A novel version of Cuckoo search algorithm for solving optimization problems
•New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solvin...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 186; s. 115669 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
30.12.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solving optimization problems.•NMS-CS is considered to be a more complete version than original CS algorithm.
In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints.
Source codes of NMS-CS is publicly available at http://goldensolutionrs.com/codes.html. |
|---|---|
| AbstractList | •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo birds.•Large scale function (CEC2005) and engineering design problems are verified.•The NMS-CS algorithm has proven highly reliable in solving optimization problems.•NMS-CS is considered to be a more complete version than original CS algorithm.
In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints.
Source codes of NMS-CS is publicly available at http://goldensolutionrs.com/codes.html. In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step lengths calculated by Lévy distribution. The step lengths in the original Cuckoo search (CS) are significant terms in simulating the Cuckoo bird's movement and are registered as a scalar vector. In NMS-CS, step lengths are modified from the scalar vector to the scalar number called orientation parameter. This parameter is controlled by using a function established from the random selection of one of three proposed novel functions. These functions have diverse characteristics such as; convex, concave, and linear, to establish a new strategy movement of Cuckoo birds in NMS-CS. As a result, the movement of NMS-CS is more flexible than a random walk in the original CS. By using the proposed functions, NMS-CS achieves the distance of movement long enough at the first iterations and short enough at the last iterations. It leads to the proposed algorithm achieving a better convergence rate and accuracy level in comparison with CS. The first 23 classical benchmark functions are selected to illustrate the convergence rate and level of accuracy of NMS-CS in detail compared with the original CS. Then, the other Algorithms such as Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Grey Wolf Optimizer (GWO) are employed to compare with NMS-CS in a ranking of the best accuracy. In the end, three engineering design problems (tension/compression spring design, pressure vessel design and welded beam design) are employed to demonstrate the effect of NMS-CS for solving various real-world problems. The statistical results show the potential performance of NMS-CS in a widespread class of optimization problems and its excellent application for optimization problems having many constraints. |
| ArticleNumber | 115669 |
| Author | Cuong-Le, Thanh Tran, Minh Thi Khatir, Samir Wahab, Magd Abdel Mirjalili, Seyedali Minh, Hoang-Le |
| Author_xml | – sequence: 1 givenname: Thanh surname: Cuong-Le fullname: Cuong-Le, Thanh email: cuong.lt@ou.edu.vn organization: Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Hoang-Le surname: Minh fullname: Minh, Hoang-Le email: MinhHoang.Le@UGent.be organization: Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam – sequence: 3 givenname: Samir surname: Khatir fullname: Khatir, Samir email: samir.khatir@ugent.be organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark, Zwijnaarde 903, B-9052 Zwijnaarde, Belgium – sequence: 4 givenname: Magd Abdel surname: Wahab fullname: Wahab, Magd Abdel email: magd.a.w@hutech.edu.vn, magd.abdelwahab@UGent.be organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark, Zwijnaarde 903, B-9052 Zwijnaarde, Belgium – sequence: 5 givenname: Minh Thi surname: Tran fullname: Tran, Minh Thi email: tmthi@hcmut.edu.vn organization: Department of Civil Engineering, Ho Chi Minh City University of Technology, Viet Nam – sequence: 6 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@gmail.com organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane 4006, QLD, Australia |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxJxg58u2xFJVfEmVWGC2HPvSOqRxsdMg-PUkhImh0y3vc-_ds0Cz1rWA0DUlMSW0uK1jCJ8qTkhCY0rzohBnaE45S6OCiXSG5kTkLMooyy7QIoSaEMoIYXO0WeHW9dDgHnywrsWuwuujfncOB1Be77Bqts7bbrfHlfM4uKa37Ra7Q2f39lt1I3PwrmxgHy7ReaWaAFd_c4neHu5f10_R5uXxeb3aRDpLeRflLDec8qxSBc9ErkzFCGjDSlqysqwo5RVTlAhTlmAY5IJDaVSWaWaoUEWRLtHNtHco_jhC6GTtjr4dKmWSCzEI4FkypPiU0t6F4KGS2na_B3de2UZSIkd3spajOzm6k5O7AU3-oQdv98p_nYbuJgiG13sLXgZtodVgrAfdSePsKfwH5lmLkw |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_1016_j_engappai_2023_106006 crossref_primary_10_3389_fenrg_2022_1059132 crossref_primary_10_3390_electronics11050704 crossref_primary_10_1016_j_envint_2022_107724 crossref_primary_10_1016_j_asoc_2024_112221 crossref_primary_10_1007_s11071_022_07571_8 crossref_primary_10_1007_s00158_022_03385_9 crossref_primary_10_1016_j_istruc_2023_07_015 crossref_primary_10_7717_peerj_cs_1557 crossref_primary_10_1063_5_0213886 crossref_primary_10_1109_ACCESS_2024_3445650 crossref_primary_10_3390_pr11082493 crossref_primary_10_1007_s10999_023_09645_w crossref_primary_10_1016_j_engfailanal_2022_106829 crossref_primary_10_1002_tal_70045 crossref_primary_10_1038_s41598_025_13247_1 crossref_primary_10_1007_s00500_023_08415_2 crossref_primary_10_1016_j_eswa_2023_122250 crossref_primary_10_1080_0305215X_2022_2160449 crossref_primary_10_1016_j_bspc_2024_107274 crossref_primary_10_1016_j_engappai_2023_105961 crossref_primary_10_1007_s11081_024_09932_1 crossref_primary_10_1007_s13369_022_07545_3 crossref_primary_10_1007_s10999_022_09619_4 crossref_primary_10_3390_electronics11020209 crossref_primary_10_1016_j_jsv_2022_117045 crossref_primary_10_1016_j_tafmec_2023_104227 crossref_primary_10_1016_j_compstruc_2022_106844 crossref_primary_10_1007_s10791_025_09716_w crossref_primary_10_1038_s41598_025_02568_w crossref_primary_10_4018_IJDWM_308817 crossref_primary_10_1007_s00158_022_03429_0 crossref_primary_10_1371_journal_pone_0291777 crossref_primary_10_1016_j_eswa_2022_119211 crossref_primary_10_1007_s00158_023_03490_3 crossref_primary_10_1007_s10586_024_04309_6 crossref_primary_10_1007_s11709_022_0908_z crossref_primary_10_1155_2022_5443160 crossref_primary_10_1038_s41598_024_56960_z crossref_primary_10_1134_S0025654424605834 crossref_primary_10_1016_j_matcom_2022_12_020 crossref_primary_10_1002_nme_7386 crossref_primary_10_1109_ACCESS_2023_3267434 crossref_primary_10_3390_biomimetics10040236 crossref_primary_10_1016_j_advengsoft_2022_103276 crossref_primary_10_1016_j_engappai_2022_105488 crossref_primary_10_1016_j_advengsoft_2022_103399 crossref_primary_10_46904_eea_25_73_2_1108008 crossref_primary_10_1109_ACCESS_2023_3328248 crossref_primary_10_3390_app142110040 crossref_primary_10_3390_math10071121 crossref_primary_10_1016_j_aei_2022_101732 crossref_primary_10_1007_s11071_023_08583_8 crossref_primary_10_1016_j_eswa_2022_117428 crossref_primary_10_1016_j_engappai_2023_106121 crossref_primary_10_3390_math12020345 crossref_primary_10_1007_s11227_025_07306_7 crossref_primary_10_1016_j_swevo_2025_102013 crossref_primary_10_1016_j_engappai_2023_105870 crossref_primary_10_1002_ente_202300835 crossref_primary_10_1007_s00500_022_07646_z crossref_primary_10_1016_j_istruc_2023_105278 crossref_primary_10_1371_journal_pone_0260725 crossref_primary_10_1007_s41062_023_01055_3 crossref_primary_10_1016_j_advengsoft_2022_103206 crossref_primary_10_3390_mi13122108 crossref_primary_10_1155_2022_6017066 crossref_primary_10_3390_app12199879 crossref_primary_10_1007_s00500_023_09174_w crossref_primary_10_1016_j_cma_2024_117411 crossref_primary_10_1016_j_compstruct_2022_116609 crossref_primary_10_3390_electronics12153263 crossref_primary_10_1016_j_jocs_2021_101477 crossref_primary_10_1016_j_camwa_2023_05_014 crossref_primary_10_1080_24705314_2024_2390258 crossref_primary_10_1002_adem_202300155 crossref_primary_10_1080_23311916_2022_2095952 crossref_primary_10_1038_s41598_025_90000_8 crossref_primary_10_3390_app122110851 crossref_primary_10_1049_ipr2_12398 crossref_primary_10_1016_j_ins_2023_119302 crossref_primary_10_1002_cpe_70116 crossref_primary_10_3390_math10040566 crossref_primary_10_1016_j_bspc_2022_104373 crossref_primary_10_1109_ACCESS_2023_3312567 crossref_primary_10_3390_w16182623 crossref_primary_10_1016_j_eswa_2022_117358 crossref_primary_10_3233_KES_230137 crossref_primary_10_3390_act12110400 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_1007_s10586_024_04924_3 crossref_primary_10_1016_j_engappai_2023_106277 crossref_primary_10_1016_j_engappai_2023_106839 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s00366_022_01746_y crossref_primary_10_1016_j_compeleceng_2022_108111 crossref_primary_10_1208_s12249_025_03042_6 crossref_primary_10_1007_s11071_022_07859_9 crossref_primary_10_1016_j_undsp_2023_09_014 crossref_primary_10_1007_s00500_023_07928_0 crossref_primary_10_1016_j_asoc_2024_111539 crossref_primary_10_1177_00202940251346092 crossref_primary_10_1007_s10586_024_04410_w crossref_primary_10_3390_s22124651 |
| Cites_doi | 10.1061/(ASCE)0733-9445(2004)130:5(741) 10.1016/j.advengsoft.2016.01.008 10.1016/S0166-3615(99)00046-9 10.1016/j.amc.2006.07.105 10.1016/j.energy.2018.11.096 10.14257/ijeic.2014.5.5.04 10.1109/4235.585893 10.1016/j.asoc.2019.105720 10.1007/s11276-017-1616-9 10.1016/j.advengsoft.2020.102865 10.5121/ijaia.2011.2304 10.1016/j.engappai.2006.03.003 10.1016/j.compstruc.2009.04.011 10.1016/j.cma.2020.113609 10.1080/03081070701303470 10.1016/j.compstruc.2012.09.003 10.1016/S1474-0346(02)00011-3 10.1007/s00521-015-1870-7 10.1016/j.cma.2004.09.007 10.1007/s10845-010-0393-4 10.1007/s00034-018-0886-5 10.1007/s00521-018-3512-3 10.1016/j.asoc.2014.02.005 10.1007/s00521-017-3012-x 10.1016/j.asoc.2015.08.052 10.1061/(ASCE)0733-9445(2007)133:7(999) 10.1016/j.aci.2017.09.001 10.1504/IJMMNO.2010.035430 10.1016/j.asoc.2015.10.036 10.1504/IJBIC.2010.032124 10.1016/j.jhydrol.2019.124435 10.1016/j.compstruc.2008.02.004 10.1016/j.asoc.2019.04.016 10.1016/j.ins.2009.03.004 10.1016/j.compstruc.2016.03.001 10.1016/j.ins.2020.02.013 10.1080/10407790.2019.1591859 10.1016/j.advengsoft.2013.12.007 10.1016/j.asoc.2007.05.007 10.1016/j.engstruct.2021.112412 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 30, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 30, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115669 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115669 S0957417421010599 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c438t-575d8184fa68495adf70ecd7b1b7bbf118f7a109dbbed7e598ebda44c7d19a663 |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705571500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 02:23:03 EDT 2025 Sat Nov 29 07:09:08 EST 2025 Tue Nov 18 22:31:01 EST 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cuckoo search algorithm Lévy distribution Benchmark test functions Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c438t-575d8184fa68495adf70ecd7b1b7bbf118f7a109dbbed7e598ebda44c7d19a663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/10072/408903 |
| PQID | 2599115842 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2599115842 crossref_citationtrail_10_1016_j_eswa_2021_115669 crossref_primary_10_1016_j_eswa_2021_115669 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115669 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-30 |
| PublicationDateYYYYMMDD | 2021-12-30 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chi, Su, Zhang, Chi, Zhang (b0065) 2019; 31 Lee, Geem (b0150) 2005; 194 Yang (b0265) 2010; 2 Arora (b0015) 2004 Lamberti (b0140) 2008; 86 Minh, Khatir, Abdel Wahab, Cuong-Le (b0185) 2021; 242 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0005) 2021; 376 Kaveh, Khayatazad (b0120) 2012; 112-113 Mirjalili, Mirjalili, Hatamlou (b0195) 2016; 27 Meng, Chang, Wang, Wang (b0170) 2019; 168 Cao (b0055) 1996 Le-Duc, Nguyen, Nguyen-Xuan (b0145) 2020; 520 Valian, Mohanna, Tavakoli (b0255) 2011; 2 He, Wang (b0095) 2007; 20 Mirjalili, Mirjalili, Lewis (b0200) 2014; 69 Mareli, Twala (b0160) 2018; 14 Tsipianitis, Tsompanakis (b0250) 2020; 149 Dhabal, Venkateswaran (b0085) 2019; 38 Rechenberg (b0230) 1989 Ho, Vo, Le, Nguyen (b0100) 2014; 5 Baykasoğlu, Akpinar (b0035) 2015; 37 Kaveh, Talatahari (b0130) 2010; 27 Duan, Qiao (b0090) 2014 Mühlenbein, H. (1997). Genetic algorithms. Yang (b0270) 2010 Storn, Price (b0240) 1997; 11 Camp, Bichon (b0050) 2004; 130 Mezura-Montes, Coello (b0175) 2005 Mirjalili, Lewis (b0190) 2016; 95 Kaveh, Talatahari (b0125) 2009; 87 Ballester, Stephenson, Carter, Gallagher (b0025) 2005 Chen, Zhou (b0060) 2018; 74 Kennedy, Eberhart (b0135) 1995 Nguyen, Nguyen (b0210) 2019; 84 Rani, Malek, Fareq, Siew-Chin (b0220) 2012; 21 Akay, Karaboga (b0010) 2012; 23 Yang, Deb (b0275) 2009 Mezura-Montes, Coello (b0180) 2008; 37 Jaballah, Meddeb (b0110) 2019; 25 Rashedi, Nezamabadi-pour, Saryazdi (b0225) 2009; 179 Coello (b0075) 2000; 41 Chu, Tsai, Pan (b0070) 2006 Ong, Zainuddin (b0215) 2019; 80 Karaboga, Basturk (b0115) 2008; 8 Baykasoğlu, Akpinar (b0040) 2017; 56 Askarzadeh (b0020) 2016; 169 Salgotra, Singh, Saha (b0235) 2018 Camp (b0045) 2007; 133 Marichelvam, Prabaharan, Yang (b0165) 2014; 19 Yang, Deb (b0280) 2010; 1 Wolpert, Macready (b0260) 1997; 1 Baykasoğlu (b0030) 2020 Ma, Li, Li, Lv, Wang (b0155) 2019; 31 Huang, Wang, He (b0105) 2007; 186 Coello, Montes (b0080) 2002; 16 Tikhamarine, Souag-Gamane, Najah Ahmed, Kisi, El-Shafie (b0245) 2020; 582 Mirjalili (10.1016/j.eswa.2021.115669_b0200) 2014; 69 Coello (10.1016/j.eswa.2021.115669_b0075) 2000; 41 Le-Duc (10.1016/j.eswa.2021.115669_b0145) 2020; 520 Ma (10.1016/j.eswa.2021.115669_b0155) 2019; 31 Jaballah (10.1016/j.eswa.2021.115669_b0110) 2019; 25 Lee (10.1016/j.eswa.2021.115669_b0150) 2005; 194 Ballester (10.1016/j.eswa.2021.115669_b0025) 2005 Baykasoğlu (10.1016/j.eswa.2021.115669_b0030) 2020 Arora (10.1016/j.eswa.2021.115669_b0015) 2004 Wolpert (10.1016/j.eswa.2021.115669_b0260) 1997; 1 Yang (10.1016/j.eswa.2021.115669_b0270) 2010 Camp (10.1016/j.eswa.2021.115669_b0050) 2004; 130 Rechenberg (10.1016/j.eswa.2021.115669_b0230) 1989 Duan (10.1016/j.eswa.2021.115669_b0090) 2014 Kaveh (10.1016/j.eswa.2021.115669_b0120) 2012; 112-113 Meng (10.1016/j.eswa.2021.115669_b0170) 2019; 168 Ho (10.1016/j.eswa.2021.115669_b0100) 2014; 5 Chi (10.1016/j.eswa.2021.115669_b0065) 2019; 31 Mirjalili (10.1016/j.eswa.2021.115669_b0190) 2016; 95 Baykasoğlu (10.1016/j.eswa.2021.115669_b0035) 2015; 37 Chu (10.1016/j.eswa.2021.115669_b0070) 2006 Rashedi (10.1016/j.eswa.2021.115669_b0225) 2009; 179 Tsipianitis (10.1016/j.eswa.2021.115669_b0250) 2020; 149 Mareli (10.1016/j.eswa.2021.115669_b0160) 2018; 14 Coello (10.1016/j.eswa.2021.115669_b0080) 2002; 16 Storn (10.1016/j.eswa.2021.115669_b0240) 1997; 11 Chen (10.1016/j.eswa.2021.115669_b0060) 2018; 74 Lamberti (10.1016/j.eswa.2021.115669_b0140) 2008; 86 Huang (10.1016/j.eswa.2021.115669_b0105) 2007; 186 Nguyen (10.1016/j.eswa.2021.115669_b0210) 2019; 84 Yang (10.1016/j.eswa.2021.115669_b0275) 2009 Askarzadeh (10.1016/j.eswa.2021.115669_b0020) 2016; 169 Valian (10.1016/j.eswa.2021.115669_b0255) 2011; 2 Yang (10.1016/j.eswa.2021.115669_b0280) 2010; 1 Minh (10.1016/j.eswa.2021.115669_b0185) 2021; 242 Kennedy (10.1016/j.eswa.2021.115669_b0135) 1995 Salgotra (10.1016/j.eswa.2021.115669_b0235) 2018 Dhabal (10.1016/j.eswa.2021.115669_b0085) 2019; 38 Mirjalili (10.1016/j.eswa.2021.115669_b0195) 2016; 27 Abualigah (10.1016/j.eswa.2021.115669_b0005) 2021; 376 Baykasoğlu (10.1016/j.eswa.2021.115669_b0040) 2017; 56 Mezura-Montes (10.1016/j.eswa.2021.115669_b0180) 2008; 37 Rani (10.1016/j.eswa.2021.115669_b0220) 2012; 21 Kaveh (10.1016/j.eswa.2021.115669_b0125) 2009; 87 10.1016/j.eswa.2021.115669_b0205 Ong (10.1016/j.eswa.2021.115669_b0215) 2019; 80 Akay (10.1016/j.eswa.2021.115669_b0010) 2012; 23 Kaveh (10.1016/j.eswa.2021.115669_b0130) 2010; 27 Camp (10.1016/j.eswa.2021.115669_b0045) 2007; 133 Cao (10.1016/j.eswa.2021.115669_b0055) 1996 Marichelvam (10.1016/j.eswa.2021.115669_b0165) 2014; 19 Yang (10.1016/j.eswa.2021.115669_b0265) 2010; 2 Mezura-Montes (10.1016/j.eswa.2021.115669_b0175) 2005 Karaboga (10.1016/j.eswa.2021.115669_b0115) 2008; 8 He (10.1016/j.eswa.2021.115669_b0095) 2007; 20 Tikhamarine (10.1016/j.eswa.2021.115669_b0245) 2020; 582 |
| References_xml | – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b0080 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b0195 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – volume: 21 year: 2012 ident: b0220 article-title: Nature-inspired Cuckoo Search algorithm for side lobe suppression in a symmetric linear antenna array publication-title: Radioengineering – volume: 25 start-page: 1585 year: 2019 end-page: 1604 ident: b0110 article-title: A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem publication-title: Wireless Networks – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b0265 article-title: Firefly algorithm, stochastic test functions and design optimization publication-title: International Journal of Bio-inspired Computation – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b0095 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence – volume: 168 start-page: 425 year: 2019 end-page: 439 ident: b0170 article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm publication-title: Energy – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0190 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 2 start-page: 36 year: 2011 end-page: 43 ident: b0255 article-title: Improved cuckoo search algorithm for feedforward neural network training publication-title: International Journal of Artificial Intelligence & Applications – start-page: 65 year: 2010 end-page: 74 ident: b0270 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature inspired cooperative strategies for optimization (NICSO 2010) – year: 2014 ident: b0090 article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning publication-title: International journal of intelligent computing and cybernetics – volume: 1 start-page: 330 year: 2010 end-page: 343 ident: b0280 article-title: Engineering zoptimization by cuckoo search publication-title: International Journal of Mathematical Modelling and Numerical Optimisation – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0225 article-title: GSA: A gravitational search algorithm publication-title: Information sciences – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: b0150 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 86 start-page: 1936 year: 2008 end-page: 1953 ident: b0140 article-title: An efficient simulated annealing algorithm for design optimization of truss structures publication-title: Computers & Structures – volume: 74 start-page: 818 year: 2018 end-page: 839 ident: b0060 article-title: Identification of boundary conditions for non-Fourier heat conduction problems by differential transformation DRBEM and improved cuckoo search algorithm publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 31 start-page: 653 year: 2019 end-page: 670 ident: b0065 article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems publication-title: Neural Computing and Applications – volume: 149 start-page: 102865 year: 2020 ident: b0250 article-title: Improved Cuckoo Search algorithmic variants for constrained nonlinear optimization publication-title: Advances in Engineering Software – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: b0115 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing – start-page: 1 year: 2020 end-page: 16 ident: b0030 article-title: zOptimizing cutting conditions for zminimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm publication-title: International Journal of Production Research – start-page: 498 year: 2005 end-page: 505 ident: b0025 article-title: Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX publication-title: 2005 IEEE Congress on Evolutionary Computation – volume: 84 start-page: 105720 year: 2019 ident: b0210 article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration publication-title: Applied Soft Computing – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b0075 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry – volume: 112-113 start-page: 283 year: 2012 end-page: 294 ident: b0120 article-title: A new meta-heuristic method: Ray optimization publication-title: Computers & Structures – reference: Mühlenbein, H. (1997). Genetic algorithms. – start-page: 210 year: 2009 end-page: 214 ident: b0275 article-title: Cuckoo search via Lévy flights publication-title: 2009 World congress on nature & biologically inspired computing (NaBIC) – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0260 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 130 start-page: 741 year: 2004 end-page: 751 ident: b0050 article-title: Design of space trusses using ant colony optimization publication-title: Journal of Structural Engineering – volume: 11 year: 1997 ident: b0240 article-title: Differential Evolution–A simple and efficient adaptive scheme for global opti-J publication-title: Globtd Optimization – start-page: 1 year: 2018 end-page: 7 ident: b0235 article-title: Improved cuckoo search with better search capabilities for solving CEC2017 benchmark problems publication-title: 2018 IEEE Congress on Evolutionary Computation (CEC) – volume: 14 start-page: 107 year: 2018 end-page: 115 ident: b0160 article-title: An adaptive Cuckoo search algorithm for optimization publication-title: Applied Computing and Informatics – volume: 80 start-page: 374 year: 2019 end-page: 386 ident: b0215 article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction publication-title: Applied Soft Computing – volume: 376 start-page: 113609 year: 2021 ident: b0005 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 520 start-page: 250 year: 2020 end-page: 270 ident: b0145 article-title: Balancing composite motion optimization publication-title: Information Sciences – volume: 133 start-page: 999 year: 2007 end-page: 1008 ident: b0045 article-title: Design of space trusses using Big Bang-Big Crunch optimization publication-title: Journal of Structural Engineering – volume: 31 start-page: 1375 year: 2019 end-page: 1389 ident: b0155 article-title: An improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations publication-title: Neural Computing and Applications – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0200 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 27 start-page: 155 year: 2010 end-page: 182 ident: b0130 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering – volume: 242 start-page: 112412 year: 2021 ident: b0185 article-title: An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower publication-title: Engineering Structures – volume: 56 start-page: 520 year: 2017 end-page: 540 ident: b0040 article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems–Part 1: Unconstrained optimization publication-title: Applied Soft Computing – start-page: 1942 year: 1995 end-page: 1948 ident: b0135 article-title: Particle swarm optimization publication-title: Proceedings of ICNN'95-International Conference on Neural, Networks – volume: 19 start-page: 93 year: 2014 end-page: 101 ident: b0165 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Applied Soft Computing – volume: 37 start-page: 396 year: 2015 end-page: 415 ident: b0035 article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization publication-title: Applied Soft Computing – volume: 582 start-page: 124435 year: 2020 ident: b0245 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: Journal of Hydrology – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b0020 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures – volume: 186 start-page: 340 year: 2007 end-page: 356 ident: b0105 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation – volume: 37 start-page: 443 year: 2008 end-page: 473 ident: b0180 article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems publication-title: International Journal of General Systems – volume: 23 start-page: 1001 year: 2012 end-page: 1014 ident: b0010 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: Journal of Intelligent Manufacturing – start-page: 854 year: 2006 end-page: 858 ident: b0070 article-title: Cat swarm optimization publication-title: Pacific Rim international conference on artificial intelligence – volume: 87 start-page: 1129 year: 2009 end-page: 1140 ident: b0125 article-title: Size optimization of space trusses using Big Bang-Big Crunch algorithm publication-title: Computers & Structures – volume: 38 start-page: 805 year: 2019 end-page: 826 ident: b0085 article-title: An improved global-best-guided cuckoo search algorithm for multiplierless design of two-dimensional IIR filters publication-title: Circuits, Systems, and Signal Processing – year: 2004 ident: b0015 article-title: Introduction to optimum design – start-page: 106 year: 1989 end-page: 126 ident: b0230 article-title: Evolution strategy: Nature's way of optimization publication-title: Optimization: Methods and applications, possibilities and limitations – volume: 5 start-page: 39 year: 2014 end-page: 54 ident: b0100 article-title: Economic emission load dispatch with multiple fuel optings using cuckoo search algorithm with Gaussian and Cauchy distributions publication-title: International Journal of Energy, Information and Communications – start-page: 652 year: 2005 end-page: 662 ident: b0175 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms publication-title: Mexican international conference on artificial intelligence – year: 1996 ident: b0055 article-title: Optimized design of framed structures using a genetic algorithm – volume: 130 start-page: 741 issue: 5 year: 2004 ident: 10.1016/j.eswa.2021.115669_b0050 article-title: Design of space trusses using ant colony optimization publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)0733-9445(2004)130:5(741) – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2021.115669_b0190 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – start-page: 498 year: 2005 ident: 10.1016/j.eswa.2021.115669_b0025 article-title: Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX – year: 2004 ident: 10.1016/j.eswa.2021.115669_b0015 – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.eswa.2021.115669_b0075 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry doi: 10.1016/S0166-3615(99)00046-9 – volume: 186 start-page: 340 issue: 1 year: 2007 ident: 10.1016/j.eswa.2021.115669_b0105 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.105 – volume: 168 start-page: 425 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0170 article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm publication-title: Energy doi: 10.1016/j.energy.2018.11.096 – volume: 5 start-page: 39 year: 2014 ident: 10.1016/j.eswa.2021.115669_b0100 article-title: Economic emission load dispatch with multiple fuel optings using cuckoo search algorithm with Gaussian and Cauchy distributions publication-title: International Journal of Energy, Information and Communications doi: 10.14257/ijeic.2014.5.5.04 – volume: 27 start-page: 155 issue: 1 year: 2010 ident: 10.1016/j.eswa.2021.115669_b0130 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2021.115669_b0260 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 84 start-page: 105720 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0210 article-title: An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105720 – volume: 25 start-page: 1585 issue: 4 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0110 article-title: A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem publication-title: Wireless Networks doi: 10.1007/s11276-017-1616-9 – volume: 149 start-page: 102865 year: 2020 ident: 10.1016/j.eswa.2021.115669_b0250 article-title: Improved Cuckoo Search algorithmic variants for constrained nonlinear optimization publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2020.102865 – volume: 2 start-page: 36 issue: 3 year: 2011 ident: 10.1016/j.eswa.2021.115669_b0255 article-title: Improved cuckoo search algorithm for feedforward neural network training publication-title: International Journal of Artificial Intelligence & Applications doi: 10.5121/ijaia.2011.2304 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.eswa.2021.115669_b0095 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 87 start-page: 1129 issue: 17-18 year: 2009 ident: 10.1016/j.eswa.2021.115669_b0125 article-title: Size optimization of space trusses using Big Bang-Big Crunch algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2009.04.011 – volume: 376 start-page: 113609 year: 2021 ident: 10.1016/j.eswa.2021.115669_b0005 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113609 – year: 1996 ident: 10.1016/j.eswa.2021.115669_b0055 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2021.115669_b0275 article-title: Cuckoo search via Lévy flights – volume: 37 start-page: 443 issue: 4 year: 2008 ident: 10.1016/j.eswa.2021.115669_b0180 article-title: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems publication-title: International Journal of General Systems doi: 10.1080/03081070701303470 – volume: 112-113 start-page: 283 year: 2012 ident: 10.1016/j.eswa.2021.115669_b0120 article-title: A new meta-heuristic method: Ray optimization publication-title: Computers & Structures doi: 10.1016/j.compstruc.2012.09.003 – volume: 16 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.eswa.2021.115669_b0080 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics doi: 10.1016/S1474-0346(02)00011-3 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.115669_b0030 article-title: zOptimizing cutting conditions for zminimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm publication-title: International Journal of Production Research – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.115669_b0195 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 194 start-page: 3902 issue: 36-38 year: 2005 ident: 10.1016/j.eswa.2021.115669_b0150 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.09.007 – volume: 23 start-page: 1001 issue: 4 year: 2012 ident: 10.1016/j.eswa.2021.115669_b0010 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0393-4 – volume: 38 start-page: 805 issue: 2 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0085 article-title: An improved global-best-guided cuckoo search algorithm for multiplierless design of two-dimensional IIR filters publication-title: Circuits, Systems, and Signal Processing doi: 10.1007/s00034-018-0886-5 – volume: 31 start-page: 1375 issue: 5 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0155 article-title: An improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3512-3 – volume: 19 start-page: 93 year: 2014 ident: 10.1016/j.eswa.2021.115669_b0165 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.02.005 – year: 2014 ident: 10.1016/j.eswa.2021.115669_b0090 article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning – ident: 10.1016/j.eswa.2021.115669_b0205 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2021.115669_b0235 article-title: Improved cuckoo search with better search capabilities for solving CEC2017 benchmark problems – start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2021.115669_b0135 article-title: Particle swarm optimization – volume: 31 start-page: 653 issue: S1 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0065 article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3012-x – volume: 37 start-page: 396 year: 2015 ident: 10.1016/j.eswa.2021.115669_b0035 article-title: Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.08.052 – volume: 133 start-page: 999 issue: 7 year: 2007 ident: 10.1016/j.eswa.2021.115669_b0045 article-title: Design of space trusses using Big Bang-Big Crunch optimization publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)0733-9445(2007)133:7(999) – volume: 14 start-page: 107 year: 2018 ident: 10.1016/j.eswa.2021.115669_b0160 article-title: An adaptive Cuckoo search algorithm for optimization publication-title: Applied Computing and Informatics doi: 10.1016/j.aci.2017.09.001 – volume: 1 start-page: 330 year: 2010 ident: 10.1016/j.eswa.2021.115669_b0280 article-title: Engineering zoptimization by cuckoo search publication-title: International Journal of Mathematical Modelling and Numerical Optimisation doi: 10.1504/IJMMNO.2010.035430 – start-page: 854 year: 2006 ident: 10.1016/j.eswa.2021.115669_b0070 article-title: Cat swarm optimization – start-page: 106 year: 1989 ident: 10.1016/j.eswa.2021.115669_b0230 article-title: Evolution strategy: Nature's way of optimization – volume: 56 start-page: 520 year: 2017 ident: 10.1016/j.eswa.2021.115669_b0040 article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems–Part 1: Unconstrained optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.036 – volume: 11 year: 1997 ident: 10.1016/j.eswa.2021.115669_b0240 article-title: Differential Evolution–A simple and efficient adaptive scheme for global opti-J publication-title: Globtd Optimization – volume: 2 start-page: 78 year: 2010 ident: 10.1016/j.eswa.2021.115669_b0265 article-title: Firefly algorithm, stochastic test functions and design optimization publication-title: International Journal of Bio-inspired Computation doi: 10.1504/IJBIC.2010.032124 – volume: 582 start-page: 124435 year: 2020 ident: 10.1016/j.eswa.2021.115669_b0245 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.124435 – volume: 86 start-page: 1936 issue: 19-20 year: 2008 ident: 10.1016/j.eswa.2021.115669_b0140 article-title: An efficient simulated annealing algorithm for design optimization of truss structures publication-title: Computers & Structures doi: 10.1016/j.compstruc.2008.02.004 – start-page: 652 year: 2005 ident: 10.1016/j.eswa.2021.115669_b0175 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – volume: 80 start-page: 374 year: 2019 ident: 10.1016/j.eswa.2021.115669_b0215 article-title: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.04.016 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2021.115669_b0225 article-title: GSA: A gravitational search algorithm publication-title: Information sciences doi: 10.1016/j.ins.2009.03.004 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2021.115669_b0020 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 520 start-page: 250 year: 2020 ident: 10.1016/j.eswa.2021.115669_b0145 article-title: Balancing composite motion optimization publication-title: Information Sciences doi: 10.1016/j.ins.2020.02.013 – volume: 21 year: 2012 ident: 10.1016/j.eswa.2021.115669_b0220 article-title: Nature-inspired Cuckoo Search algorithm for side lobe suppression in a symmetric linear antenna array publication-title: Radioengineering – start-page: 65 year: 2010 ident: 10.1016/j.eswa.2021.115669_b0270 article-title: A new metaheuristic bat-inspired algorithm – volume: 74 start-page: 818 issue: 6 year: 2018 ident: 10.1016/j.eswa.2021.115669_b0060 article-title: Identification of boundary conditions for non-Fourier heat conduction problems by differential transformation DRBEM and improved cuckoo search algorithm publication-title: Numerical Heat Transfer, Part B: Fundamentals doi: 10.1080/10407790.2019.1591859 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2021.115669_b0200 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.eswa.2021.115669_b0115 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.007 – volume: 242 start-page: 112412 year: 2021 ident: 10.1016/j.eswa.2021.115669_b0185 article-title: An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower publication-title: Engineering Structures doi: 10.1016/j.engstruct.2021.112412 |
| SSID | ssj0017007 |
| Score | 2.6542144 |
| Snippet | •New Movement Strategy of Cuckoo Search (NMS-CS) for solving optimization problems.•3 proposed functions are used to establish new strategy movement of Cuckoo... In this paper, a Cuckoo search algorithm, namely the New Movement Strategy of Cuckoo Search (NMS-CS), is proposed. The novelty is in a random walk with step... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115669 |
| SubjectTerms | Accuracy Algorithms Benchmark test functions Compression springs Convergence Cuckoo search algorithm Design engineering Levy distribution Lévy distribution Mathematical analysis Optimization Parameters Particle swarm optimization Pressure vessel design Pressure vessels Random walk Search algorithms |
| Title | A novel version of Cuckoo search algorithm for solving optimization problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115669 https://www.proquest.com/docview/2599115842 |
| Volume | 186 |
| WOSCitedRecordID | wos000705571500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXpk80TRpw6CYoEGU6lEYhSJEGbtAhLbwJpEjZTm0ysGUnPz9HkZIfaIJm6CIIAnkgeB9Pd8d7IPQ1EqXV4mnICkHBQBGpvd-VIT9NiOr1iKK1T_f3gF1dJcNh-rPTuWtyYVZTpnVyf5_e_ldWwzdgtk2dfQa7W6LwAd6B6fAEtsPznxifBdqs1DRYOU9YHW-xLP4YE3gPB5-OzHxSjWd1iCEspvYpGJAdM5-UGfg2M4stv70tilz50s9NUtzG9Xd7m7E0ehQOXDXfMdetv_nHRNc-nAvD6wGtrB8DAdf-i88m62BhPubCpRONZJAJ6YP7vYsiJnUhxGjL18hCSlw7nrXY3RScxNqR6V9lunMv3JyoxZ0tFBWTk_Xg7QLaOz-2NtywiWS7yS2N3NLIHY0XaC9m_TTpor3s-_nwsr2AYpHLtG9W7vOtXGjg7koe02l2_u61ynL9Br32tgbOHEbeoo7S79B-08cDe7H-Hg0yXEMGe8hgU2IHGewgg1vIYIAM9pDBm5DBDWQ-oF_fzq_PLkLfZSMsaC-pQtDXJWhttITjCdYylyWLVCGZIIIJUYIBWjJOolQKoSRTsFlKSE5pwSRJOSisH1FXG60-IZwwFZ8yXiraZ7SQEY-5td-lZFwlTLADRJp9ygtfgt52Qpnmj3PoAAXtnFtXgOXJ0f1m-3OvQjrVMAc0PTnvqOFV7s_yIo_7YDwR0NDjz89axCF6tT4FR6hbzZfqC3pZrKrJYn7skfYATNyeIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+version+of+Cuckoo+search+algorithm+for+solving+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Cuong-Le%2C+Thanh&rft.au=Minh%2C+Hoang-Le&rft.au=Khatir%2C+Samir&rft.au=Wahab%2C+Magd+Abdel&rft.date=2021-12-30&rft.issn=0957-4174&rft.volume=186&rft.spage=115669&rft_id=info:doi/10.1016%2Fj.eswa.2021.115669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115669 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |