Optimized energy efficient clustering in WSNs through modified zebra optimization

Addressing the challenges of energy imbalance and the difficulty in optimizing cluster head selection in clustering protocols for wireless sensor networks (WSNs), this paper proposes a clustering protocol based on an improved zebra optimization algorithm (IZOACP). The method systematically solves th...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 37366 - 16
Main Authors: Lan, Yeshen, Kan, Mingqi, Cao, Bingyu, Rao, Chuchu, Zhou, Mingan, Zhou, Peng
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 27.10.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Addressing the challenges of energy imbalance and the difficulty in optimizing cluster head selection in clustering protocols for wireless sensor networks (WSNs), this paper proposes a clustering protocol based on an improved zebra optimization algorithm (IZOACP). The method systematically solves the NP-hard problem of cluster head selection by integrating the zebra optimization algorithm (ZOA), Gaussian mutation strategy, and opposition-based learning mechanism, while optimizing the clustering process based on four key metrics: node residual energy, network density, intra-cluster distance, and communication delay. To further enhance data transmission efficiency, a dynamic adaptive inter-cluster routing mechanism is designed, which achieves path dynamic balancing based on node distance, residual energy, and load status. Experimental results demonstrate that, compared to the LEACH, DMaOWOA, and ARSH-FATI-CHS protocols, IZOACP significantly outperforms the comparison schemes in key metrics such as network lifespan (improved by 97.56%), throughput (improved by 93.88%), and transmission delay (reduced by 10.12%). These results validate its superiority in energy consumption control, topology stability, and large-scale monitoring scenarios, providing an efficient and reliable clustering optimization framework for WSN information monitoring systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-21653-8