Enhanced backpropagation neural network accuracy through an improved genetic algorithm for tourist flow prediction in an ecological village

Extant tourism studies on predicting tourist flow often adopt Backpropagation Neural Network (BP-NN) and Genetic Algorithm-Backpropagation Neural Network (GABP-NN). However, those models cannot well address the challenge of nonlinear complexity of tourists’ mobility, and fuzzy decision-making due to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 36087 - 22
Hlavní autori: Chen, Xiaolong, Wong, Cora Un In, Zhang, Hongfeng, Song, Zhengchun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 15.10.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Extant tourism studies on predicting tourist flow often adopt Backpropagation Neural Network (BP-NN) and Genetic Algorithm-Backpropagation Neural Network (GABP-NN). However, those models cannot well address the challenge of nonlinear complexity of tourists’ mobility, and fuzzy decision-making due to abrupt urgencies and foul weather. The current study proposes “Adaptive Multi-population Genetic Algorithm Backpropagation (AMGA-BP)”, which features a novel double-layer ladder-structured chromosome design for simultaneous optimization of network structure and weights. Experimental results demonstrate the AMGA-BP model achieves superior performance with a Mean Absolute Percentage Error (MAPE) of 5.32% and coefficient of determination ( r² ) of 0.9869, significantly outperforming traditional BP (25.22% MAPE) and GA-BP (13.61% MAPE) models. The model maintains robust accuracy during peak seasons (6.00% MAPE) and adverse weather conditions (5.50% MAPE), while also surpassing LSTM (8.20% MAPE) and Random Forest (9.80% MAPE) approaches. This advancement provides tourism managers with more reliable tools for visitor flow prediction, particularly in ecological sensitive areas like Banliang Ancient Village, contributing to sustainable tourism development and effective resource management.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-20007-8