Understanding the computation of time using neural network models

To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in workin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 117; číslo 19; s. 10530
Hlavní autoři: Bi, Zedong, Zhou, Changsong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 12.05.2020
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.
AbstractList To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.
To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.
Author Bi, Zedong
Zhou, Changsong
Author_xml – sequence: 1
  givenname: Zedong
  surname: Bi
  fullname: Bi, Zedong
  organization: Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen 51800, China
– sequence: 2
  givenname: Changsong
  orcidid: 0000-0002-4130-0216
  surname: Zhou
  fullname: Zhou, Changsong
  email: cszhou@hkbu.edu.hk
  organization: Department of Physics, Zhejiang University, Hangzhou 310027, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32341153$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAYRYOMOA9du5Mu3XRMvryXw-ALBtw465I2Ga22SU1SxH9vxRFc3QP3cOEu0cwH7xC6JHhNsKQ3gzdpTTQQgTUh8gQtyASlYBrP_vEcLVN6wxhrrvAZmlOgjBBOF2iz99bFlI23rX8p8qsrmtAPYza5Db4IhyK3vSvG9NN6N0bTTZE_Q3wv-mBdl87R6cF0yV0cc4X2d7fP24dy93T_uN3syoZRlUsGutaMckvBKmiYMw2Wta05UGVVowRm1GojrbUS81o6AQAStBHqQAXnsELXv7tDDB-jS7nq29S4rjPehTFVQDUXGBSjk3p1VMe6d7YaYtub-FX93YZvyG9bZA
CitedBy_id crossref_primary_10_1016_j_tics_2021_08_002
crossref_primary_10_1038_s42256_020_00229_3
crossref_primary_10_1016_j_neunet_2024_106095
crossref_primary_10_1007_s11571_023_09981_9
crossref_primary_10_1016_j_chaos_2021_111410
crossref_primary_10_1016_j_bspc_2022_104494
crossref_primary_10_1162_neco_a_01418
crossref_primary_10_1016_j_jenvman_2024_122903
crossref_primary_10_1007_s10827_023_00857_9
crossref_primary_10_1038_s41562_024_01863_2
crossref_primary_10_3389_fnsys_2022_760864
crossref_primary_10_1038_s41467_021_22321_x
crossref_primary_10_1038_s41583_022_00623_3
crossref_primary_10_1371_journal_pdig_0000299
crossref_primary_10_1016_j_jenvman_2023_117309
crossref_primary_10_1109_TNSRE_2022_3191809
crossref_primary_10_1109_JBHI_2025_3530922
crossref_primary_10_1007_s11571_023_09932_4
crossref_primary_10_2139_ssrn_3807498
crossref_primary_10_3389_fnsys_2024_1269190
crossref_primary_10_1007_s11571_023_09956_w
crossref_primary_10_3758_s13414_025_03120_8
crossref_primary_10_1073_pnas_2316765121
crossref_primary_10_1016_j_neucom_2024_128946
crossref_primary_10_1371_journal_pcbi_1013083
crossref_primary_10_1016_j_neucom_2024_128513
crossref_primary_10_1073_pnas_2420356122
crossref_primary_10_3389_fevo_2023_703946
crossref_primary_10_1007_s10661_025_14494_5
crossref_primary_10_1038_s42256_021_00394_z
crossref_primary_10_1016_j_pneurobio_2023_102537
crossref_primary_10_1126_sciadv_adw5500
crossref_primary_10_7554_eLife_71612
crossref_primary_10_1016_j_neuron_2022_12_016
crossref_primary_10_1016_j_neucom_2022_11_035
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
DBID NPM
7X8
DOI 10.1073/pnas.1921609117
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 32341153
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c438t-429b9435d32d82c4eac07bdb5238d8c86043d9a7ddd705b7e6222729a68f36552
IEDL.DBID 7X8
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532837500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 08:42:21 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords neural network model
interval timing
population coding
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-429b9435d32d82c4eac07bdb5238d8c86043d9a7ddd705b7e6222729a68f36552
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4130-0216
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7229760
PMID 32341153
PQID 2395602843
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2395602843
pubmed_primary_32341153
PublicationCentury 2000
PublicationDate 2020-05-12
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
SSID ssj0009580
Score 2.5582001
Snippet To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10530
Title Understanding the computation of time using neural network models
URI https://www.ncbi.nlm.nih.gov/pubmed/32341153
https://www.proquest.com/docview/2395602843
Volume 117
WOSCitedRecordID wos000532837500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKGp7foxoQpRMUDVgaJuVfwIYkkKKfx-7hJXMDAgsWSJYkV35_N39vn7CLlQzmZBOpkE7HAVLO8lxhqfpLlnUItZbevjgucHNRrp6dSM44ZbFdsqlzmxTtS-dLhH3mUckTwkU34zf0tQNQpPV6OExippcYAy2NKlpvoH6a5u2AhML5HCpEtqH8W78yKrrpELTMLLqFb2K76s15nh1n__cJtsRoRJB01ItMlKKHZIO87hil5GoumrXTKY_LzZQgEKUleLPNTeomVOUXmeYmv8C0XiSxi2aNrGaa2gU-2RyfDu6fY-iZIKiRNcL8AZ4AlASJ4zr5kTkHbBId5COaq9dlqmgnuTKe-9SvtWBYl3ZZnJpM657PfZPlkryiIcEmp7TghAkzBKKnLuLIAxBQAEZUSDM6xDzpdmmkHI4jlEVoTyo5p9G6pDDhpbz-YNt8aMM1hWIQsf_eHrY7LBsPpFLlV2Qlo5TNhwStbd5-K1ej-rYwGeo_HjFwSfvVQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+computation+of+time+using+neural+network+models&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bi%2C+Zedong&rft.au=Zhou%2C+Changsong&rft.date=2020-05-12&rft.eissn=1091-6490&rft.volume=117&rft.issue=19&rft.spage=10530&rft_id=info:doi/10.1073%2Fpnas.1921609117&rft_id=info%3Apmid%2F32341153&rft_id=info%3Apmid%2F32341153&rft.externalDocID=32341153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon