Competency of improved artificial ecosystem optimizer in parameters identification of small and medium sized distribution transformers

Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 32421 - 21
Hlavní autori: Draz, Abdelmonem, Ashraf, Hossam, El Shamy, Ahmed R., El-Fergany, Attia A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 12.09.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.
AbstractList Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.
Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.
Abstract Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.
ArticleNumber 32421
Author El-Fergany, Attia A.
Ashraf, Hossam
Draz, Abdelmonem
El Shamy, Ahmed R.
Author_xml – sequence: 1
  givenname: Abdelmonem
  surname: Draz
  fullname: Draz, Abdelmonem
  email: aaderaz@zu.edu.eg
  organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University
– sequence: 2
  givenname: Hossam
  surname: Ashraf
  fullname: Ashraf, Hossam
  organization: Department of Electrical Engineering and Information Systems, The University of Tokyo
– sequence: 3
  givenname: Ahmed R.
  surname: El Shamy
  fullname: El Shamy, Ahmed R.
  organization: Advanced Power and Energy Center, Department of Electrical Engineering, Khalifa University, Faculty of Engineering, Zagazig University
– sequence: 4
  givenname: Attia A.
  surname: El-Fergany
  fullname: El-Fergany, Attia A.
  organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40940361$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1UREvpC7BAltiwCfg3P0t0BaVSJTawthx7UvkqtoOdIF0eoM-Nk7QFscAbW9Z3zozH5yU6CzEAQq8peU8Jbz9kQWXXVoTJigrGecWfoQtGhKwYZ-zsr_M5usr5SMqSrBO0e4HOBekE4TW9QPeH6CeYIZgTjgN2fkrxJ1is0-wGZ5weMZiYT3kGj-M0O-9-QcIu4Ekn7YsyZewshA3Xs4th9clejyPWwWIP1i0e5yKz2Lo8J9cvGzYnHfIQky8Wr9DzQY8Zrh72S_T986dvhy_V7dfrm8PH28oI3s6VsKT0LTsBWre9EI2uOQfTNKZnbGh6KUQted9JY7kYpDAtNxQao4UZgDQtv0Q3u6-N-qim5LxOJxW1U9tFTHdqfbkZQTVQC8El0K5e6w0dbWWZKTW8sbQeVq93u1cZ2Y8F8qy8ywbGUQeIS1acSUJpU5MVffsPeoxLCuWlG0WY6GpWqDcP1NKXsT219_hbBWA7YFLMOcHwhFCi1lSoPRWqpEJtqVC8iPguygUOd5D-1P6P6jfu07qg
Cites_doi 10.1109/PEDES.2016.7914531
10.1016/j.swevo.2017.03.003
10.1007/s00202-023-01803-9
10.1016/j.epsr.2008.08.009
10.3390/s21186284
10.1007/s10586-024-04488-2
10.1007/s00521-024-09928-z
10.1109/ACCESS.2024.3456088
10.1038/s41598-023-34057-3
10.1109/ICPEE50452.2021.9358765
10.3390/computers11010009
10.21533/pen.v5i3.103
10.1109/ACCESS.2020.2978398
10.18273/revuin.v19n4-2020006
10.1109/ICAACCA51523.2021.9465279
10.3390/en17071710
10.1016/j.eswa.2023.122460
10.3390/en14134009
10.3390/app112110334
10.3390/en16062867
10.1109/TPWRD.2014.2311153
10.1109/TPWRD.2016.2621753
10.1038/s41598-025-85524-y
10.1109/TPWRD.2013.2284243
10.32604/iasc.2021.016464
10.1038/s41598-023-29618-5
10.3390/computers11040055
10.1007/s00202-023-02035-7
10.1016/j.epsr.2022.108604
10.1038/s41598-022-24122-8
10.1109/TPWRD.2011.2164424
10.3390/en12091697
10.1038/s41598-024-58565-y
10.1038/s41598-024-61434-3
10.3390/electronics10243119
10.1038/s41598-023-46847-w
10.3390/asi7050075
10.3390/math11030774
10.1016/j.epsr.2022.107990
10.1016/j.epsr.2023.109582
10.1016/j.engappai.2024.108252
10.1109/MEPCON50283.2021.9686276
10.1016/j.epsr.2023.109194
10.1007/s00521-023-09240-2
10.1007/s00521-023-08449-5
10.1016/j.aej.2020.10.027
10.1016/j.advengsoft.2024.103671
10.1038/s41598-024-53688-8
10.3390/computers10100124
10.1016/j.rineng.2024.101760
10.1038/s41598-024-56670-6
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1038/s41598-025-14233-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_7e64435e19694eaf91852041c37d16f8
40940361
10_1038_s41598_025_14233_3
Genre Journal Article
GrantInformation_xml – fundername: Zagazig University
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c438t-4d0403594eaa8b447a633ec77cb22f7b544653b95cd34f54c83c1e7ca4cfe0783
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001571609500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:47 EDT 2025
Sat Sep 13 16:51:05 EDT 2025
Tue Oct 07 07:42:18 EDT 2025
Tue Sep 16 01:46:24 EDT 2025
Sat Nov 29 07:31:30 EST 2025
Sat Sep 13 01:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial ecosystem optimizer
Statistical analysis
Metaheuristic algorithms parameters estimation
Distribution transformers
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-4d0403594eaa8b447a633ec77cb22f7b544653b95cd34f54c83c1e7ca4cfe0783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3250024962?pq-origsite=%requestingapplication%
PMID 40940361
PQID 3250024962
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_7e64435e19694eaf91852041c37d16f8
proquest_miscellaneous_3250117608
proquest_journals_3250024962
pubmed_primary_40940361
crossref_primary_10_1038_s41598_025_14233_3
springer_journals_10_1038_s41598_025_14233_3
PublicationCentury 2000
PublicationDate 2025-09-12
PublicationDateYYYYMMDD 2025-09-12
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Ćalasan (14233_CR34) 2019; 12
L Sima (14233_CR5) 2023; 223
14233_CR29
R Kazemi (14233_CR6) 2016; 32
RM Rizk-Allah (14233_CR16) 2024; 36
MA El-Dabah (14233_CR15) 2024; 7
L Wu (14233_CR22) 2024; 133
14233_CR32
KP Choi (14233_CR27) 2023; 13
MI Mossad (14233_CR38) 2014; 29
SY Bocanegra (14233_CR50) 2020; 19
SD Mitchell (14233_CR13) 2011; 26
W-C Chang (14233_CR17) 2021; 11
J Yang (14233_CR47) 2023; 16
A Draz (14233_CR19) 2023; 11
AAZ Diab (14233_CR25) 2024; 14
V Suresh (14233_CR53) 2021; 10
S Bogarra (14233_CR14) 2009; 79
Y Wang (14233_CR46) 2024; 27
L Jin (14233_CR1) 2023; 218
14233_CR8
CA Arenas-Acuña (14233_CR33) 2021; 10
14233_CR4
DG Gracia-Velásquez (14233_CR35) 2022; 11
B Cortés-Caicedo (14233_CR40) 2022; 11
H Ashraf (14233_CR20) 2023; 13
SK Elsayed (14233_CR42) 2021; 28
MF Kotb (14233_CR30) 2022; 12
AB Alyu (14233_CR24) 2023; 13
H Bakır (14233_CR31) 2023; 105
14233_CR52
MI Abdelwanis (14233_CR28) 2020; 8
14233_CR51
F Geth (14233_CR11) 2022; 213
H Dirik (14233_CR12) 2013; 29
HM Sultan (14233_CR48) 2021; 60
LH Medeiros (14233_CR18) 2024; 106
K Nagarajan (14233_CR23) 2024; 14
MP Ćalasan (14233_CR9) 2020; 56
C Zhang (14233_CR54) 2025; 15
14233_CR36
H Bakır (14233_CR44) 2024; 240
E Kolesnikov (14233_CR3) 2024; 17
HA Illias (14233_CR39) 2017; 36
H Bakır (14233_CR43) 2024; 36
14233_CR41
Y Yoon (14233_CR10) 2021; 14
P Sharma (14233_CR21) 2025; 15
AR Abbasi (14233_CR2) 2022; 209
JD Camelo-Daza (14233_CR37) 2024; 21
RM Rizk-Allah (14233_CR49) 2023; 35
EH Cui (14233_CR26) 2024; 14
H Pires Corrêa (14233_CR7) 2021; 21
H Bakır (14233_CR45) 2024; 194
References_xml – ident: 14233_CR51
  doi: 10.1109/PEDES.2016.7914531
– volume: 36
  start-page: 18
  year: 2017
  ident: 14233_CR39
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.03.003
– volume: 105
  start-page: 3121
  year: 2023
  ident: 14233_CR31
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-01803-9
– volume: 56
  start-page: 3710
  year: 2020
  ident: 14233_CR9
  publication-title: IEEE Trans. Ind. Appl.
– volume: 79
  start-page: 417
  year: 2009
  ident: 14233_CR14
  publication-title: Electr. power syst. Res.
  doi: 10.1016/j.epsr.2008.08.009
– volume: 21
  start-page: 6284
  year: 2021
  ident: 14233_CR7
  publication-title: Sensor
  doi: 10.3390/s21186284
– volume: 27
  start-page: 10053
  year: 2024
  ident: 14233_CR46
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04488-2
– volume: 36
  start-page: 16873
  year: 2024
  ident: 14233_CR43
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-09928-z
– ident: 14233_CR4
  doi: 10.1109/ACCESS.2024.3456088
– volume: 13
  start-page: 6903
  year: 2023
  ident: 14233_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34057-3
– ident: 14233_CR8
  doi: 10.1109/ICPEE50452.2021.9358765
– volume: 11
  start-page: 9
  year: 2022
  ident: 14233_CR35
  publication-title: Computer
  doi: 10.3390/computers11010009
– ident: 14233_CR29
  doi: 10.21533/pen.v5i3.103
– volume: 8
  start-page: 50036
  year: 2020
  ident: 14233_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978398
– volume: 19
  start-page: 63
  year: 2020
  ident: 14233_CR50
  publication-title: Rev. UIS Ing
  doi: 10.18273/revuin.v19n4-2020006
– ident: 14233_CR41
  doi: 10.1109/ICAACCA51523.2021.9465279
– volume: 17
  start-page: 1710
  year: 2024
  ident: 14233_CR3
  publication-title: Energie
  doi: 10.3390/en17071710
– volume: 240
  year: 2024
  ident: 14233_CR44
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122460
– volume: 14
  start-page: 4009
  year: 2021
  ident: 14233_CR10
  publication-title: Energie
  doi: 10.3390/en14134009
– volume: 11
  start-page: 10334
  year: 2021
  ident: 14233_CR17
  publication-title: Appl. Sci.
  doi: 10.3390/app112110334
– volume: 16
  start-page: 2867
  year: 2023
  ident: 14233_CR47
  publication-title: Energies
  doi: 10.3390/en16062867
– volume: 29
  start-page: 2118
  year: 2014
  ident: 14233_CR38
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2014.2311153
– volume: 32
  start-page: 2031
  year: 2016
  ident: 14233_CR6
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2016.2621753
– volume: 15
  start-page: 1773
  year: 2025
  ident: 14233_CR54
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-85524-y
– volume: 29
  start-page: 1074
  year: 2013
  ident: 14233_CR12
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2013.2284243
– volume: 28
  start-page: 639
  year: 2021
  ident: 14233_CR42
  publication-title: Intell. Autom. Soft Comput
  doi: 10.32604/iasc.2021.016464
– volume: 13
  start-page: 5291
  year: 2023
  ident: 14233_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29618-5
– volume: 11
  start-page: 55
  year: 2022
  ident: 14233_CR40
  publication-title: Computer
  doi: 10.3390/computers11040055
– volume: 106
  start-page: 931
  year: 2024
  ident: 14233_CR18
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-02035-7
– volume: 213
  year: 2022
  ident: 14233_CR11
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108604
– ident: 14233_CR52
– volume: 12
  start-page: 19623
  year: 2022
  ident: 14233_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24122-8
– volume: 26
  start-page: 2705
  year: 2011
  ident: 14233_CR13
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2011.2164424
– volume: 12
  start-page: 1697
  year: 2019
  ident: 14233_CR34
  publication-title: Energie
  doi: 10.3390/en12091697
– volume: 14
  start-page: 13422
  year: 2024
  ident: 14233_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-58565-y
– volume: 15
  start-page: 4001
  year: 2025
  ident: 14233_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-61434-3
– volume: 10
  start-page: 3119
  year: 2021
  ident: 14233_CR53
  publication-title: Electronics
  doi: 10.3390/electronics10243119
– volume: 13
  start-page: 19532
  year: 2023
  ident: 14233_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-46847-w
– volume: 7
  start-page: 75
  year: 2024
  ident: 14233_CR15
  publication-title: Appl. Syst. Innov.
  doi: 10.3390/asi7050075
– volume: 11
  start-page: 774
  year: 2023
  ident: 14233_CR19
  publication-title: Mathematics
  doi: 10.3390/math11030774
– volume: 209
  year: 2022
  ident: 14233_CR2
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107990
– volume: 223
  year: 2023
  ident: 14233_CR5
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109582
– volume: 133
  year: 2024
  ident: 14233_CR22
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108252
– ident: 14233_CR36
  doi: 10.1109/MEPCON50283.2021.9686276
– volume: 218
  year: 2023
  ident: 14233_CR1
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109194
– volume: 36
  start-page: 3141
  year: 2024
  ident: 14233_CR16
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09240-2
– volume: 35
  start-page: 13983
  year: 2023
  ident: 14233_CR49
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08449-5
– volume: 60
  start-page: 1001
  year: 2021
  ident: 14233_CR48
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.027
– volume: 194
  year: 2024
  ident: 14233_CR45
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2024.103671
– volume: 14
  start-page: 3091
  year: 2024
  ident: 14233_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53688-8
– volume: 10
  start-page: 124
  year: 2021
  ident: 14233_CR33
  publication-title: Computer
  doi: 10.3390/computers10100124
– ident: 14233_CR32
– volume: 21
  year: 2024
  ident: 14233_CR37
  publication-title: Result. Eng.
  doi: 10.1016/j.rineng.2024.101760
– volume: 14
  start-page: 9403
  year: 2024
  ident: 14233_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56670-6
SSID ssj0000529419
Score 2.4587948
Snippet Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications....
Abstract Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications....
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 32421
SubjectTerms 639/166
639/166/987
Accuracy
Algorithms
Artificial ecosystem optimizer
Behavior
Distribution transformers
Efficiency
Exploitation
Genetic algorithms
Humanities and Social Sciences
Metaheuristic algorithms parameters estimation
multidisciplinary
Normal distribution
Objective function
Optimization algorithms
Optimization techniques
Parameter estimation
Parameter identification
Science
Science (multidisciplinary)
Statistical analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hCqReEF-FQEFG4kajrmMnTo5Qteqp6gGk3qyJ7UiRulm02UUqP4DfzYydLEUFcek1HyPbb5x5zthvAD5QlMGidSYvNWKupUmF3HPCH9F4Z5raxWIT5uKivrpqLm-V-uI9YUkeOA3csQkUsVUZWMZFB-waPu270NIp42XVxWO-xHpuLaaSqnfRaNlMp2QWqj4eKVLxabKizCVRCJWrPyJRFOz_G8u8kyGNgefsCTyeGKP4lFr6FB6E4Rk8SjUkb57Dz5OZ-d6IVSf6-JMgeME9S-oQglaYSbBZrOgDsex_hLXoB8Gq30veDTOK3k-bhiJObGdc4vW1wMELzr5vl2Kk17zwrLM7lcgSm5n0kokX8PXs9MvJeT4VV8idVvUm156mryp5TLFutTZYKRWcMa4tis60ZVRea5vSeaW7UrtaORmMQ-26wLm_A9gbVkN4BQKbmpBWi65CrX3jWxmkJ2bTGWyxLDCDj_NA229JQ8PG3LeqbYLFEiw2wmJVBp8Zi92TrH8dL5BX2Mkr7P-8IoPDGUk7TcrRKqJ7rJBYFRm8392m6cQ5EhzCapuekdJUCzLxMnnAriW8FKaALzM4ml3it_F_d-j1fXToDewX7LuxeMUh7G3W2_AWHrrvm35cv4vO_wvswwai
  priority: 102
  providerName: Directory of Open Access Journals
Title Competency of improved artificial ecosystem optimizer in parameters identification of small and medium sized distribution transformers
URI https://link.springer.com/article/10.1038/s41598-025-14233-3
https://www.ncbi.nlm.nih.gov/pubmed/40940361
https://www.proquest.com/docview/3250024962
https://www.proquest.com/docview/3250117608
https://doaj.org/article/7e64435e19694eaf91852041c37d16f8
Volume 15
WOSCitedRecordID wos001571609500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4i6jp3YOSFatYJDVxECaTlZju1UK3WTstmtVH4AvxuP42yFeFy4-BA7lq1v7BnP2N8AvPZaRme1EWnOtU45FUMi99Tjr7WwRpTShGQTYjaT83lZRYdbH69Vjnti2KhtZ9BHfsi8rkZ6uyJ7d_ktxaxRGF2NKTR2YA9ZEli4uldtfSwYxeK0jG9lpkwe9l5f4ZuyLE-pNyRYyn7RR4G2_0-25m9x0qB-Tu__78AfwL1oeJL3g6Q8hFuufQR3hlSU14_hx_FoQF-TriGL4GtwlqBkDSQTxB9UB95n0vl9Zrn47lZk0RIkD1_ipZqeLGy8exTgxn76pb64ILq1BIP4myXp_W-WWKTrjZm2yHq0nX0XT-DL6cnn4w9pzNGQGs7kOuXW7wIsL7nTWtacC10w5owQps6yRtR5IHCry9xYxpucG8kMdcJobhqHIcSnsNt2rdsHokvpBYZNm0JzbktbU0etN5AaoWudZzqBNyNS6nKg4lAhhM6kGnBVHlcVcFUsgSMEc9sSabTDh251ruKqVMJ5c5DlDjmC_AyaEp-STzk1TFhaNDKBgxFTFdd2r24ATeDVttqvSgy16NZ1m6ENpaKY-i6eDSK0HQmeqL3dQBN4O8rUTed_n9Dzf4_lBdzNUKxDdosD2F2vNu4l3DZX60W_msCOmItQygnsHZ3Mqk-T4H7w5VlWTcK68TXVx7Pq60_QChzk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHXsbNODghBoWrVsuqhSL25ju2gSN2kbHZByw_g5_AbmXGSrRCPWw9c8xgl9jcPe8bfADxDL2OSwqo4lcbEkquukXuM82-MclblmQ3NJtRkkh0d5Qdr8GM4C0NllYNNDIbaNZb2yDcF-mqitxsnr08_x9Q1irKrQwuNDhZ7fvkVl2ztq913OL_Pk2T7_eHWTtx3FYitFNk8lg5xK9JcemOyQkplxkJ4q5QtkqRURRoox4o8tU7IMpU2E5Z7ZY20paekF8q9ABcxjEiyUCp4sNrToayZ5Hl_Nmckss0W_SOdYUvSmGPgImLxi_8LbQL-FNv-lpcN7m77-v82UDfgWh9YszedJtyENV_fgstdq83lbfi-NSwQlqwpWRX2UrxjpDkdiQbDhXjHa80atKPT6pufsapmRI4-paKhllWur60KcCY57dScnDBTO0ZFCospa_E1xxzREfedxNh8WBugiDvw8VwG4S6s103t7wMzeYYKIUbl2Ejpcldwzx0GgKUyhUkTE8GLARn6tKMa0aFEQGS6w5FGHOmAIy0ieEvgWT1JNOHhQjP7pHuro5XHcFeknjiQ8A_KnI7KjyS3Qjk-LrMINgYM6d52tfoMQBE8Xd1Gq0OpJFP7ZtE9w7kaj1DEvQ6yqy-hHQOMi3gELwcMnwn_-w89-Pe3PIErO4cf9vX-7mTvIVxNSKVCJ48NWJ_PFv4RXLJf5lU7exx0ksHxeWP7JzFTcpM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUX3pSFAkaCE0S7jp11ckAIWlZURas9gNSbcWwHReomZbMLWn4AP4pfx4yTbIV43Hrgmscosb952DP-BuAJehkT51ZFiTQmkly1jdwjnH9jlLMqS21oNqGm0_T4OJttwY_-LAyVVfY2MRhqV1vaIx8K9NVEbzeOh0VXFjE7mLw8_RxRBynKtPbtNFqIHPn1V1y-NS8OD3Cun8bx5M37_bdR12EgslKky0g6xLBIMumNSXMplRkL4a1SNo_jQuVJoB_Ls8Q6IYtE2lRY7pU10haeEmAo9wJcVERaHsoGZ5v9HcqgSZ5153RGIh026CvpPFucRByDGBGJX3xhaBnwpzj3txxtcH2Ta__zoF2Hq13AzV61GnIDtnx1Ey63LTjXt-D7fr9wWLO6YGXYY_GOkUa15BoMF-gt3zWr0b7Oy29-wcqKEWn6nIqJGla6ruYqwJzkNHNzcsJM5RgVL6zmrMHXHHNEU9x1GGPLfs2AIm7Dh3MZhDuwXdWVvwvMZCkqihgVYyOly1zOPXcYGBbK5CaJzQCe9SjRpy0FiQ6lAyLVLaY0YkoHTGkxgNcEpM2TRB8eLtSLT7qzRlp5DINF4okbCf-gyOgI_UhyK5Tj4yIdwF6PJ93ZtEafgWkAjze30RpRislUvl61z3CuxiMUsdvCd_MltJOA8RIfwPMez2fC__5D9_79LY9gByGt3x1Oj-7DlZi0KzT42IPt5WLlH8Al-2VZNouHQT0ZfDxvaP8Ebvx7UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competency+of+improved+artificial+ecosystem+optimizer+in+parameters+identification+of+small+and+medium+sized+distribution+transformers&rft.jtitle=Scientific+reports&rft.au=Draz%2C+Abdelmonem&rft.au=Ashraf%2C+Hossam&rft.au=El+Shamy%2C+Ahmed+R.&rft.au=El-Fergany%2C+Attia+A.&rft.date=2025-09-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-14233-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_14233_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon