A quantum approximate optimization method for finding Hadamard matrices

Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 33254 - 16
1. Verfasser: Suksmono, Andriyan Bayu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.09.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M -order matrix will grow by . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O ( M ). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
AbstractList Abstract Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by $$O(M^2)$$ . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M -order matrix will grow by . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O ( M ). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
ArticleNumber 33254
Author Suksmono, Andriyan Bayu
Author_xml – sequence: 1
  givenname: Andriyan Bayu
  surname: Suksmono
  fullname: Suksmono, Andriyan Bayu
  email: suksmono@itb.ac.id
  organization: The School of Electrical Engineering and Informatics, Institut Teknologi Bandung, ITB Research Center on ICT (PPTIK-ITB), Institut Teknologi Bandung (ITB), University Center of Excellence for Space Science, Technology, and Innovation (PSTIA-ITB), Institut Teknologi Bandung, Research Collaboration Center for Quantum Technology 2.0, BRIN-ITB-Telkom University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41006732$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYNUbG37B1zIgBs3o_lOZlmKtoVCN-06vJOPay53kttkBtRfb3qnVnFhNgnhOW_OyXmLjlJOHqF3BH8imOnPlRMx6B5T0ROtlO7JK3RCMRc9ZZQe_XU-Rue1bnFbgg6cDG_QMScYS8XoCbq66B4XSPMydbDfl_w9TjD7Lu_nOMWfMMecusnP37LrQi5diMnFtOmuwcEExXWNLtH6eoZeB9hVf_68n6KHr1_uL6_727urm8uL295ypueeURmE5hgGqyQJmEo_aiIpwy5QEpykEggQNgpQSjo8gMOMYx4YESA9Z6foZp3rMmzNvjS75YfJEM3hIpeNgTJHu_NGaSy9HUblMeVKcm2VViNXHCi2wo1t1sd1Vsv9uPg6mylW63c7SD4v1TAq-EAZk6KhH_5Bt3kpqSU9UC2RHJ7MvX-mlnHy7sXe7-9uAF0BW3KtxYcXhGDzVKtZazWtVnOo1ZAmYquoNjhtfPnz9n9UvwBXiKFk
Cites_doi 10.1038/s41534-023-00787-5
10.1016/0097-3165(74)90056-9
10.1023/A:1022403732401
10.3390/math8010024
10.1515/9781400842902
10.1063/1.5019371
10.1090/S0002-9904-1965-11273-3
10.1063/1.4768229
10.1038/s41534-023-00733-5
10.1016/j.physrep.2024.03.002
10.1215/S0012-7094-44-01108-7
10.1016/S0166-218X(99)00233-4
10.1038/s41586-019-1666-5
10.1002/sapm1933121311
10.1038/s41598-019-50473-w
10.1002/jcd.20043
10.1038/s41586-023-06096-3
10.1080/14786446708639914
10.1214/aos/1176344370
10.3390/e20020141
10.1038/s41598-021-03586-0
10.1007/978-94-017-1108-1_20
10.1016/j.ins.2022.11.020
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-18778-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_7806ec9b7e0247648c787b474a20c5db
41006732
10_1038_s41598_025_18778_1
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-326f5840a9c761f026eb816230df21fd626a1a13b5a776d09ad03404f315a6e43
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582550500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 14:32:41 EDT 2025
Sat Sep 27 17:46:08 EDT 2025
Tue Oct 07 07:45:54 EDT 2025
Wed Oct 01 06:56:57 EDT 2025
Sat Nov 29 07:24:04 EST 2025
Sat Sep 27 01:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hadamard matrix
Noisy Intermediate-Scale Quantum (NISQ)
Quantum computing
Quantum advantage
Hard problems
Utility-Scale Quantum Computing
QAOA
Quantum annealing
Quantum Optimization
Quantum approximate optimization algorithm
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-326f5840a9c761f026eb816230df21fd626a1a13b5a776d09ad03404f315a6e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3254840694?pq-origsite=%requestingapplication%
PMID 41006732
PQID 3254840694
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7806ec9b7e0247648c787b474a20c5db
proquest_miscellaneous_3254923365
proquest_journals_3254840694
pubmed_primary_41006732
crossref_primary_10_1038_s41598_025_18778_1
springer_journals_10_1038_s41598_025_18778_1
PublicationCentury 2000
PublicationDate 2025-09-26
PublicationDateYYYYMMDD 2025-09-26
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References K Blekos (18778_CR6) 2024; 1068
A Hedayat (18778_CR12) 1978; 6
A Suksmono (18778_CR23) 2019; 9
M Nielsen (18778_CR26) 2010
18778_CR17
18778_CR18
18778_CR19
18778_CR20
18778_CR5
18778_CR22
18778_CR7
18778_CR24
K Setia (18778_CR28) 2018
18778_CR4
JT Seeley (18778_CR27) 2012
18778_CR25
L Baumert (18778_CR15) 1965; 71
Y Ruan (18778_CR3) 2023; 619
E Farhi (18778_CR2) 2014; 1411
J Williamson (18778_CR14) 1944; 11
18778_CR30
J Sylvester (18778_CR9) 1867; 34
18778_CR10
H Kharaghani (18778_CR21) 2005; 13
18778_CR11
R Turyn (18778_CR16) 1974; 16
MJD Powell (18778_CR29) 1994; 275
F Arute (18778_CR1) 2019; 574
J Hadamard (18778_CR8) 1893; 2
R Paley (18778_CR13) 1933; 12
References_xml – ident: 18778_CR5
  doi: 10.1038/s41534-023-00787-5
– volume: 2
  start-page: 240
  year: 1893
  ident: 18778_CR8
  publication-title: Bull. des Sciences Math.
– ident: 18778_CR10
– volume: 16
  start-page: 313
  year: 1974
  ident: 18778_CR16
  publication-title: J. Comb Theory Ser A
  doi: 10.1016/0097-3165(74)90056-9
– ident: 18778_CR25
– ident: 18778_CR17
  doi: 10.1023/A:1022403732401
– ident: 18778_CR20
  doi: 10.3390/math8010024
– ident: 18778_CR11
  doi: 10.1515/9781400842902
– year: 2018
  ident: 18778_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019371
– volume: 71
  start-page: 169
  year: 1965
  ident: 18778_CR15
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1965-11273-3
– volume-title: Quantum Computation and Quantum Information
  year: 2010
  ident: 18778_CR26
– year: 2012
  ident: 18778_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768229
– ident: 18778_CR4
  doi: 10.1038/s41534-023-00733-5
– volume: 1068
  start-page: 1
  year: 2024
  ident: 18778_CR6
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2024.03.002
– ident: 18778_CR30
– volume: 1411
  start-page: 4028
  year: 2014
  ident: 18778_CR2
  publication-title: e-prints
– volume: 275
  start-page: 51
  year: 1994
  ident: 18778_CR29
  publication-title: Math. Appl.
– volume: 11
  start-page: 65
  year: 1944
  ident: 18778_CR14
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-44-01108-7
– ident: 18778_CR19
  doi: 10.1016/S0166-218X(99)00233-4
– volume: 574
  start-page: 505
  year: 2019
  ident: 18778_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 12
  start-page: 311
  year: 1933
  ident: 18778_CR13
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1933121311
– volume: 9
  start-page: 14380
  year: 2019
  ident: 18778_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50473-w
– volume: 13
  start-page: 435
  year: 2005
  ident: 18778_CR21
  publication-title: J. Comb. Des.
  doi: 10.1002/jcd.20043
– ident: 18778_CR7
  doi: 10.1038/s41586-023-06096-3
– volume: 34
  start-page: 461
  year: 1867
  ident: 18778_CR9
  publication-title: Philos. Mag.
  doi: 10.1080/14786446708639914
– volume: 6
  start-page: 1184
  year: 1978
  ident: 18778_CR12
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344370
– ident: 18778_CR22
  doi: 10.3390/e20020141
– ident: 18778_CR24
  doi: 10.1038/s41598-021-03586-0
– ident: 18778_CR18
  doi: 10.1007/978-94-017-1108-1_20
– volume: 619
  start-page: 98
  year: 2023
  ident: 18778_CR3
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.020
SSID ssj0000529419
Score 2.4601479
Snippet Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a...
Abstract Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 33254
SubjectTerms 639/166/987
639/766/483/481
Algorithms
Approximation
Boolean
Circuits
Computers
Fault tolerance
Hadamard matrix
Hard problems
Humanities and Social Sciences
Methods
multidisciplinary
Optimization algorithms
QAOA
Quantum annealing
Quantum approximate optimization algorithm
Quantum computing
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB0hBFIvVSmUpoXKSL1BRBw7tnMExJYDQhwo2ptlJw7ikCyQDYK_79jOLqC26qXXxIrsN2PPG038BuC7UJg1YKKQ8go9GCOGTS06UlqyJme2FrkN7duuz-XFhZpOy8tXrb78P2FRHjgCdyhVJlxVWukwmkjBVYUuZrnkJs-qorb-9EXW8yqZiqreeclpOd6SyZg67DFS-dtkeZFSJX3q9CYSBcH-P7HM3yqkIfBMPsD7kTGSozjTDVhx3UdYjz0knzfhxxG5HxCeoSVBH_zpFjmoIzM8CtrxjiWJbaIJ8lMSatTdDcETx7ToHaQNGv2u34Kfk9Ork7N07I6QVpypeYq8q0H2kJmykoI2mEs5qyiymaxuctogzMJQQ5ktjJSizkpTZwzt0jBaGOE4-wSr3axzn4GUriqMF5NSVnKkZJjVKOHroVxxhwQjgf0FUvouimDoULxmSkdcNeKqA66aJnDswVyO9ALW4QGaVY9m1f8yawI7C1PocVf1mmE2q8JV3QT2lq9xP_gih-ncbIhjkLQyUSSwHU24nAmnoS9PnsDBwqYvH__7gr78jwV9hXe5dz5f0BI7sDp_GNwurFWP89v-4Vvw3l-MaewC
  priority: 102
  providerName: Directory of Open Access Journals
Title A quantum approximate optimization method for finding Hadamard matrices
URI https://link.springer.com/article/10.1038/s41598-025-18778-1
https://www.ncbi.nlm.nih.gov/pubmed/41006732
https://www.proquest.com/docview/3254840694
https://www.proquest.com/docview/3254923365
https://doaj.org/article/7806ec9b7e0247648c787b474a20c5db
Volume 15
WOSCitedRecordID wos001582550500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQulDeBsjISN4gax47tnFCLWkCiqwgBWk6W7ThVD5u0m13U_nvGTnariseFiw-xFdme8fibGc8MwGuhUGtARSHlDjkYbwybWmSktGRNzmwtchvLt33_LKdTNZuV1Whw68dnlWuZGAV13blgI99nqMmoGKb57vwiDVWjgnd1LKGxBTshSwKLT_eqjY0leLE4LcdYmYyp_R7vqxBTlhcpVTIoUDfuo5i2_09Y8zc_abx-jnf_d-L34d4IPMnBwCkP4JZvH8KdoRTl1SP4cEAuVrjLqzmJacYvzxDKetKhRJmPoZpkqDZNEOaS6OpuTwkKLjNHJiPzmOrf94_h2_HR1_cf07HIQuo4U8sU4VuDICQzpZOCNqiSeasogqKsbnLaILWEoYYyWxgpRZ2Vps4YkrdhtDDCc_YEttuu9c-AlN4VJuSkUlZyRHaoHCkR3Kq4fo84JYE3663W50MuDR194EzpgTAaCaMjYTRN4DBQYzMy5MGOH7rFqR6PlZYqE96VVnrEGlJw5VAAWS65yTNX1DaBvTVR9Hg4e31NkQRebbrxWAVfiWl9txrGIPZlokjg6cADm5lwGsv75Am8XTPF9c__vqDn_57LC7ibB74MHi-xB9vLxcq_hNvu5_KsX0xgS85kbNUEdg6PptWXSbQfYHuSV5PI-NhTfTqpfvwCgd0Bww
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQgulDeBAkaCE0SNY8dxDhVqgdJVt6s9FNSejJ04VQ-btJtdoH-K39ixk2yFeNx64JpElh-fZ77xZPwBvBISowYMFEKeI4LRY5jQIJDCjJUxM4WIjZdv-zJKx2N5eJhNVuBnXwvjfqvsbaI31EWduzPyDYaRjPRlmu9Oz0KnGuWyq72ERguLPXv-HUO2ZnP4Adf3dRzvfDx4vxt2qgJhzpmch8hXSvS6kc5yDOFLjEGskRRZQFSUMS2xe0JTTZlJdJqKIsp0ETEcT8loooXlDNu9BqscwS4HsDoZ7k-Olqc6Lm_GadZV50RMbjToIV0VW5yEVKYuZPvFA3qhgD-x298ys97h7az9b1N1B2531JpstXvhLqzY6h7caMU2z-_Dpy1ytkAcLabEX6T-4wTJuiU12sxpV4xKWj1tgkSe-GR-dUzQNOspbiMy9WIGtnkAn69kFA9hUNWVfQwks3mi3a1b0qQcuSuGf1K4xDHOt0UmFsCbfmnVaXtbiPJZfiZVCwSFQFAeCIoGsO1Wf_mlu-nbP6hnx6ozHCqVkbB5ZlKLbCoVXOZoYg1PuY6jPClMAOs9CFRnfhp1iYAAXi5fo-Fw2SBd2XrRfoPsnokkgEct5pY94dQLGMUBvO1BeNn43wf05N99eQE3dw_2R2o0HO89hVux2xMuvyfWYTCfLewzuJ5_m580s-fdtiLw9arheQGRkFZZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hCX8oaUAkaCE0SbxI7tHCpUKAtVq9UeAPVmbMepetik3ewC_Wv8uo6dZCvE49YD1ySK7PjzzDcZz3wAL7jEqAEDhZhZRDB6DBMbBFJc0CqjpuSZCfJtXw7EZCIPD4vpGvwcamH8scrBJgZDXTbW_yMfUYxkZCjTHFX9sYjp7vjNyWnsFaR8pnWQ0-ggsu_OvmP41m7v7eJav8yy8ftP7z7GvcJAbBmVixi5S4UeONGFxXC-wnjEGZkiI0jKKksrHCrXqU6pybUQvEwKXSYU51bRNNfcMYrvvQJXhW9aHo4NTlf_d3wGjaVFX6eTUDlq0Vf6erYsj1MpfPD2iy8MkgF_4rm_5WiD6xvf-p8_2m3Y6Ak32el2yB1Yc_VduN5JcJ7dgw875HSJ6FrOSGiv_uMYKbwjDVrSWV-iSjqVbYL0noQUf31E0GDrGW4uMgsSB669D58vZRYPYL1uavcISOFsrn0vLmkEQ0aLQaHkPp2M394hP4vg1bDM6qTrIaJC7p9K1YFCIShUAIVKI3jrkbB60vf_Dhea-ZHqzYkSMuHOFkY45FiCM2nR8BommM4Sm5cmgq0BEKo3Sq26QEMEz1e30Zz4HJGuXbPsnkHOT3kewcMOf6uRsDTIGmURvB4AefHyv09o899jeQY3EJPqYG-y_xhuZn57-KQf34L1xXzpnsA1-21x3M6fhv1F4OtlY_McgR5dmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum+approximate+optimization+method+for+finding+Hadamard+matrices&rft.jtitle=Scientific+reports&rft.au=Suksmono%2C+Andriyan+Bayu&rft.date=2025-09-26&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=33254&rft_id=info:doi/10.1038%2Fs41598-025-18778-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon