Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification algorithms
The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, exte...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 34534 - 23 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
03.10.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible. |
|---|---|
| AbstractList | Abstract The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible. The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms-k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible.The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms-k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible. The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the male and female distinctions. Machine learning algorithms are widely used for various applications due to their accuracy and reliability, extending their application in biological profiling. This study aims to estimate sexual dimorphism using various machine-learning algorithms based on non-metric features of the mandible. This study uses four machine-learning algorithms—k-nearest neighbors, decision tree, support vector machines, and random forest to determine sex based on 12 mandibular non-metric parameters. The data was collected from three medical institutes in Karnataka, India, involving a sample of 156 individuals. Random Forest consistently achieved the highest Jaccard Index (0.86), F1 score (0.92), and accuracy (0.92) across both SMOTE and Random Over-Sampling (ROS) methods, showing stable and robust performance. ROS improved balanced accuracy for KNN, Decision Tree, and SVM by up to 9.7%. Feature importance analysis highlighted N6 Gonial angle and N12 Flexure ramal post border as key predictors. Statistical tests found no significant accuracy differences among models. Female specificity remained lower across all models. This study offers insights into employing machine learning algorithms for sex identification using non-metric observations of the mandible. |
| ArticleNumber | 34534 |
| Author | Ramos, Amith Zuber, Mohammad Pandey, Akhilesh Kumar Corda, John Valerian Jacob, Meera Karthikeyan, A. Hosapatna, Mamatha Dsouza, Anne Ankolekar, Vrinda Hari |
| Author_xml | – sequence: 1 givenname: John Valerian surname: Corda fullname: Corda, John Valerian organization: Department of Mechanical Engineering, Moodlakatte Institute of Technology – sequence: 2 givenname: A. surname: Karthikeyan fullname: Karthikeyan, A. organization: Department of Computer Science & Engineering (Data Science), Moodlakatte Institute of Technology – sequence: 3 givenname: Mohammad surname: Zuber fullname: Zuber, Mohammad organization: Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 4 givenname: Meera surname: Jacob fullname: Jacob, Meera organization: Department of Anatomy, Yenepoya Medical College – sequence: 5 givenname: Amith surname: Ramos fullname: Ramos, Amith organization: Department of Anatomy & Medical Imaging, American University of Antigua College of Medicine – sequence: 6 givenname: Mamatha surname: Hosapatna fullname: Hosapatna, Mamatha organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education – sequence: 7 givenname: Anne surname: Dsouza fullname: Dsouza, Anne organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education – sequence: 8 givenname: Akhilesh Kumar surname: Pandey fullname: Pandey, Akhilesh Kumar organization: Department of Community Medicine, Kasturba Medical College, Manipal Academy of Higher Education – sequence: 9 givenname: Vrinda Hari surname: Ankolekar fullname: Ankolekar, Vrinda Hari email: vrindaank2016@gmail.com organization: Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41044255$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1TAQhiNUREvpC7BAltiwCcS32FmiqsCRKrEA1pZjTxIfOfbBTiT6KjwtTlMKYoEly6PxN79nxvO8OgsxQFW9xM1b3FD5LjPMO1k3hNdYSIpr-qS6IA3jNaGEnP1ln1dXOR-bsjjpGO6eVecMN4wRzi-qnzd5cbNeXAwoDijDj1V7ZN0c02lyed6c2q5-QdM664DKtq73kLeLL3FdJnQonnITkxtdQGt2YUQl2XqGJTmDTjrpYkLKqMQWATO5AMiDTmFDjdc5u8GZPQntx6K0THN-UT0dtM9w9XBeVt8-3Hy9_lTffv54uH5_WxtG5VLzASSRlgyWG4M5gQZwZ6nArRj6tpVGUGk4E4MQomW67QdbSu8FExQ4oUAvq8Oua6M-qlMq7Uh3Kmqn7h0xjUqnxRkPSmAriOxlD41lndSdZbYVnDFu7MBg03qza51S_L5CXtTssgHvdYC4ZkUJF6X3mLGCvv4HPcY1hVLpRrUd7zopC_XqgVr7Gexjer9_sABkB0yKOScYHhHcqG1S1D4pqkyKup8URUsQ3YNygcMI6c_b_4n6BRXxwf4 |
| Cites_doi | 10.3390/diagnostics13091553 10.2196/jmir.6533 10.1007/978-3-642-28994-1_5 10.1520/JFS2003385 10.1038/s41598-024-72013-x 10.7759/cureus.63481 10.1016/j.jas.2006.09.004 10.1111/1556-4029.13534 10.1002/1099-1212(200011/12)10:6<426::AID-OA533>3.0.CO;2-# 10.1007/s00414-023-02981-8 10.1016/j.compbiomed.2020.104151 10.1016/j.jchb.2013.05.003 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X 10.1016/j.bspc.2024.107417 10.1007/s00521-024-10468-9 10.1016/j.jchb.2007.01.001 10.1111/j.1556-4029.2006.00270.x 10.1007/s00414-024-03359-0 10.1186/s12874-019-0681-4 10.1016/j.jflm.2017.08.011 10.1016/j.bspc.2014.12.005 10.3390/diagnostics13142342 10.1007/s00414-024-03268-2 10.4103/0975-1475.195113 10.1038/nature21056 10.1016/j.jflm.2011.02.014 10.1186/s12874-023-01920-w 10.3390/info14010054 10.1007/s00414-024-03255-7 10.1155/2021/4832864 10.4103/0975-1475.109885 10.1038/s41598-024-59556-9 10.1155/2022/8302674 10.1016/j.forsciint.2008.03.014 10.1016/j.forsciint.2004.09.111 10.1046/j.1469-7580.1999.19540491.x 10.4103/NJCA.NJCA_112_21 10.1111/1556-4029.12845 10.1038/s41598-024-74475-5 10.1155/2021/6679512 10.1186/s40537-023-00857-7 10.1016/j.forsciint.2019.109873 10.1002/ajpa.20425 10.1007/s00414-020-02460-4 10.1002/ca.10028 10.1111/j.1556-4029.2010.01599.x 10.1127/anthranz/2023/1733 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-17831-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine Engineering Anthropology |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_71d728b8be0d498a9d4d675445cdf4ee 41044255 10_1038_s41598_025_17831_3 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GrantInformation_xml | – fundername: Manipal Academy of Higher Education, Manipal |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-5fe828d2fd5cc152e0e19d37167fb668c738c547f77764a6bfd425b7473e523e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587516300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Oct 13 19:21:21 EDT 2025 Tue Oct 07 05:38:04 EDT 2025 Sun Nov 30 04:35:41 EST 2025 Wed Oct 08 04:16:24 EDT 2025 Sat Nov 29 07:21:38 EST 2025 Sat Oct 04 02:32:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Random oversampling Mandible Machine learning algorithms Sexual dimorphism Synthetic minority oversampling technique Non-metric features |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-5fe828d2fd5cc152e0e19d37167fb668c738c547f77764a6bfd425b7473e523e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/71d728b8be0d498a9d4d675445cdf4ee |
| PMID | 41044255 |
| PQID | 3256959988 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_71d728b8be0d498a9d4d675445cdf4ee proquest_miscellaneous_3257104144 proquest_journals_3256959988 pubmed_primary_41044255 crossref_primary_10_1038_s41598_025_17831_3 springer_journals_10_1038_s41598_025_17831_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-03 |
| PublicationDateYYYYMMDD | 2025-10-03 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | C Gibbons (17831_CR16) 2017; 19 17831_CR41 17831_CR45 E Gokgoz (17831_CR32) 2015; 18 17831_CR44 S Sambhana (17831_CR49) 2016; 8 D Toneva (17831_CR20) 2021; 135 S Knecht (17831_CR22) 2024 ESM Elkenawy (17831_CR26) 2024; 14 M Epain (17831_CR42) 2024; 138 17831_CR6 17831_CR10 R Hassanzadeh (17831_CR34) 2023; 23 17831_CR8 17831_CR2 17831_CR4 F Curate (17831_CR24) 2017; 52 17831_CR5 E Nicholson (17831_CR39) 2006; 131 D Toneva (17831_CR30) 2024; 81 17831_CR1 YW Lee (17831_CR35) 2021; 129 T Wongvorachan (17831_CR36) 2023; 14 A Markande (17831_CR9) 2012; 4 M Durić (17831_CR3) 2005; 147 MR Dayal (17831_CR7) 2008; 59 A Esteva (17831_CR17) 2017; 542 17831_CR46 NR Langley (17831_CR12) 2018; 63 C Yang (17831_CR37) 2024; 11 N El-Rashidy (17831_CR27) 2024 YX Guo (17831_CR23) 2024; 138 17831_CR14 M Vodanović (17831_CR11) 2007; 34 17831_CR15 Š Bejdová (17831_CR48) 2013; 64 17831_CR18 F Savall (17831_CR43) 2015; 60 TL Rogers (17831_CR13) 2005; 50 17831_CR19 K Hu (17831_CR31) 2006; 51 V Saini (17831_CR47) 2011; 18 S Sikaria (17831_CR38) 2024 17831_CR33 A Kumar (17831_CR40) 2022; 11 L Nogueira (17831_CR21) 2023; 137 17831_CR29 J d’Oliveira Coelho (17831_CR25) 2019; 302 17831_CR28 |
| References_xml | – ident: 17831_CR18 doi: 10.3390/diagnostics13091553 – volume: 19 start-page: e65 year: 2017 ident: 17831_CR16 publication-title: J. Med. Internet Res. doi: 10.2196/jmir.6533 – ident: 17831_CR10 doi: 10.1007/978-3-642-28994-1_5 – ident: 17831_CR6 – volume: 50 start-page: 493 year: 2005 ident: 17831_CR13 publication-title: J. Forensic Sci. doi: 10.1520/JFS2003385 – volume: 14 start-page: 23784 year: 2024 ident: 17831_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-024-72013-x – year: 2024 ident: 17831_CR38 publication-title: Cureus doi: 10.7759/cureus.63481 – volume: 34 start-page: 905 year: 2007 ident: 17831_CR11 publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2006.09.004 – volume: 63 start-page: 31 year: 2018 ident: 17831_CR12 publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.13534 – ident: 17831_CR46 doi: 10.1002/1099-1212(200011/12)10:6<426::AID-OA533>3.0.CO;2-# – volume: 137 start-page: 925 year: 2023 ident: 17831_CR21 publication-title: Int. J. Legal Med. doi: 10.1007/s00414-023-02981-8 – volume: 129 start-page: 104151 year: 2021 ident: 17831_CR35 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104151 – volume: 64 start-page: 437 year: 2013 ident: 17831_CR48 publication-title: HOMO doi: 10.1016/j.jchb.2013.05.003 – ident: 17831_CR5 doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X – ident: 17831_CR29 doi: 10.1016/j.bspc.2024.107417 – year: 2024 ident: 17831_CR27 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-10468-9 – volume: 59 start-page: 209 year: 2008 ident: 17831_CR7 publication-title: HOMO- J. Comp. Hum. Biology doi: 10.1016/j.jchb.2007.01.001 – volume: 51 start-page: 1376 year: 2006 ident: 17831_CR31 publication-title: J. Forensic Sci. doi: 10.1111/j.1556-4029.2006.00270.x – year: 2024 ident: 17831_CR22 publication-title: Int. J. Legal Med. doi: 10.1007/s00414-024-03359-0 – ident: 17831_CR15 doi: 10.1186/s12874-019-0681-4 – volume: 52 start-page: 75 year: 2017 ident: 17831_CR24 publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2017.08.011 – volume: 18 start-page: 138 year: 2015 ident: 17831_CR32 publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2014.12.005 – ident: 17831_CR19 doi: 10.3390/diagnostics13142342 – volume: 138 start-page: 2617 year: 2024 ident: 17831_CR42 publication-title: Int. J. Legal Med. doi: 10.1007/s00414-024-03268-2 – volume: 8 start-page: 180 year: 2016 ident: 17831_CR49 publication-title: J. Forensic Dent. Sci. doi: 10.4103/0975-1475.195113 – ident: 17831_CR45 – volume: 542 start-page: 115 year: 2017 ident: 17831_CR17 publication-title: Nature doi: 10.1038/nature21056 – volume: 18 start-page: 208 year: 2011 ident: 17831_CR47 publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2011.02.014 – volume: 23 start-page: 101 year: 2023 ident: 17831_CR34 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-023-01920-w – volume: 14 start-page: 54 year: 2023 ident: 17831_CR36 publication-title: Information doi: 10.3390/info14010054 – volume: 138 start-page: 2147 year: 2024 ident: 17831_CR23 publication-title: Int. J. Legal Med. doi: 10.1007/s00414-024-03255-7 – ident: 17831_CR33 doi: 10.1155/2021/4832864 – volume: 4 start-page: 58 year: 2012 ident: 17831_CR9 publication-title: J. Forensic Dent. Sci. doi: 10.4103/0975-1475.109885 – ident: 17831_CR41 doi: 10.1038/s41598-024-59556-9 – ident: 17831_CR44 doi: 10.1155/2022/8302674 – ident: 17831_CR8 doi: 10.1016/j.forsciint.2008.03.014 – volume: 147 start-page: 159 year: 2005 ident: 17831_CR3 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2004.09.111 – ident: 17831_CR4 doi: 10.1046/j.1469-7580.1999.19540491.x – volume: 11 start-page: 22 year: 2022 ident: 17831_CR40 publication-title: Natl. J. Clin. Anat. doi: 10.4103/NJCA.NJCA_112_21 – volume: 60 start-page: 1395 year: 2015 ident: 17831_CR43 publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.12845 – ident: 17831_CR28 doi: 10.1038/s41598-024-74475-5 – ident: 17831_CR14 doi: 10.1155/2021/6679512 – volume: 11 start-page: 7 year: 2024 ident: 17831_CR37 publication-title: J. Big Data doi: 10.1186/s40537-023-00857-7 – volume: 302 start-page: 109873 year: 2019 ident: 17831_CR25 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2019.109873 – volume: 131 start-page: 368 year: 2006 ident: 17831_CR39 publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.20425 – volume: 135 start-page: 951 year: 2021 ident: 17831_CR20 publication-title: Int. J. Legal Med. doi: 10.1007/s00414-020-02460-4 – ident: 17831_CR1 doi: 10.1002/ca.10028 – ident: 17831_CR2 doi: 10.1111/j.1556-4029.2010.01599.x – volume: 81 start-page: 19 year: 2024 ident: 17831_CR30 publication-title: Anthropol. Anz. doi: 10.1127/anthranz/2023/1733 |
| SSID | ssj0000529419 |
| Score | 2.4608407 |
| Snippet | The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information regarding the... Abstract The mandible is one of the most reliable in sex determination in forensic anthropology. The shape of the mandible provides valuable information... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 34534 |
| SubjectTerms | 639/166 692/308 692/698 Accuracy Adult Algorithms Anthropology Artificial intelligence Bones Cardiovascular disease Classification Classification Algorithms Consent Data collection Datasets Decision Trees Engineering Feature selection Female Females Forensic Anthropology - methods Humanities and Social Sciences Humans India Learning algorithms Machine Learning Machine learning algorithms Male Males Mandible Mandible - anatomy & histology Medicine Morphology multidisciplinary Neural networks Non-metric features Random oversampling Science Science (multidisciplinary) Sex Characteristics Sex determination Sex Determination by Skeleton - methods Sexual dimorphism Statistical analysis Support Vector Machine Support vector machines Synthetic minority oversampling technique Young Adult |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BgQqQeCyvQEFG4katJrETOycEqBVIUHEAaW9WYjtLpSZpN1sk_gq_lhnHuy3iceEWxY41u_48nvGM5wN4Ubosc2WteeqanEspBG_SwvLcWemz1FaiDTP9QR0e6vm8-hQP3MaYVrnWiUFRu8HSGfmewL25KtA50K9OTjmxRlF0NVJoXIYrRJtNOFdztTljoSiWzKp4VyYVem_E_YrulOUFz5QWGRe_7EehbP-fbM3f4qRh-zm4_b-C34Fb0fBkryek3IVLvp_BzQs8Cd9ncG1ipsSnGxfqFM5g-2OMwN-DH_uoE6brjmxo2RgqNjOHM44TdjR29DLU9GCB_Y91dG2mOfYjNQS-Pva-J0yyiZKLUeL9gvVDzzsi97KMipF3lKQzMvwWB6BsT88ivcWCWbL3KcFpEqI-XuBIq6_deB--HOx_fvuOR34HbqXQK160Hv09l7eusBbtCJ_6rHICPTjVNmWprRLaFlK1SqlS1mXTOtQwDTpAwqP_7MUD2ELx_CNgqFZcpVwhrcCeba1dJTSCLtPWpqJNE3i5nmVzMpXxMCH8LrSZMGEQEyZgwogE3hAQNj2pBHd4MSwXJq5oozKnct3oxqdOVrqunHQllRMsrGul9wnsrPFgol4YzTkYEni-acYVTWGauvfDWeiDZp9ETzeBhxP8NpJIbMD_oEhgd43H88H__oMe_1uWJ3A9D0si5anYga3V8sw_hav22-poXD4La-onwJwqOQ priority: 102 providerName: ProQuest |
| Title | Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification algorithms |
| URI | https://link.springer.com/article/10.1038/s41598-025-17831-3 https://www.ncbi.nlm.nih.gov/pubmed/41044255 https://www.proquest.com/docview/3256959988 https://www.proquest.com/docview/3257104144 https://doaj.org/article/71d728b8be0d498a9d4d675445cdf4ee |
| Volume | 15 |
| WOSCitedRecordID | wos001587516300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TsEX8dvquUTwTcOlTdokj57s4YG3FFFYn0KbpOvBtSvXPcF_xb_WSdJdT1R88WUekjQk89HMkMlvAF5ULs9d1SjKXFtQITinLSstLZwVPmdW8y5K-p1cLNRyqesrpb5CTliCB06MO5S5k4VqVeuZE1o12glXBdS20rpOeB_-vkzqK8FUQvUutMj19EqGcXU44kkVXpMVJc2l4jnlv5xEEbD_T17mbzek8eA5vgO3J4-RvE4rvQvX_HAPbqYakt_uw_c5Gml6f0jWHRkjhDJxKALk4NnYh8YIskFiOT7Sh3cs7bkfQ0csoEdOhqAkJNXIIiETfkWG9UD7UG3LkoAO3oesmZHgtzhBSL_0ZKo3sSI2OOAh4ygtojlf4Uybz_34AD4ezz-8eUunggvUCq42tOw8BmCu6FxpLR7snvlcO44hlezaqlJWcmVLITspZSWaqu0cmnyLEQn3GNB6_hD2cHn-MRC0c6elK4XlOLJrlNNcoRbkylrGO5bByy3zzZeEq2HifThXJonKoKhMFJXhGRwF-exGBkzs2ICaYiZNMf_SlAwOttI1k6GOhqPLp0uMOVUGz3fdaGLh3qQZ_PoyjkE_TGDomcGjpBW7lQjsQB6UGbzaqsnPyf--oSf_Y0NP4VYR9ZlRxg9gb3Nx6Z_BDft1czZezOC6XMpI1Qz2j-aL-v0sGgnS06IOVCLdr09O608_AOAIFrU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLW-Jx_IKFDASnIpVJ3YS54AQj1ZddXe1h1YqJzexnaVSd7dstqD-FX4Ev5Gxk2yLeNx64LayvZbjfDPjiWfmA3iZmDA0SS4pM0VEheCcFizWNDJa2JDpjJf-TffT4VDu72ejFfjR5sK4sMpWJ3pFbWbafSPf4GibsxidA_n2-At1rFHudrWl0KhhsWNPv6HLVr3pfcT3-yqKtjZ3P2zThlWAasHlgsalRS_DRKWJtUbrZZkNM8PRb0jLIkmkTrnUsUjLNE0TkSdFaRDXBR67uUWvzXKc9xKsCmxkHVgd9QajT8uvOu7eTIRZk53DuNyo0EK6LLYopmEqeUj5LxbQEwX86XT7282sN3hbt_-3rboDt5qjNXlXy8JdWLHTLtw8xwRx2oUrNfcm_rpxrhJjF64OmhiDe_B9E7VendBJZiWpfE1qYhDTCMnDauIafdUS4vkNycQlBhVHtnIdnpGQ9KZO6khNOkZcasGYTGdTOnH0ZZq4cusTF4ZUEfwvTuDiWS1pCDzGRDuPxoVw1YvIj8Y40-LzpLoPexeygQ-gg8uzj4Cg4jRZamKhOY4sc2kyLlGsQqk14yULYL1FlTquC5UoH2DApaoxqBCDymNQ8QDeO-AtR7oi475hNh-rRmepNDRpJAtZWGZEJvPMCJO4gomxNqWwNoC1Fn-q0XyVOgNfAC-W3aiz3EVUPrWzEz8GD7YCffkAHtZwX65EYAfuQRzA6xb_Z5P__YEe_3stz-Ha9u6gr_q94c4TuB55cWSU8TXoLOYn9ilc1l8Xh9X8WSPRBA4uWjJ-An6eh7I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NDiZA4k8ZEBhgJHgCq0nsxM4DQoy1otqoKgTS3kxiO92ktR1NB9pX4aPw6Tg7STfEn7c98BbFjuU4v7vzxXf3A3iWmigyaS5paIqYcs4YLcJE09hobqNQZ6z0X3pPjEZyfz8br8GPNhfGhVW2OtErajPX7h95j6FtzhJ0DmSvbMIixjuD18dfqGOQcietLZ1GDZFde_oN3bfq1XAHv_XzOB70P759RxuGAao5k0ualBY9DhOXJtEaLZkNbZQZhj6EKIs0lVowqRMuSiFEyvO0KA1ivMAtOLPowVmG416CdcHQ6enA-nZ_NP6w-sPjztB4lDWZOiGTvQqtpctoixMaCckiyn6xhp404E873d9Oab3xG9z8n5ftFtxottzkTS0jt2HNzrpw_RxDxGkXrtScnHh17VyFxi5svG9iD-7A9z5qwzrRk8xLUvla1cQg1hGqh9XU3fTVTIjnPSRTlzBUHNnKNXimQjKcOWkkNRkZcSkHEzKbz-jU0Zpp4sqwT114UkXwWRzAxbla0hB7TIh2no4L7aonkR9NcKTlwbTahE8XsoB3oYPTs_eBoEI1mTAJ1wx7lrk0GZMobpHUOmRlGMCLFmHquC5gonzgAZOqxqNCPCqPR8UC2HYgXPV0xcf9jfliohpdpkRkRCwLWdjQ8EzmmeEmdYUUE21Kbm0AWy0WVaMRK3UGxACerppRl7kDqnxm5ye-D254Ofr4Adyrob-aCccGXIMkgJetLJwN_vcXevDvuTyBDRQHtTcc7T6Eq7GXzJCGbAs6y8WJfQSX9dflYbV43Ag3gc8XLRg_Ab3skEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+sexual+dimorphism+of+adult+human+mandibles+of+South+Indian+origin+using+non-metric+parameters+and+machine+learning+classification+algorithms&rft.jtitle=Scientific+reports&rft.au=Corda%2C+John+Valerian&rft.au=Karthikeyan%2C+A&rft.au=Zuber%2C+Mohammad&rft.au=Jacob%2C+Meera&rft.date=2025-10-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=34534&rft_id=info:doi/10.1038%2Fs41598-025-17831-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |