:38:04 EDT 2025
Sun Nov 30 04:35:41 EST 2025
Wed Oct 08 04:16:24 EDT 2025
Sat Nov 29 07:21:38 EST 2025
Sat Oct 04 02:32:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random oversampling
Mandible
Machine learning algorithms
Sexual dimorphism
Synthetic minority oversampling technique
Non-metric features
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-5fe828d2fd5cc152e0e19d37167fb668c738c547f77764a6bfd425b7473e523e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/71d728b8be0d498a9d4d675445cdf4ee
PMID 41044255
PQID 3256959988
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_71d728b8be0d498a9d4d675445cdf4ee
proquest_miscellaneous_3257104144
proquest_journals_3256959988
pubmed_primary_41044255
crossref_primary_10_1038_s41598_025_17831_3
springer_journals_10_1038_s41598_025_17831_3
PublicationCentury 2000
PublicationDate 2025-10-03
PublicationDateYYYYMMDD 2025-10-03
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Gibbons (17831_CR16) 2017; 19
17831_CR41
17831_CR45
E Gokgoz (17831_CR32) 2015; 18
17831_CR44
S Sambhana (17831_CR49) 2016; 8
D Toneva (17831_CR20) 2021; 135
S Knecht (17831_CR22) 2024
ESM Elkenawy (17831_CR26) 2024; 14
M Epain (17831_CR42) 2024; 138
17831_CR6
17831_CR10
R Hassanzadeh (17831_CR34) 2023; 23
17831_CR8
17831_CR2
17831_CR4
F Curate (17831_CR24) 2017; 52
17831_CR5
E Nicholson (17831_CR39) 2006; 131
D Toneva (17831_CR30) 2024; 81
17831_CR1
YW Lee (17831_CR35) 2021; 129
T Wongvorachan (17831_CR36) 2023; 14
A Markande (17831_CR9) 2012; 4
M Durić (17831_CR3) 2005; 147
MR Dayal (17831_CR7) 2008; 59
A Esteva (17831_CR17) 2017; 542
17831_CR46
NR Langley (17831_CR12) 2018; 63
C Yang (17831_CR37) 2024; 11
N El-Rashidy (17831_CR27) 2024
YX Guo (17831_CR23) 2024; 138
17831_CR14
M Vodanović (17831_CR11) 2007; 34
17831_CR15
Š Bejdová (17831_CR48) 2013; 64
17831_CR18
F Savall (17831_CR43) 2015; 60
TL Rogers (17831_CR13) 2005; 50
17831_CR19
K Hu (17831_CR31) 2006; 51
V Saini (17831_CR47) 2011; 18
S Sikaria (17831_CR38) 2024
17831_CR33
A Kumar (17831_CR40) 2022; 11
L Nogueira (17831_CR21) 2023; 137
17831_CR29
J d’Oliveira Coelho (17831_CR25) 2019; 302
17831_CR28
References_xml – ident: 17831_CR18
  doi: 10.3390/diagnostics13091553
– volume: 19
  start-page: e65
  year: 2017
  ident: 17831_CR16
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.6533
– ident: 17831_CR10
  doi: 10.1007/978-3-642-28994-1_5
– ident: 17831_CR6
– volume: 50
  start-page: 493
  year: 2005
  ident: 17831_CR13
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2003385
– volume: 14
  start-page: 23784
  year: 2024
  ident: 17831_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-72013-x
– year: 2024
  ident: 17831_CR38
  publication-title: Cureus
  doi: 10.7759/cureus.63481
– volume: 34
  start-page: 905
  year: 2007
  ident: 17831_CR11
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2006.09.004
– volume: 63
  start-page: 31
  year: 2018
  ident: 17831_CR12
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13534
– ident: 17831_CR46
  doi: 10.1002/1099-1212(200011/12)10:6<426::AID-OA533>3.0.CO;2-#
– volume: 137
  start-page: 925
  year: 2023
  ident: 17831_CR21
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-023-02981-8
– volume: 129
  start-page: 104151
  year: 2021
  ident: 17831_CR35
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104151
– volume: 64
  start-page: 437
  year: 2013
  ident: 17831_CR48
  publication-title: HOMO
  doi: 10.1016/j.jchb.2013.05.003
– ident: 17831_CR5
  doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X
– ident: 17831_CR29
  doi: 10.1016/j.bspc.2024.107417
– year: 2024
  ident: 17831_CR27
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-10468-9
– volume: 59
  start-page: 209
  year: 2008
  ident: 17831_CR7
  publication-title: HOMO- J. Comp. Hum. Biology
  doi: 10.1016/j.jchb.2007.01.001
– volume: 51
  start-page: 1376
  year: 2006
  ident: 17831_CR31
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2006.00270.x
– year: 2024
  ident: 17831_CR22
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-024-03359-0
– ident: 17831_CR15
  doi: 10.1186/s12874-019-0681-4
– volume: 52
  start-page: 75
  year: 2017
  ident: 17831_CR24
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2017.08.011
– volume: 18
  start-page: 138
  year: 2015
  ident: 17831_CR32
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2014.12.005
– ident: 17831_CR19
  doi: 10.3390/diagnostics13142342
– volume: 138
  start-page: 2617
  year: 2024
  ident: 17831_CR42
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-024-03268-2
– volume: 8
  start-page: 180
  year: 2016
  ident: 17831_CR49
  publication-title: J. Forensic Dent. Sci.
  doi: 10.4103/0975-1475.195113
– ident: 17831_CR45
– volume: 542
  start-page: 115
  year: 2017
  ident: 17831_CR17
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 18
  start-page: 208
  year: 2011
  ident: 17831_CR47
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2011.02.014
– volume: 23
  start-page: 101
  year: 2023
  ident: 17831_CR34
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-023-01920-w
– volume: 14
  start-page: 54
  year: 2023
  ident: 17831_CR36
  publication-title: Information
  doi: 10.3390/info14010054
– volume: 138
  start-page: 2147
  year: 2024
  ident: 17831_CR23
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-024-03255-7
– ident: 17831_CR33
  doi: 10.1155/2021/4832864
– volume: 4
  start-page: 58
  year: 2012
  ident: 17831_CR9
  publication-title: J. Forensic Dent. Sci.
  doi: 10.4103/0975-1475.109885
– ident: 17831_CR41
  doi: 10.1038/s41598-024-59556-9
– ident: 17831_CR44
  doi: 10.1155/2022/8302674
– ident: 17831_CR8
  doi: 10.1016/j.forsciint.2008.03.014
– volume: 147
  start-page: 159
  year: 2005
  ident: 17831_CR3
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2004.09.111
– ident: 17831_CR4
  doi: 10.1046/j.1469-7580.1999.19540491.x
– volume: 11
  start-page: 22
  year: 2022
  ident: 17831_CR40
  publication-title: Natl. J. Clin. Anat.
  doi: 10.4103/NJCA.NJCA_112_21
– volume: 60
  start-page: 1395
  year: 2015
  ident: 17831_CR43
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.12845
– ident: 17831_CR28
  doi: 10.1038/s41598-024-74475-5
– ident: 17831_CR14
  doi: 10.1155/2021/6679512
– volume: 11
  start-page: 7
  year: 2024
  ident: 17831_CR37
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00857-7
– volume: 302
  start-page: 109873
  year: 2019
  ident: 17831_CR25
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2019.109873
– volume: 131
  start-page: 368
  year: 2006
  ident: 17831_CR39
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.20425
– volume: 135
  start-page: 951
  year: 2021
  ident: 17831_CR20
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-020-02460-4
– ident: 17831_CR1
  doi: 10.1002/ca.10028
– ident: 17831_CR2
  doi: 10.1111/j.1556-4029.2010.01599.x
– volume: 81
  start-page: 19
  year: 2024
  ident: 17831_CR30
  publication-title: Anthropol. Anz.
  doi: 10.1127/anthranz/2023/1733
SSID ssj0000529419
Score 2.4608407
Snippet The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the...
Abstract The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 34534
SubjectTerms 639/166
692/308
692/698
Accuracy
Adult
Algorithms
Anthropology
Artificial intelligence
Bones
Cardiovascular disease
Classification
Classification Algorithms
Consent
Data collection
Datasets
Decision Trees
Engineering
Feature selection
Female
Females
Forensic Anthropology - methods
Humanities and Social Sciences
Humans
India
Learning algorithms
Machine Learning
Machine learning algorithms
Male
Males
Mandible
Mandible - anatomy & histology
Medicine
Morphology
multidisciplinary
Neural networks
Non-metric features
Random oversampling
Science
Science (multidisciplinary)
Sex Characteristics
Sex determination
Sex Determination by Skeleton - methods
Sexual dimorphism
Statistical analysis
Support Vector Machine
Support vector machines
Synthetic minority oversampling technique
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BgQqQeCyvQEFG4katJrETOycEqBVIUHEAaW9WYjtLpSZpN1sk_gq_lhnHuy3iceEWxY41u_48nvGM5wN4Ubosc2WteeqanEspBG_SwvLcWemz1FaiDTP9QR0e6vm8-hQP3MaYVrnWiUFRu8HSGfmewL25KtA50K9OTjmxRlF0NVJoXIYrRJtNOFdztTljoSiWzKp4VyYVem_E_YrulOUFz5QWGRe_7EehbP-fbM3f4qRh-zm4_b-C34Fb0fBkryek3IVLvp_BzQs8Cd9ncG1ipsSnGxfqFM5g-2OMwN-DH_uoE6brjmxo2RgqNjOHM44TdjR29DLU9GCB_Y91dG2mOfYjNQS-Pva-J0yyiZKLUeL9gvVDzzsi97KMipF3lKQzMvwWB6BsT88ivcWCWbL3KcFpEqI-XuBIq6_deB--HOx_fvuOR34HbqXQK160Hv09l7eusBbtCJ_6rHICPTjVNmWprRLaFlK1SqlS1mXTOtQwDTpAwqP_7MUD2ELx_CNgqFZcpVwhrcCeba1dJTSCLtPWpqJNE3i5nmVzMpXxMCH8LrSZMGEQEyZgwogE3hAQNj2pBHd4MSwXJq5oozKnct3oxqdOVrqunHQllRMsrGul9wnsrPFgol4YzTkYEni-acYVTWGauvfDWeiDZp9ETzeBhxP8NpJIbMD_oEhgd43H88H__oMe_1uWJ3A9D0si5anYga3V8sw_hav22-poXD4La-onwJwqOQ
  priority: 102
  providerName: ProQuest
Title Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification algorithms
URI https://link.springer.com/article/10.1038/s41598-025-17831-3
https://www.ncbi.nlm.nih.gov/pubmed/41044255
https://www.proquest.com/docview/3256959988
https://www.proquest.com/docview/3257104144
https://doaj.org/article/71d728b8be0d498a9d4d675445cdf4ee
Volume 15
WOSCitedRecordID wos001587516300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TsEX8dvquUTwTcOlTdokj57s4YG3FFFYn0KbpOvBtSvXPcF_xb_WSdJdT1R88WUekjQk89HMkMlvAF5ULs9d1SjKXFtQITinLSstLZwVPmdW8y5K-p1cLNRyqesrpb5CTliCB06MO5S5k4VqVeuZE1o12glXBdS20rpOeB_-vkzqK8FUQvUutMj19EqGcXU44kkVXpMVJc2l4jnlv5xEEbD_T17mbzek8eA5vgO3J4-RvE4rvQvX_HAPbqYakt_uw_c5Gml6f0jWHRkjhDJxKALk4NnYh8YIskFiOT7Sh3cs7bkfQ0csoEdOhqAkJNXIIiETfkWG9UD7UG3LkoAO3oesmZHgtzhBSL_0ZKo3sSI2OOAh4ygtojlf4Uybz_34AD4ezz-8eUunggvUCq42tOw8BmCu6FxpLR7snvlcO44hlezaqlJWcmVLITspZSWaqu0cmnyLEQn3GNB6_hD2cHn-MRC0c6elK4XlOLJrlNNcoRbkylrGO5bByy3zzZeEq2HifThXJonKoKhMFJXhGRwF-exGBkzs2ICaYiZNMf_SlAwOttI1k6GOhqPLp0uMOVUGz3fdaGLh3qQZ_PoyjkE_TGDomcGjpBW7lQjsQB6UGbzaqsnPyf--oSf_Y0NP4VYR9ZlRxg9gb3Nx6Z_BDft1czZezOC6XMpI1Qz2j-aL-v0sGgnS06IOVCLdr09O608_AOAIFrU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLW-Jx_IKFDASnIpVJ3YS54AQj1ZddXe1h1YqJzexnaVSd7dstqD-FX4Ev5Gxk2yLeNx64LayvZbjfDPjiWfmA3iZmDA0SS4pM0VEheCcFizWNDJa2JDpjJf-TffT4VDu72ejFfjR5sK4sMpWJ3pFbWbafSPf4GibsxidA_n2-At1rFHudrWl0KhhsWNPv6HLVr3pfcT3-yqKtjZ3P2zThlWAasHlgsalRS_DRKWJtUbrZZkNM8PRb0jLIkmkTrnUsUjLNE0TkSdFaRDXBR67uUWvzXKc9xKsCmxkHVgd9QajT8uvOu7eTIRZk53DuNyo0EK6LLYopmEqeUj5LxbQEwX86XT7282sN3hbt_-3rboDt5qjNXlXy8JdWLHTLtw8xwRx2oUrNfcm_rpxrhJjF64OmhiDe_B9E7VendBJZiWpfE1qYhDTCMnDauIafdUS4vkNycQlBhVHtnIdnpGQ9KZO6khNOkZcasGYTGdTOnH0ZZq4cusTF4ZUEfwvTuDiWS1pCDzGRDuPxoVw1YvIj8Y40-LzpLoPexeygQ-gg8uzj4Cg4jRZamKhOY4sc2kyLlGsQqk14yULYL1FlTquC5UoH2DApaoxqBCDymNQ8QDeO-AtR7oi475hNh-rRmepNDRpJAtZWGZEJvPMCJO4gomxNqWwNoC1Fn-q0XyVOgNfAC-W3aiz3EVUPrWzEz8GD7YCffkAHtZwX65EYAfuQRzA6xb_Z5P__YEe_3stz-Ha9u6gr_q94c4TuB55cWSU8TXoLOYn9ilc1l8Xh9X8WSPRBA4uWjJ-An6eh7I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NDiZA4k8ZEBhgJHgCq0nsxM4DQoy1otqoKgTS3kxiO92ktR1NB9pX4aPw6Tg7STfEn7c98BbFjuU4v7vzxXf3A3iWmigyaS5paIqYcs4YLcJE09hobqNQZ6z0X3pPjEZyfz8br8GPNhfGhVW2OtErajPX7h95j6FtzhJ0DmSvbMIixjuD18dfqGOQcietLZ1GDZFde_oN3bfq1XAHv_XzOB70P759RxuGAao5k0ualBY9DhOXJtEaLZkNbZQZhj6EKIs0lVowqRMuSiFEyvO0KA1ivMAtOLPowVmG416CdcHQ6enA-nZ_NP6w-sPjztB4lDWZOiGTvQqtpctoixMaCckiyn6xhp404E873d9Oab3xG9z8n5ftFtxottzkTS0jt2HNzrpw_RxDxGkXrtScnHh17VyFxi5svG9iD-7A9z5qwzrRk8xLUvla1cQg1hGqh9XU3fTVTIjnPSRTlzBUHNnKNXimQjKcOWkkNRkZcSkHEzKbz-jU0Zpp4sqwT114UkXwWRzAxbla0hB7TIh2no4L7aonkR9NcKTlwbTahE8XsoB3oYPTs_eBoEI1mTAJ1wx7lrk0GZMobpHUOmRlGMCLFmHquC5gonzgAZOqxqNCPCqPR8UC2HYgXPV0xcf9jfliohpdpkRkRCwLWdjQ8EzmmeEmdYUUE21Kbm0AWy0WVaMRK3UGxACerppRl7kDqnxm5ye-D254Ofr4Adyrob-aCccGXIMkgJetLJwN_vcXevDvuTyBDRQHtTcc7T6Eq7GXzJCGbAs6y8WJfQSX9dflYbV43Ag3gc8XLRg_Ab3skEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+sexual+dimorphism+of+adult+human+mandibles+of+South+Indian+origin+using+non-metric+parameters+and+machine+learning+classification+algorithms&rft.jtitle=Scientific+reports&rft.au=Corda%2C+John+Valerian&rft.au=Karthikeyan%2C+A&rft.au=Zuber%2C+Mohammad&rft.au=Jacob%2C+Meera&rft.date=2025-10-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=34534&rft_id=info:doi/10.1038%2Fs41598-025-17831-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon