Understanding the computation of time using neural network models
To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in workin...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 117; číslo 19; s. 10530 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
12.05.2020
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena. |
|---|---|
| AbstractList | To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena. To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena. |
| Author | Bi, Zedong Zhou, Changsong |
| Author_xml | – sequence: 1 givenname: Zedong surname: Bi fullname: Bi, Zedong organization: Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen 51800, China – sequence: 2 givenname: Changsong orcidid: 0000-0002-4130-0216 surname: Zhou fullname: Zhou, Changsong email: cszhou@hkbu.edu.hk organization: Department of Physics, Zhejiang University, Hangzhou 310027, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32341153$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAYRYOMOA9du5Mu3XRMvryXw-ALBtw465I2Ga22SU1SxH9vxRFc3QP3cOEu0cwH7xC6JHhNsKQ3gzdpTTQQgTUh8gQtyASlYBrP_vEcLVN6wxhrrvAZmlOgjBBOF2iz99bFlI23rX8p8qsrmtAPYza5Db4IhyK3vSvG9NN6N0bTTZE_Q3wv-mBdl87R6cF0yV0cc4X2d7fP24dy93T_uN3syoZRlUsGutaMckvBKmiYMw2Wta05UGVVowRm1GojrbUS81o6AQAStBHqQAXnsELXv7tDDB-jS7nq29S4rjPehTFVQDUXGBSjk3p1VMe6d7YaYtub-FX93YZvyG9bZA |
| CitedBy_id | crossref_primary_10_1016_j_tics_2021_08_002 crossref_primary_10_1038_s42256_020_00229_3 crossref_primary_10_1016_j_neunet_2024_106095 crossref_primary_10_1007_s11571_023_09981_9 crossref_primary_10_1016_j_chaos_2021_111410 crossref_primary_10_1016_j_bspc_2022_104494 crossref_primary_10_1162_neco_a_01418 crossref_primary_10_1016_j_jenvman_2024_122903 crossref_primary_10_1007_s10827_023_00857_9 crossref_primary_10_1038_s41562_024_01863_2 crossref_primary_10_3389_fnsys_2022_760864 crossref_primary_10_1038_s41467_021_22321_x crossref_primary_10_1038_s41583_022_00623_3 crossref_primary_10_1371_journal_pdig_0000299 crossref_primary_10_1016_j_jenvman_2023_117309 crossref_primary_10_1109_TNSRE_2022_3191809 crossref_primary_10_1109_JBHI_2025_3530922 crossref_primary_10_1007_s11571_023_09932_4 crossref_primary_10_2139_ssrn_3807498 crossref_primary_10_3389_fnsys_2024_1269190 crossref_primary_10_1007_s11571_023_09956_w crossref_primary_10_3758_s13414_025_03120_8 crossref_primary_10_1073_pnas_2316765121 crossref_primary_10_1016_j_neucom_2024_128946 crossref_primary_10_1371_journal_pcbi_1013083 crossref_primary_10_1016_j_neucom_2024_128513 crossref_primary_10_1073_pnas_2420356122 crossref_primary_10_3389_fevo_2023_703946 crossref_primary_10_1007_s10661_025_14494_5 crossref_primary_10_1038_s42256_021_00394_z crossref_primary_10_1016_j_pneurobio_2023_102537 crossref_primary_10_1126_sciadv_adw5500 crossref_primary_10_7554_eLife_71612 crossref_primary_10_1016_j_neuron_2022_12_016 crossref_primary_10_1016_j_neucom_2022_11_035 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 the Author(s). Published by PNAS. |
| Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1921609117 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 32341153 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c438t-429b9435d32d82c4eac07bdb5238d8c86043d9a7ddd705b7e6222729a68f36552 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532837500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 08:42:21 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | neural network model interval timing population coding |
| Language | English |
| License | Copyright © 2020 the Author(s). Published by PNAS. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-429b9435d32d82c4eac07bdb5238d8c86043d9a7ddd705b7e6222729a68f36552 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4130-0216 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7229760 |
| PMID | 32341153 |
| PQID | 2395602843 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2395602843 pubmed_primary_32341153 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-12 |
| PublicationDateYYYYMMDD | 2020-05-12 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2020 |
| SSID | ssj0009580 |
| Score | 2.5582001 |
| Snippet | To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10530 |
| Title | Understanding the computation of time using neural network models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32341153 https://www.proquest.com/docview/2395602843 |
| Volume | 117 |
| WOSCitedRecordID | wos000532837500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKGp7foxoQpRMUDVgaJuVfwIYkkKKfx-7hJXMDAgsWSJYkV35_N39vn7CLlQzmZBOpkE7HAVLO8lxhqfpLlnUItZbevjgucHNRrp6dSM44ZbFdsqlzmxTtS-dLhH3mUckTwkU34zf0tQNQpPV6OExippcYAy2NKlpvoH6a5u2AhML5HCpEtqH8W78yKrrpELTMLLqFb2K76s15nh1n__cJtsRoRJB01ItMlKKHZIO87hil5GoumrXTKY_LzZQgEKUleLPNTeomVOUXmeYmv8C0XiSxi2aNrGaa2gU-2RyfDu6fY-iZIKiRNcL8AZ4AlASJ4zr5kTkHbBId5COaq9dlqmgnuTKe-9SvtWBYl3ZZnJpM657PfZPlkryiIcEmp7TghAkzBKKnLuLIAxBQAEZUSDM6xDzpdmmkHI4jlEVoTyo5p9G6pDDhpbz-YNt8aMM1hWIQsf_eHrY7LBsPpFLlV2Qlo5TNhwStbd5-K1ej-rYwGeo_HjFwSfvVQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+computation+of+time+using+neural+network+models&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bi%2C+Zedong&rft.au=Zhou%2C+Changsong&rft.date=2020-05-12&rft.eissn=1091-6490&rft.volume=117&rft.issue=19&rft.spage=10530&rft_id=info:doi/10.1073%2Fpnas.1921609117&rft_id=info%3Apmid%2F32341153&rft_id=info%3Apmid%2F32341153&rft.externalDocID=32341153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |