Attention-enhanced residual autoencoder for NIR spectral feature extraction and classification of grain varieties

Accurate identification of grain cultivars is critical for improving crop yields, streamlining agricultural workflows, and ensuring global food security. Near-infrared (NIR) spectroscopy offers a rapid, non-destructive solution for grain classification. However, its effectiveness hinges on extractin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 32750 - 18
Hlavní autoři: Kabiso, Abel Chernet, Ko, Cheng-Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 24.09.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate identification of grain cultivars is critical for improving crop yields, streamlining agricultural workflows, and ensuring global food security. Near-infrared (NIR) spectroscopy offers a rapid, non-destructive solution for grain classification. However, its effectiveness hinges on extracting meaningful spectral features. We propose SpecFuseNet, an attention-enhanced residual autoencoder, as a lightweight deep learning model for extracting NIR spectral features and classifying grain varieties. The encoder integrates Fused Efficient Channel Attention (FusedECA) and a Spectral Residual Gate (SRG) to extract informative spectral features, while a mirrored decoder enables robust spectral reconstruction. This architecture supports both spectral reconstruction and cultivar classification, with robust performance and minimal complexity. We evaluated SpecFuseNet on three NIR datasets: barley (1,200 samples, 24 varieties), chickpea (950 samples, 19 varieties), and sorghum (500 samples, 10 varieties) using stratified 5-fold cross-validation. The model achieved classification accuracies of 89.72%, 96.14%, and 90.67%, respectively, outperforming PCA-based machine learning models (SVM, Random Forest, XGBoost) and deep learning baselines such as standard Autoencoder (AE) and Convolutional Sparse Autoencoder (CSAE). These results demonstrate SpecFuseNet’s potential as a fast, interpretable, and deployable solution for real-time classification in field-based and resource-limited settings, with a lightweight design that enables deployment on portable or smartphone-connected NIR spectrometers, supporting sustainable and precise agricultural practices.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-17676-w