A novel version of Cuckoo search algorithm for solving optimization problems

•New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solvin...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 186; p. 115669
Main Authors: Cuong-Le, Thanh, Minh, Hoang-Le, Khatir, Samir, Wahab, Magd Abdel, Tran, Minh Thi, Mirjalili, Seyedali
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 30.12.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solving optimization problems.•NMS-CS is considered to be a more complete version than original CS algorithm. In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints. Source codes of NMS-CS is publicly available at http://goldensolutionrs.com/codes.html.
AbstractList •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solving optimization problems.•NMS-CS is considered to be a more complete version than original CS algorithm. In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints. Source codes of NMS-CS is publicly available at http://goldensolutionrs.com/codes.html.
In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints.
ArticleNumber 115669
Author Cuong-Le, Thanh
Tran, Minh Thi
Khatir, Samir
Wahab, Magd Abdel
Mirjalili, Seyedali
Minh, Hoang-Le
Author_xml – sequence: 1
  givenname: Thanh
  surname: Cuong-Le
  fullname: Cuong-Le, Thanh
  email: cuong.lt@ou.edu.vn
  organization: Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Hoang-Le
  surname: Minh
  fullname: Minh, Hoang-Le
  email: MinhHoang.Le@UGent.be
  organization: Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
– sequence: 3
  givenname: Samir
  surname: Khatir
  fullname: Khatir, Samir
  email: samir.khatir@ugent.be
  organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark, Zwijnaarde 903, B-9052 Zwijnaarde, Belgium
– sequence: 4
  givenname: Magd Abdel
  surname: Wahab
  fullname: Wahab, Magd Abdel
  email: magd.a.w@hutech.edu.vn, magd.abdelwahab@UGent.be
  organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark, Zwijnaarde 903, B-9052 Zwijnaarde, Belgium
– sequence: 5
  givenname: Minh Thi
  surname: Tran
  fullname: Tran, Minh Thi
  email: tmthi@hcmut.edu.vn
  organization: Department of Civil Engineering, Ho Chi Minh City University of Technology, Viet Nam
– sequence: 6
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.mirjalili@gmail.com
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane 4006, QLD, Australia
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxJxg58u2xFJVfEmVWGC2HPvSOqRxsdMg-PUkhImh0y3vc-_ds0Cz1rWA0DUlMSW0uK1jCJ8qTkhCY0rzohBnaE45S6OCiXSG5kTkLMooyy7QIoSaEMoIYXO0WeHW9dDgHnywrsWuwuujfncOB1Be77Bqts7bbrfHlfM4uKa37Ra7Q2f39lt1I3PwrmxgHy7ReaWaAFd_c4neHu5f10_R5uXxeb3aRDpLeRflLDec8qxSBc9ErkzFCGjDSlqysqwo5RVTlAhTlmAY5IJDaVSWaWaoUEWRLtHNtHco_jhC6GTtjr4dKmWSCzEI4FkypPiU0t6F4KGS2na_B3de2UZSIkd3spajOzm6k5O7AU3-oQdv98p_nYbuJgiG13sLXgZtodVgrAfdSePsKfwH5lmLkw
CitedBy_id crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1016_j_engappai_2023_106006
crossref_primary_10_3389_fenrg_2022_1059132
crossref_primary_10_3390_electronics11050704
crossref_primary_10_1016_j_envint_2022_107724
crossref_primary_10_1016_j_asoc_2024_112221
crossref_primary_10_1007_s11071_022_07571_8
crossref_primary_10_1007_s00158_022_03385_9
crossref_primary_10_1016_j_istruc_2023_07_015
crossref_primary_10_7717_peerj_cs_1557
crossref_primary_10_1063_5_0213886
crossref_primary_10_1109_ACCESS_2024_3445650
crossref_primary_10_3390_pr11082493
crossref_primary_10_1007_s10999_023_09645_w
crossref_primary_10_1016_j_engfailanal_2022_106829
crossref_primary_10_1002_tal_70045
crossref_primary_10_1038_s41598_025_13247_1
crossref_primary_10_1007_s00500_023_08415_2
crossref_primary_10_1016_j_eswa_2023_122250
crossref_primary_10_1080_0305215X_2022_2160449
crossref_primary_10_1016_j_bspc_2024_107274
crossref_primary_10_1016_j_engappai_2023_105961
crossref_primary_10_1007_s11081_024_09932_1
crossref_primary_10_1007_s13369_022_07545_3
crossref_primary_10_1007_s10999_022_09619_4
crossref_primary_10_3390_electronics11020209
crossref_primary_10_1016_j_jsv_2022_117045
crossref_primary_10_1016_j_tafmec_2023_104227
crossref_primary_10_1016_j_compstruc_2022_106844
crossref_primary_10_1007_s10791_025_09716_w
crossref_primary_10_1038_s41598_025_02568_w
crossref_primary_10_4018_IJDWM_308817
crossref_primary_10_1007_s00158_022_03429_0
crossref_primary_10_1371_journal_pone_0291777
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1007_s00158_023_03490_3
crossref_primary_10_1007_s10586_024_04309_6
crossref_primary_10_1007_s11709_022_0908_z
crossref_primary_10_1155_2022_5443160
crossref_primary_10_1038_s41598_024_56960_z
crossref_primary_10_1134_S0025654424605834
crossref_primary_10_1016_j_matcom_2022_12_020
crossref_primary_10_1002_nme_7386
crossref_primary_10_1109_ACCESS_2023_3267434
crossref_primary_10_3390_biomimetics10040236
crossref_primary_10_1016_j_advengsoft_2022_103276
crossref_primary_10_1016_j_engappai_2022_105488
crossref_primary_10_1016_j_advengsoft_2022_103399
crossref_primary_10_46904_eea_25_73_2_1108008
crossref_primary_10_1109_ACCESS_2023_3328248
crossref_primary_10_3390_app142110040
crossref_primary_10_3390_math10071121
crossref_primary_10_1016_j_aei_2022_101732
crossref_primary_10_1007_s11071_023_08583_8
crossref_primary_10_1016_j_eswa_2022_117428
crossref_primary_10_1016_j_engappai_2023_106121
crossref_primary_10_3390_math12020345
crossref_primary_10_1007_s11227_025_07306_7
crossref_primary_10_1016_j_swevo_2025_102013
crossref_primary_10_1016_j_engappai_2023_105870
crossref_primary_10_1002_ente_202300835
crossref_primary_10_1007_s00500_022_07646_z
crossref_primary_10_1016_j_istruc_2023_105278
crossref_primary_10_1371_journal_pone_0260725
crossref_primary_10_1007_s41062_023_01055_3
crossref_primary_10_1016_j_advengsoft_2022_103206
crossref_primary_10_3390_mi13122108
crossref_primary_10_1155_2022_6017066
crossref_primary_10_3390_app12199879
crossref_primary_10_1007_s00500_023_09174_w
crossref_primary_10_1016_j_cma_2024_117411
crossref_primary_10_1016_j_compstruct_2022_116609
crossref_primary_10_3390_electronics12153263
crossref_primary_10_1016_j_jocs_2021_101477
crossref_primary_10_1016_j_camwa_2023_05_014
crossref_primary_10_1080_24705314_2024_2390258
crossref_primary_10_1002_adem_202300155
crossref_primary_10_1080_23311916_2022_2095952
crossref_primary_10_1038_s41598_025_90000_8
crossref_primary_10_3390_app122110851
crossref_primary_10_1049_ipr2_12398
crossref_primary_10_1016_j_ins_2023_119302
crossref_primary_10_1002_cpe_70116
crossref_primary_10_3390_math10040566
crossref_primary_10_1016_j_bspc_2022_104373
crossref_primary_10_1109_ACCESS_2023_3312567
crossref_primary_10_3390_w16182623
crossref_primary_10_1016_j_eswa_2022_117358
crossref_primary_10_3233_KES_230137
crossref_primary_10_3390_act12110400
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_1007_s10586_024_04924_3
crossref_primary_10_1016_j_engappai_2023_106277
crossref_primary_10_1016_j_engappai_2023_106839
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s00366_022_01746_y
crossref_primary_10_1016_j_compeleceng_2022_108111
crossref_primary_10_1208_s12249_025_03042_6
crossref_primary_10_1007_s11071_022_07859_9
crossref_primary_10_1016_j_undsp_2023_09_014
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1016_j_asoc_2024_111539
crossref_primary_10_1177_00202940251346092
crossref_primary_10_1007_s10586_024_04410_w
crossref_primary_10_3390_s22124651
Cites_doi 10.1061/(ASCE)0733-9445(2004)130:5(741)
10.1016/j.advengsoft.2016.01.008
10.1016/S0166-3615(99)00046-9
10.1016/j.amc.2006.07.105
10.1016/j.energy.2018.11.096
10.14257/ijeic.2014.5.5.04
10.1109/4235.585893
10.1016/j.asoc.2019.105720
10.1007/s11276-017-1616-9
10.1016/j.advengsoft.2020.102865
10.5121/ijaia.2011.2304
10.1016/j.engappai.2006.03.003
10.1016/j.compstruc.2009.04.011
10.1016/j.cma.2020.113609
10.1080/03081070701303470
10.1016/j.compstruc.2012.09.003
10.1016/S1474-0346(02)00011-3
10.1007/s00521-015-1870-7
10.1016/j.cma.2004.09.007
10.1007/s10845-010-0393-4
10.1007/s00034-018-0886-5
10.1007/s00521-018-3512-3
10.1016/j.asoc.2014.02.005
10.1007/s00521-017-3012-x
10.1016/j.asoc.2015.08.052
10.1061/(ASCE)0733-9445(2007)133:7(999)
10.1016/j.aci.2017.09.001
10.1504/IJMMNO.2010.035430
10.1016/j.asoc.2015.10.036
10.1504/IJBIC.2010.032124
10.1016/j.jhydrol.2019.124435
10.1016/j.compstruc.2008.02.004
10.1016/j.asoc.2019.04.016
10.1016/j.ins.2009.03.004
10.1016/j.compstruc.2016.03.001
10.1016/j.ins.2020.02.013
10.1080/10407790.2019.1591859
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2007.05.007
10.1016/j.engstruct.2021.112412
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115669
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115669
S0957417421010599
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c438t-575d8184fa68495adf70ecd7b1b7bbf118f7a109dbbed7e598ebda44c7d19a663
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705571500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 02:23:03 EDT 2025
Sat Nov 29 07:09:08 EST 2025
Tue Nov 18 22:31:01 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cuckoo search algorithm
Lévy distribution
Benchmark test functions
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-575d8184fa68495adf70ecd7b1b7bbf118f7a109dbbed7e598ebda44c7d19a663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10072/408903
PQID 2599115842
PQPubID 2045477
ParticipantIDs proquest_journals_2599115842
crossref_citationtrail_10_1016_j_eswa_2021_115669
crossref_primary_10_1016_j_eswa_2021_115669
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115669
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chi, Su, Zhang, Chi, Zhang (b0065) 2019; 31
Lee, Geem (b0150) 2005; 194
Yang (b0265) 2010; 2
Arora (b0015) 2004
Lamberti (b0140) 2008; 86
Minh, Khatir, Abdel Wahab, Cuong-Le (b0185) 2021; 242
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0005) 2021; 376
Kaveh, Khayatazad (b0120) 2012; 112-113
Mirjalili, Mirjalili, Hatamlou (b0195) 2016; 27
Meng, Chang, Wang, Wang (b0170) 2019; 168
Cao (b0055) 1996
Le-Duc, Nguyen, Nguyen-Xuan (b0145) 2020; 520
Valian, Mohanna, Tavakoli (b0255) 2011; 2
He, Wang (b0095) 2007; 20
Mirjalili, Mirjalili, Lewis (b0200) 2014; 69
Mareli, Twala (b0160) 2018; 14
Tsipianitis, Tsompanakis (b0250) 2020; 149
Dhabal, Venkateswaran (b0085) 2019; 38
Rechenberg (b0230) 1989
Ho, Vo, Le, Nguyen (b0100) 2014; 5
Baykasoğlu, Akpinar (b0035) 2015; 37
Kaveh, Talatahari (b0130) 2010; 27
Duan, Qiao (b0090) 2014
Mühlenbein, H. (1997). Genetic algorithms.
Yang (b0270) 2010
Storn, Price (b0240) 1997; 11
Camp, Bichon (b0050) 2004; 130
Mezura-Montes, Coello (b0175) 2005
Mirjalili, Lewis (b0190) 2016; 95
Kaveh, Talatahari (b0125) 2009; 87
Ballester, Stephenson, Carter, Gallagher (b0025) 2005
Chen, Zhou (b0060) 2018; 74
Kennedy, Eberhart (b0135) 1995
Nguyen, Nguyen (b0210) 2019; 84
Rani, Malek, Fareq, Siew-Chin (b0220) 2012; 21
Akay, Karaboga (b0010) 2012; 23
Yang, Deb (b0275) 2009
Mezura-Montes, Coello (b0180) 2008; 37
Jaballah, Meddeb (b0110) 2019; 25
Rashedi, Nezamabadi-pour, Saryazdi (b0225) 2009; 179
Coello (b0075) 2000; 41
Chu, Tsai, Pan (b0070) 2006
Ong, Zainuddin (b0215) 2019; 80
Karaboga, Basturk (b0115) 2008; 8
Baykasoğlu, Akpinar (b0040) 2017; 56
Askarzadeh (b0020) 2016; 169
Salgotra, Singh, Saha (b0235) 2018
Camp (b0045) 2007; 133
Marichelvam, Prabaharan, Yang (b0165) 2014; 19
Yang, Deb (b0280) 2010; 1
Wolpert, Macready (b0260) 1997; 1
Baykasoğlu (b0030) 2020
Ma, Li, Li, Lv, Wang (b0155) 2019; 31
Huang, Wang, He (b0105) 2007; 186
Coello, Montes (b0080) 2002; 16
Tikhamarine, Souag-Gamane, Najah Ahmed, Kisi, El-Shafie (b0245) 2020; 582
Mirjalili (10.1016/j.eswa.2021.115669_b0200) 2014; 69
Coello (10.1016/j.eswa.2021.115669_b0075) 2000; 41
Le-Duc (10.1016/j.eswa.2021.115669_b0145) 2020; 520
Ma (10.1016/j.eswa.2021.115669_b0155) 2019; 31
Jaballah (10.1016/j.eswa.2021.115669_b0110) 2019; 25
Lee (10.1016/j.eswa.2021.115669_b0150) 2005; 194
Ballester (10.1016/j.eswa.2021.115669_b0025) 2005
Baykasoğlu (10.1016/j.eswa.2021.115669_b0030) 2020
Arora (10.1016/j.eswa.2021.115669_b0015) 2004
Wolpert (10.1016/j.eswa.2021.115669_b0260) 1997; 1
Yang (10.1016/j.eswa.2021.115669_b0270) 2010
Camp (10.1016/j.eswa.2021.115669_b0050) 2004; 130
Rechenberg (10.1016/j.eswa.2021.115669_b0230) 1989
Duan (10.1016/j.eswa.2021.115669_b0090) 2014
Kaveh (10.1016/j.eswa.2021.115669_b0120) 2012; 112-113
Meng (10.1016/j.eswa.2021.115669_b0170) 2019; 168
Ho (10.1016/j.eswa.2021.115669_b0100) 2014; 5
Chi (10.1016/j.eswa.2021.115669_b0065) 2019; 31
Mirjalili (10.1016/j.eswa.2021.115669_b0190) 2016; 95
Baykasoğlu (10.1016/j.eswa.2021.115669_b0035) 2015; 37
Chu (10.1016/j.eswa.2021.115669_b0070) 2006
Rashedi (10.1016/j.eswa.2021.115669_b0225) 2009; 179
Tsipianitis (10.1016/j.eswa.2021.115669_b0250) 2020; 149
Mareli (10.1016/j.eswa.2021.115669_b0160) 2018; 14
Coello (10.1016/j.eswa.2021.115669_b0080) 2002; 16
Storn (10.1016/j.eswa.2021.115669_b0240) 1997; 11
Chen (10.1016/j.eswa.2021.115669_b0060) 2018; 74
Lamberti (10.1016/j.eswa.2021.115669_b0140) 2008; 86
Huang (10.1016/j.eswa.2021.115669_b0105) 2007; 186
Nguyen (10.1016/j.eswa.2021.115669_b0210) 2019; 84
Yang (10.1016/j.eswa.2021.115669_b0275) 2009
Askarzadeh (10.1016/j.eswa.2021.115669_b0020) 2016; 169
Valian (10.1016/j.eswa.2021.115669_b0255) 2011; 2
Yang (10.1016/j.eswa.2021.115669_b0280) 2010; 1
Minh (10.1016/j.eswa.2021.115669_b0185) 2021; 242
Kennedy (10.1016/j.eswa.2021.115669_b0135) 1995
Salgotra (10.1016/j.eswa.2021.115669_b0235) 2018
Dhabal (10.1016/j.eswa.2021.115669_b0085) 2019; 38
Mirjalili (10.1016/j.eswa.2021.115669_b0195) 2016; 27
Abualigah (10.1016/j.eswa.2021.115669_b0005) 2021; 376
Baykasoğlu (10.1016/j.eswa.2021.115669_b0040) 2017; 56
Mezura-Montes (10.1016/j.eswa.2021.115669_b0180) 2008; 37
Rani (10.1016/j.eswa.2021.115669_b0220) 2012; 21
Kaveh (10.1016/j.eswa.2021.115669_b0125) 2009; 87
10.1016/j.eswa.2021.115669_b0205
Ong (10.1016/j.eswa.2021.115669_b0215) 2019; 80
Akay (10.1016/j.eswa.2021.115669_b0010) 2012; 23
Kaveh (10.1016/j.eswa.2021.115669_b0130) 2010; 27
Camp (10.1016/j.eswa.2021.115669_b0045) 2007; 133
Cao (10.1016/j.eswa.2021.115669_b0055) 1996
Marichelvam (10.1016/j.eswa.2021.115669_b0165) 2014; 19
Yang (10.1016/j.eswa.2021.115669_b0265) 2010; 2
Mezura-Montes (10.1016/j.eswa.2021.115669_b0175) 2005
Karaboga (10.1016/j.eswa.2021.115669_b0115) 2008; 8
He (10.1016/j.eswa.2021.115669_b0095) 2007; 20
Tikhamarine (10.1016/j.eswa.2021.115669_b0245) 2020; 582
References_xml – volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b0080
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0195
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 21
  year: 2012
  ident: b0220
  article-title: Nature-inspired Cuckoo Search algorithm for side lobe suppression in a symmetric linear antenna array
  publication-title: Radioengineering
– volume: 25
  start-page: 1585
  year: 2019
  end-page: 1604
  ident: b0110
  article-title: A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem
  publication-title: Wireless Networks
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b0265
  article-title: Firefly algorithm, stochastic test functions and design optimization
  publication-title: International Journal of Bio-inspired Computation
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: b0095
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 168
  start-page: 425
  year: 2019
  end-page: 439
  ident: b0170
  article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm
  publication-title: Energy
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0190
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 2
  start-page: 36
  year: 2011
  end-page: 43
  ident: b0255
  article-title: Improved cuckoo search algorithm for feedforward neural network training
  publication-title: International Journal of Artificial Intelligence & Applications
– start-page: 65
  year: 2010
  end-page: 74
  ident: b0270
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature inspired cooperative strategies for optimization (NICSO 2010)
– year: 2014
  ident: b0090
  article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning
  publication-title: International journal of intelligent computing and cybernetics
– volume: 1
  start-page: 330
  year: 2010
  end-page: 343
  ident: b0280
  article-title: Engineering zoptimization by cuckoo search
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0225
  article-title: GSA: A gravitational search algorithm
  publication-title: Information sciences
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: b0150
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 86
  start-page: 1936
  year: 2008
  end-page: 1953
  ident: b0140
  article-title: An efficient simulated annealing algorithm for design optimization of truss structures
  publication-title: Computers & Structures
– volume: 74
  start-page: 818
  year: 2018
  end-page: 839
  ident: b0060
  article-title: Identification of boundary conditions for non-Fourier heat conduction problems by differential transformation DRBEM and improved cuckoo search algorithm
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 31
  start-page: 653
  year: 2019
  end-page: 670
  ident: b0065
  article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems
  publication-title: Neural Computing and Applications
– volume: 149
  start-page: 102865
  year: 2020
  ident: b0250
  article-title: Improved Cuckoo Search algorithmic variants for constrained nonlinear optimization
  publication-title: Advances in Engineering Software
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b0115
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2020
  end-page: 16
  ident: b0030
  article-title: zOptimizing cutting conditions for zminimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm
  publication-title: International Journal of Production Research
– start-page: 498
  year: 2005
  end-page: 505
  ident: b0025
  article-title: Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX
  publication-title: 2005 IEEE Congress on Evolutionary Computation
– volume: 84
  start-page: 105720
  year: 2019
  ident: b0210
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Applied Soft Computing
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b0075
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
– volume: 112-113
  start-page: 283
  year: 2012
  end-page: 294
  ident: b0120
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & Structures
– reference: Mühlenbein, H. (1997). Genetic algorithms.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b0275
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World congress on nature & biologically inspired computing (NaBIC)
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0260
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 130
  start-page: 741
  year: 2004
  end-page: 751
  ident: b0050
  article-title: Design of space trusses using ant colony optimization
  publication-title: Journal of Structural Engineering
– volume: 11
  year: 1997
  ident: b0240
  article-title: Differential Evolution–A simple and efficient adaptive scheme for global opti-J
  publication-title: Globtd Optimization
– start-page: 1
  year: 2018
  end-page: 7
  ident: b0235
  article-title: Improved cuckoo search with better search capabilities for solving CEC2017 benchmark problems
  publication-title: 2018 IEEE Congress on Evolutionary Computation (CEC)
– volume: 14
  start-page: 107
  year: 2018
  end-page: 115
  ident: b0160
  article-title: An adaptive Cuckoo search algorithm for optimization
  publication-title: Applied Computing and Informatics
– volume: 80
  start-page: 374
  year: 2019
  end-page: 386
  ident: b0215
  article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction
  publication-title: Applied Soft Computing
– volume: 376
  start-page: 113609
  year: 2021
  ident: b0005
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 520
  start-page: 250
  year: 2020
  end-page: 270
  ident: b0145
  article-title: Balancing composite motion optimization
  publication-title: Information Sciences
– volume: 133
  start-page: 999
  year: 2007
  end-page: 1008
  ident: b0045
  article-title: Design of space trusses using Big Bang-Big Crunch optimization
  publication-title: Journal of Structural Engineering
– volume: 31
  start-page: 1375
  year: 2019
  end-page: 1389
  ident: b0155
  article-title: An improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations
  publication-title: Neural Computing and Applications
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0200
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 27
  start-page: 155
  year: 2010
  end-page: 182
  ident: b0130
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering
– volume: 242
  start-page: 112412
  year: 2021
  ident: b0185
  article-title: An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower
  publication-title: Engineering Structures
– volume: 56
  start-page: 520
  year: 2017
  end-page: 540
  ident: b0040
  article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems–Part 1: Unconstrained optimization
  publication-title: Applied Soft Computing
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0135
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN'95-International Conference on Neural, Networks
– volume: 19
  start-page: 93
  year: 2014
  end-page: 101
  ident: b0165
  article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan
  publication-title: Applied Soft Computing
– volume: 37
  start-page: 396
  year: 2015
  end-page: 415
  ident: b0035
  article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization
  publication-title: Applied Soft Computing
– volume: 582
  start-page: 124435
  year: 2020
  ident: b0245
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: Journal of Hydrology
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0020
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
– volume: 186
  start-page: 340
  year: 2007
  end-page: 356
  ident: b0105
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Applied Mathematics and Computation
– volume: 37
  start-page: 443
  year: 2008
  end-page: 473
  ident: b0180
  article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems
  publication-title: International Journal of General Systems
– volume: 23
  start-page: 1001
  year: 2012
  end-page: 1014
  ident: b0010
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: Journal of Intelligent Manufacturing
– start-page: 854
  year: 2006
  end-page: 858
  ident: b0070
  article-title: Cat swarm optimization
  publication-title: Pacific Rim international conference on artificial intelligence
– volume: 87
  start-page: 1129
  year: 2009
  end-page: 1140
  ident: b0125
  article-title: Size optimization of space trusses using Big Bang-Big Crunch algorithm
  publication-title: Computers & Structures
– volume: 38
  start-page: 805
  year: 2019
  end-page: 826
  ident: b0085
  article-title: An improved global-best-guided cuckoo search algorithm for multiplierless design of two-dimensional IIR filters
  publication-title: Circuits, Systems, and Signal Processing
– year: 2004
  ident: b0015
  article-title: Introduction to optimum design
– start-page: 106
  year: 1989
  end-page: 126
  ident: b0230
  article-title: Evolution strategy: Nature's way of optimization
  publication-title: Optimization: Methods and applications, possibilities and limitations
– volume: 5
  start-page: 39
  year: 2014
  end-page: 54
  ident: b0100
  article-title: Economic emission load dispatch with multiple fuel optings using cuckoo search algorithm with Gaussian and Cauchy distributions
  publication-title: International Journal of Energy, Information and Communications
– start-page: 652
  year: 2005
  end-page: 662
  ident: b0175
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: Mexican international conference on artificial intelligence
– year: 1996
  ident: b0055
  article-title: Optimized design of framed structures using a genetic algorithm
– volume: 130
  start-page: 741
  issue: 5
  year: 2004
  ident: 10.1016/j.eswa.2021.115669_b0050
  article-title: Design of space trusses using ant colony optimization
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)0733-9445(2004)130:5(741)
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2021.115669_b0190
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 498
  year: 2005
  ident: 10.1016/j.eswa.2021.115669_b0025
  article-title: Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX
– year: 2004
  ident: 10.1016/j.eswa.2021.115669_b0015
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2021.115669_b0075
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 186
  start-page: 340
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.115669_b0105
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.105
– volume: 168
  start-page: 425
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0170
  article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.096
– volume: 5
  start-page: 39
  year: 2014
  ident: 10.1016/j.eswa.2021.115669_b0100
  article-title: Economic emission load dispatch with multiple fuel optings using cuckoo search algorithm with Gaussian and Cauchy distributions
  publication-title: International Journal of Energy, Information and Communications
  doi: 10.14257/ijeic.2014.5.5.04
– volume: 27
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2021.115669_b0130
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2021.115669_b0260
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 84
  start-page: 105720
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0210
  article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105720
– volume: 25
  start-page: 1585
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0110
  article-title: A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1616-9
– volume: 149
  start-page: 102865
  year: 2020
  ident: 10.1016/j.eswa.2021.115669_b0250
  article-title: Improved Cuckoo Search algorithmic variants for constrained nonlinear optimization
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2020.102865
– volume: 2
  start-page: 36
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.115669_b0255
  article-title: Improved cuckoo search algorithm for feedforward neural network training
  publication-title: International Journal of Artificial Intelligence & Applications
  doi: 10.5121/ijaia.2011.2304
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.115669_b0095
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 87
  start-page: 1129
  issue: 17-18
  year: 2009
  ident: 10.1016/j.eswa.2021.115669_b0125
  article-title: Size optimization of space trusses using Big Bang-Big Crunch algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2009.04.011
– volume: 376
  start-page: 113609
  year: 2021
  ident: 10.1016/j.eswa.2021.115669_b0005
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113609
– year: 1996
  ident: 10.1016/j.eswa.2021.115669_b0055
– start-page: 210
  year: 2009
  ident: 10.1016/j.eswa.2021.115669_b0275
  article-title: Cuckoo search via Lévy flights
– volume: 37
  start-page: 443
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2021.115669_b0180
  article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems
  publication-title: International Journal of General Systems
  doi: 10.1080/03081070701303470
– volume: 112-113
  start-page: 283
  year: 2012
  ident: 10.1016/j.eswa.2021.115669_b0120
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 16
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.115669_b0080
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/S1474-0346(02)00011-3
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115669_b0030
  article-title: zOptimizing cutting conditions for zminimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm
  publication-title: International Journal of Production Research
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.115669_b0195
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 194
  start-page: 3902
  issue: 36-38
  year: 2005
  ident: 10.1016/j.eswa.2021.115669_b0150
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.09.007
– volume: 23
  start-page: 1001
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2021.115669_b0010
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0393-4
– volume: 38
  start-page: 805
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0085
  article-title: An improved global-best-guided cuckoo search algorithm for multiplierless design of two-dimensional IIR filters
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-018-0886-5
– volume: 31
  start-page: 1375
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0155
  article-title: An improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3512-3
– volume: 19
  start-page: 93
  year: 2014
  ident: 10.1016/j.eswa.2021.115669_b0165
  article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.02.005
– year: 2014
  ident: 10.1016/j.eswa.2021.115669_b0090
  article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning
– ident: 10.1016/j.eswa.2021.115669_b0205
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115669_b0235
  article-title: Improved cuckoo search with better search capabilities for solving CEC2017 benchmark problems
– start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2021.115669_b0135
  article-title: Particle swarm optimization
– volume: 31
  start-page: 653
  issue: S1
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0065
  article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3012-x
– volume: 37
  start-page: 396
  year: 2015
  ident: 10.1016/j.eswa.2021.115669_b0035
  article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.08.052
– volume: 133
  start-page: 999
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2021.115669_b0045
  article-title: Design of space trusses using Big Bang-Big Crunch optimization
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)0733-9445(2007)133:7(999)
– volume: 14
  start-page: 107
  year: 2018
  ident: 10.1016/j.eswa.2021.115669_b0160
  article-title: An adaptive Cuckoo search algorithm for optimization
  publication-title: Applied Computing and Informatics
  doi: 10.1016/j.aci.2017.09.001
– volume: 1
  start-page: 330
  year: 2010
  ident: 10.1016/j.eswa.2021.115669_b0280
  article-title: Engineering zoptimization by cuckoo search
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
  doi: 10.1504/IJMMNO.2010.035430
– start-page: 854
  year: 2006
  ident: 10.1016/j.eswa.2021.115669_b0070
  article-title: Cat swarm optimization
– start-page: 106
  year: 1989
  ident: 10.1016/j.eswa.2021.115669_b0230
  article-title: Evolution strategy: Nature's way of optimization
– volume: 56
  start-page: 520
  year: 2017
  ident: 10.1016/j.eswa.2021.115669_b0040
  article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems–Part 1: Unconstrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.036
– volume: 11
  year: 1997
  ident: 10.1016/j.eswa.2021.115669_b0240
  article-title: Differential Evolution–A simple and efficient adaptive scheme for global opti-J
  publication-title: Globtd Optimization
– volume: 2
  start-page: 78
  year: 2010
  ident: 10.1016/j.eswa.2021.115669_b0265
  article-title: Firefly algorithm, stochastic test functions and design optimization
  publication-title: International Journal of Bio-inspired Computation
  doi: 10.1504/IJBIC.2010.032124
– volume: 582
  start-page: 124435
  year: 2020
  ident: 10.1016/j.eswa.2021.115669_b0245
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.124435
– volume: 86
  start-page: 1936
  issue: 19-20
  year: 2008
  ident: 10.1016/j.eswa.2021.115669_b0140
  article-title: An efficient simulated annealing algorithm for design optimization of truss structures
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2008.02.004
– start-page: 652
  year: 2005
  ident: 10.1016/j.eswa.2021.115669_b0175
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
– volume: 80
  start-page: 374
  year: 2019
  ident: 10.1016/j.eswa.2021.115669_b0215
  article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.04.016
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2021.115669_b0225
  article-title: GSA: A gravitational search algorithm
  publication-title: Information sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115669_b0020
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 520
  start-page: 250
  year: 2020
  ident: 10.1016/j.eswa.2021.115669_b0145
  article-title: Balancing composite motion optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.02.013
– volume: 21
  year: 2012
  ident: 10.1016/j.eswa.2021.115669_b0220
  article-title: Nature-inspired Cuckoo Search algorithm for side lobe suppression in a symmetric linear antenna array
  publication-title: Radioengineering
– start-page: 65
  year: 2010
  ident: 10.1016/j.eswa.2021.115669_b0270
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 74
  start-page: 818
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2021.115669_b0060
  article-title: Identification of boundary conditions for non-Fourier heat conduction problems by differential transformation DRBEM and improved cuckoo search algorithm
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
  doi: 10.1080/10407790.2019.1591859
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.115669_b0200
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2021.115669_b0115
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.007
– volume: 242
  start-page: 112412
  year: 2021
  ident: 10.1016/j.eswa.2021.115669_b0185
  article-title: An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2021.112412
SSID ssj0017007
Score 2.6541672
Snippet •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo...
In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115669
SubjectTerms Accuracy
Algorithms
Benchmark test functions
Compression springs
Convergence
Cuckoo search algorithm
Design engineering
Levy distribution
Lévy distribution
Mathematical analysis
Optimization
Parameters
Particle swarm optimization
Pressure vessel design
Pressure vessels
Random walk
Search algorithms
Title A novel version of Cuckoo search algorithm for solving optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2021.115669
https://www.proquest.com/docview/2599115842
Volume 186
WOSCitedRecordID wos000705571500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL34jBQD4gLpGnxk3q5BihToCqwiFDvVl27DTd2qS0Wbd_ZP8vL7GTdBNUcOASRXacWO_98vz8_D4Q-hCKoaLAVxKoVBCPuprIcJQQ6amESlDn_JGoi02w6TSYzcLvvd5tEwuzW7I8D25uwvV_ZTW0AbOr0Nl_YHf7UmiAe2A6XIHtcP0rxkdOXuz00tkZS1jtb3GVXBaFYy0cYjkvNosyW9UuhjCZ2qZQgOxY2aBMx5aZ2d6x21dJkUub-rkJits7_m4BUoh8TiYgLhZ5ZnyQRJ7BHIq6uZXwGQwzRb_EatG5CItMSBNENFdOJJXuXEA2wnr6w-vibLFvsKBunRZx0FnR2kiaH3eskYx4rinYc6qNLA7YkIyYKaDYCet9cev-dhEw9oiLU729rjJLURfWBdBaw27Ja475p9_42flkwuPxLP64_kmqYmTVob2tzPIAHVHmh0EfHUVfxrOv7fEUG5g4_GbWNhrLOA7e_-yfNJ57a3-t0MRP0WO7E8GRQdAz1NP5c_SkqfKBrdB_gSYRrgGFLaBwkWIDKGwAhVtAYQAUtoDC-4DCDaBeovOzcfzpM7E1OEjiDYOSgDavQKfzUjEKYC8tVMoGOlFMupJJmcL2NGXCHYRKSq2YBmJpqYTnJUy5oQB19hXq50WuXyOsPUUV9AwDHXrS0wFLKnGQpNQXNFXiGLkNnXhiE9RXdVKWvPFEvOAVbXlFW25oe4ycdszapGc5-LTfkJ9bBdMojhygc3DcScMrbv_0Lac-bK1c0N_pm8Pdb9Gj7jc4Qf1yc6XfoYfJrlxsN-8ttH4BwJynhg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+version+of+Cuckoo+search+algorithm+for+solving+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Hoang-Le+Minh%2C+Thanh+Cuong-Le&rft.au=Khatir%2C+Samir&rft.au=Wahab%2C+Magd+Abdel&rft.au=Tran%2C+Minh+Thi&rft.date=2021-12-30&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115669&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon