A quantum approximate optimization method for finding Hadamard matrices
Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, wh...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 33254 - 16 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
26.09.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an
M
-order matrix will grow by
. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into
O
(
M
). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. |
|---|---|
| AbstractList | Abstract Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by $$O(M^2)$$ . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M -order matrix will grow by . In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O ( M ). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a quantum annealer were impeded by the limitations of the present quantum resource and its capability to implement high order interaction terms, which for an M-order matrix will grow by [Formula: see text]. In this paper, we propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer. We achieve this by employing the Quantum Approximate Optimization Algorithm (QAOA). Since high order interaction terms that are implemented on a gate-based quantum computer do not need ancillary qubits, the proposed method reduces the required number of qubits into O(M). We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer. |
| ArticleNumber | 33254 |
| Author | Suksmono, Andriyan Bayu |
| Author_xml | – sequence: 1 givenname: Andriyan Bayu surname: Suksmono fullname: Suksmono, Andriyan Bayu email: suksmono@itb.ac.id organization: The School of Electrical Engineering and Informatics, Institut Teknologi Bandung, ITB Research Center on ICT (PPTIK-ITB), Institut Teknologi Bandung (ITB), University Center of Excellence for Space Science, Technology, and Innovation (PSTIA-ITB), Institut Teknologi Bandung, Research Collaboration Center for Quantum Technology 2.0, BRIN-ITB-Telkom University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41006732$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rFTEYhYNUbG37B1zIgBs3o_lOZlmKtoVCN-06vJOPay53kttkBtRfb3qnVnFhNgnhOW_OyXmLjlJOHqF3BH8imOnPlRMx6B5T0ROtlO7JK3RCMRc9ZZQe_XU-Rue1bnFbgg6cDG_QMScYS8XoCbq66B4XSPMydbDfl_w9TjD7Lu_nOMWfMMecusnP37LrQi5diMnFtOmuwcEExXWNLtH6eoZeB9hVf_68n6KHr1_uL6_727urm8uL295ypueeURmE5hgGqyQJmEo_aiIpwy5QEpykEggQNgpQSjo8gMOMYx4YESA9Z6foZp3rMmzNvjS75YfJEM3hIpeNgTJHu_NGaSy9HUblMeVKcm2VViNXHCi2wo1t1sd1Vsv9uPg6mylW63c7SD4v1TAq-EAZk6KhH_5Bt3kpqSU9UC2RHJ7MvX-mlnHy7sXe7-9uAF0BW3KtxYcXhGDzVKtZazWtVnOo1ZAmYquoNjhtfPnz9n9UvwBXiKFk |
| Cites_doi | 10.1038/s41534-023-00787-5 10.1016/0097-3165(74)90056-9 10.1023/A:1022403732401 10.3390/math8010024 10.1515/9781400842902 10.1063/1.5019371 10.1090/S0002-9904-1965-11273-3 10.1063/1.4768229 10.1038/s41534-023-00733-5 10.1016/j.physrep.2024.03.002 10.1215/S0012-7094-44-01108-7 10.1016/S0166-218X(99)00233-4 10.1038/s41586-019-1666-5 10.1002/sapm1933121311 10.1038/s41598-019-50473-w 10.1002/jcd.20043 10.1038/s41586-023-06096-3 10.1080/14786446708639914 10.1214/aos/1176344370 10.3390/e20020141 10.1038/s41598-021-03586-0 10.1007/978-94-017-1108-1_20 10.1016/j.ins.2022.11.020 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-18778-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_7806ec9b7e0247648c787b474a20c5db 41006732 10_1038_s41598_025_18778_1 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-326f5840a9c761f026eb816230df21fd626a1a13b5a776d09ad03404f315a6e43 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582550500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 14:32:41 EDT 2025 Sat Sep 27 17:46:08 EDT 2025 Tue Oct 07 07:45:54 EDT 2025 Wed Oct 01 06:56:57 EDT 2025 Sat Nov 29 07:24:04 EST 2025 Sat Sep 27 01:10:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hadamard matrix Noisy Intermediate-Scale Quantum (NISQ) Quantum computing Quantum advantage Hard problems Utility-Scale Quantum Computing QAOA Quantum annealing Quantum Optimization Quantum approximate optimization algorithm |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-326f5840a9c761f026eb816230df21fd626a1a13b5a776d09ad03404f315a6e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3254840694?pq-origsite=%requestingapplication% |
| PMID | 41006732 |
| PQID | 3254840694 |
| PQPubID | 2041939 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7806ec9b7e0247648c787b474a20c5db proquest_miscellaneous_3254923365 proquest_journals_3254840694 pubmed_primary_41006732 crossref_primary_10_1038_s41598_025_18778_1 springer_journals_10_1038_s41598_025_18778_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-26 |
| PublicationDateYYYYMMDD | 2025-09-26 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | K Blekos (18778_CR6) 2024; 1068 A Hedayat (18778_CR12) 1978; 6 A Suksmono (18778_CR23) 2019; 9 M Nielsen (18778_CR26) 2010 18778_CR17 18778_CR18 18778_CR19 18778_CR20 18778_CR5 18778_CR22 18778_CR7 18778_CR24 K Setia (18778_CR28) 2018 18778_CR4 JT Seeley (18778_CR27) 2012 18778_CR25 L Baumert (18778_CR15) 1965; 71 Y Ruan (18778_CR3) 2023; 619 E Farhi (18778_CR2) 2014; 1411 J Williamson (18778_CR14) 1944; 11 18778_CR30 J Sylvester (18778_CR9) 1867; 34 18778_CR10 H Kharaghani (18778_CR21) 2005; 13 18778_CR11 R Turyn (18778_CR16) 1974; 16 MJD Powell (18778_CR29) 1994; 275 F Arute (18778_CR1) 2019; 574 J Hadamard (18778_CR8) 1893; 2 R Paley (18778_CR13) 1933; 12 |
| References_xml | – ident: 18778_CR5 doi: 10.1038/s41534-023-00787-5 – volume: 2 start-page: 240 year: 1893 ident: 18778_CR8 publication-title: Bull. des Sciences Math. – ident: 18778_CR10 – volume: 16 start-page: 313 year: 1974 ident: 18778_CR16 publication-title: J. Comb Theory Ser A doi: 10.1016/0097-3165(74)90056-9 – ident: 18778_CR25 – ident: 18778_CR17 doi: 10.1023/A:1022403732401 – ident: 18778_CR20 doi: 10.3390/math8010024 – ident: 18778_CR11 doi: 10.1515/9781400842902 – year: 2018 ident: 18778_CR28 publication-title: J. Chem. Phys. doi: 10.1063/1.5019371 – volume: 71 start-page: 169 year: 1965 ident: 18778_CR15 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1965-11273-3 – volume-title: Quantum Computation and Quantum Information year: 2010 ident: 18778_CR26 – year: 2012 ident: 18778_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.4768229 – ident: 18778_CR4 doi: 10.1038/s41534-023-00733-5 – volume: 1068 start-page: 1 year: 2024 ident: 18778_CR6 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2024.03.002 – ident: 18778_CR30 – volume: 1411 start-page: 4028 year: 2014 ident: 18778_CR2 publication-title: e-prints – volume: 275 start-page: 51 year: 1994 ident: 18778_CR29 publication-title: Math. Appl. – volume: 11 start-page: 65 year: 1944 ident: 18778_CR14 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-44-01108-7 – ident: 18778_CR19 doi: 10.1016/S0166-218X(99)00233-4 – volume: 574 start-page: 505 year: 2019 ident: 18778_CR1 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 12 start-page: 311 year: 1933 ident: 18778_CR13 publication-title: J. Math. Phys. doi: 10.1002/sapm1933121311 – volume: 9 start-page: 14380 year: 2019 ident: 18778_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50473-w – volume: 13 start-page: 435 year: 2005 ident: 18778_CR21 publication-title: J. Comb. Des. doi: 10.1002/jcd.20043 – ident: 18778_CR7 doi: 10.1038/s41586-023-06096-3 – volume: 34 start-page: 461 year: 1867 ident: 18778_CR9 publication-title: Philos. Mag. doi: 10.1080/14786446708639914 – volume: 6 start-page: 1184 year: 1978 ident: 18778_CR12 publication-title: Ann. Stat. doi: 10.1214/aos/1176344370 – ident: 18778_CR22 doi: 10.3390/e20020141 – ident: 18778_CR24 doi: 10.1038/s41598-021-03586-0 – ident: 18778_CR18 doi: 10.1007/978-94-017-1108-1_20 – volume: 619 start-page: 98 year: 2023 ident: 18778_CR3 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.020 |
| SSID | ssj0000529419 |
| Score | 2.4601479 |
| Snippet | Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts using a... Abstract Finding a Hadamard matrix of a specific order using a quantum computer can lead to a demonstration of practical quantum advantage. Earlier efforts... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 33254 |
| SubjectTerms | 639/166/987 639/766/483/481 Algorithms Approximation Boolean Circuits Computers Fault tolerance Hadamard matrix Hard problems Humanities and Social Sciences Methods multidisciplinary Optimization algorithms QAOA Quantum annealing Quantum approximate optimization algorithm Quantum computing Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB0hBFIvVSmUpoXKSL1BRBw7tnMExJYDQhwo2ptlJw7ikCyQDYK_79jOLqC26qXXxIrsN2PPG038BuC7UJg1YKKQ8go9GCOGTS06UlqyJme2FrkN7duuz-XFhZpOy8tXrb78P2FRHjgCdyhVJlxVWukwmkjBVYUuZrnkJs-qorb-9EXW8yqZiqreeclpOd6SyZg67DFS-dtkeZFSJX3q9CYSBcH-P7HM3yqkIfBMPsD7kTGSozjTDVhx3UdYjz0knzfhxxG5HxCeoSVBH_zpFjmoIzM8CtrxjiWJbaIJ8lMSatTdDcETx7ToHaQNGv2u34Kfk9Ork7N07I6QVpypeYq8q0H2kJmykoI2mEs5qyiymaxuctogzMJQQ5ktjJSizkpTZwzt0jBaGOE4-wSr3axzn4GUriqMF5NSVnKkZJjVKOHroVxxhwQjgf0FUvouimDoULxmSkdcNeKqA66aJnDswVyO9ALW4QGaVY9m1f8yawI7C1PocVf1mmE2q8JV3QT2lq9xP_gih-ncbIhjkLQyUSSwHU24nAmnoS9PnsDBwqYvH__7gr78jwV9hXe5dz5f0BI7sDp_GNwurFWP89v-4Vvw3l-MaewC priority: 102 providerName: Directory of Open Access Journals |
| Title | A quantum approximate optimization method for finding Hadamard matrices |
| URI | https://link.springer.com/article/10.1038/s41598-025-18778-1 https://www.ncbi.nlm.nih.gov/pubmed/41006732 https://www.proquest.com/docview/3254840694 https://www.proquest.com/docview/3254923365 https://doaj.org/article/7806ec9b7e0247648c787b474a20c5db |
| Volume | 15 |
| WOSCitedRecordID | wos001582550500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQulDeBsjISN4gax47tnFCLWkCiqwgBWk6W7ThVD5u0m13U_nvGTnariseFiw-xFdme8fibGc8MwGuhUGtARSHlDjkYbwybWmSktGRNzmwtchvLt33_LKdTNZuV1Whw68dnlWuZGAV13blgI99nqMmoGKb57vwiDVWjgnd1LKGxBTshSwKLT_eqjY0leLE4LcdYmYyp_R7vqxBTlhcpVTIoUDfuo5i2_09Y8zc_abx-jnf_d-L34d4IPMnBwCkP4JZvH8KdoRTl1SP4cEAuVrjLqzmJacYvzxDKetKhRJmPoZpkqDZNEOaS6OpuTwkKLjNHJiPzmOrf94_h2_HR1_cf07HIQuo4U8sU4VuDICQzpZOCNqiSeasogqKsbnLaILWEoYYyWxgpRZ2Vps4YkrdhtDDCc_YEttuu9c-AlN4VJuSkUlZyRHaoHCkR3Kq4fo84JYE3663W50MuDR194EzpgTAaCaMjYTRN4DBQYzMy5MGOH7rFqR6PlZYqE96VVnrEGlJw5VAAWS65yTNX1DaBvTVR9Hg4e31NkQRebbrxWAVfiWl9txrGIPZlokjg6cADm5lwGsv75Am8XTPF9c__vqDn_57LC7ibB74MHi-xB9vLxcq_hNvu5_KsX0xgS85kbNUEdg6PptWXSbQfYHuSV5PI-NhTfTqpfvwCgd0Bww |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQgulDeBAkaCE0SNY8dxDhVqgdJVt6s9FNSejJ04VQ-btJtdoH-K39ixk2yFeNx64JpElh-fZ77xZPwBvBISowYMFEKeI4LRY5jQIJDCjJUxM4WIjZdv-zJKx2N5eJhNVuBnXwvjfqvsbaI31EWduzPyDYaRjPRlmu9Oz0KnGuWyq72ERguLPXv-HUO2ZnP4Adf3dRzvfDx4vxt2qgJhzpmch8hXSvS6kc5yDOFLjEGskRRZQFSUMS2xe0JTTZlJdJqKIsp0ETEcT8loooXlDNu9BqscwS4HsDoZ7k-Olqc6Lm_GadZV50RMbjToIV0VW5yEVKYuZPvFA3qhgD-x298ys97h7az9b1N1B2531JpstXvhLqzY6h7caMU2z-_Dpy1ytkAcLabEX6T-4wTJuiU12sxpV4xKWj1tgkSe-GR-dUzQNOspbiMy9WIGtnkAn69kFA9hUNWVfQwks3mi3a1b0qQcuSuGf1K4xDHOt0UmFsCbfmnVaXtbiPJZfiZVCwSFQFAeCIoGsO1Wf_mlu-nbP6hnx6ozHCqVkbB5ZlKLbCoVXOZoYg1PuY6jPClMAOs9CFRnfhp1iYAAXi5fo-Fw2SBd2XrRfoPsnokkgEct5pY94dQLGMUBvO1BeNn43wf05N99eQE3dw_2R2o0HO89hVux2xMuvyfWYTCfLewzuJ5_m580s-fdtiLw9arheQGRkFZZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hCX8oaUAkaCE0SbxI7tHCpUKAtVq9UeAPVmbMepetik3ewC_Wv8uo6dZCvE49YD1ySK7PjzzDcZz3wAL7jEqAEDhZhZRDB6DBMbBFJc0CqjpuSZCfJtXw7EZCIPD4vpGvwcamH8scrBJgZDXTbW_yMfUYxkZCjTHFX9sYjp7vjNyWnsFaR8pnWQ0-ggsu_OvmP41m7v7eJav8yy8ftP7z7GvcJAbBmVixi5S4UeONGFxXC-wnjEGZkiI0jKKksrHCrXqU6pybUQvEwKXSYU51bRNNfcMYrvvQJXhW9aHo4NTlf_d3wGjaVFX6eTUDlq0Vf6erYsj1MpfPD2iy8MkgF_4rm_5WiD6xvf-p8_2m3Y6Ak32el2yB1Yc_VduN5JcJ7dgw875HSJ6FrOSGiv_uMYKbwjDVrSWV-iSjqVbYL0noQUf31E0GDrGW4uMgsSB669D58vZRYPYL1uavcISOFsrn0vLmkEQ0aLQaHkPp2M394hP4vg1bDM6qTrIaJC7p9K1YFCIShUAIVKI3jrkbB60vf_Dhea-ZHqzYkSMuHOFkY45FiCM2nR8BommM4Sm5cmgq0BEKo3Sq26QEMEz1e30Zz4HJGuXbPsnkHOT3kewcMOf6uRsDTIGmURvB4AefHyv09o899jeQY3EJPqYG-y_xhuZn57-KQf34L1xXzpnsA1-21x3M6fhv1F4OtlY_McgR5dmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum+approximate+optimization+method+for+finding+Hadamard+matrices&rft.jtitle=Scientific+reports&rft.au=Suksmono%2C+Andriyan+Bayu&rft.date=2025-09-26&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=33254&rft_id=info:doi/10.1038%2Fs41598-025-18778-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |