Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices

Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AgriEngineering Ročník 7; číslo 3; s. 75
Hlavní autori: Asiminari, Gavriela, Benos, Lefteris, Kateris, Dimitrios, Busato, Patrizia, Achillas, Charisios, Grøn Sørensen, Claus, Pearson, Simon, Bochtis, Dionysis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2025
Predmet:
ISSN:2624-7402, 2624-7402
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that are difficult to determine due to the inherent variability in field configurations and operational conditions. This study aimed to simplify field efficiency estimation by training machine learning regression algorithms on data generated from a farm management information system covering a combination of different field areas and shapes, working patterns, and machine-related parameters. The gradient-boosting regression-based model was the most effective, achieving a high mean R2 value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. The developed model showed also strong predictive performance for indicative agricultural fields located in Europe and North America, reducing considerably the computational time by an average of 73.4% compared to the corresponding analytical approach. Overall, the results of this study highlight the potential of machine learning for simplifying field efficiency prediction without requiring detailed knowledge of a plethora of variables associated with agricultural operations. This can be particularly valuable for farmers who need to make informed decisions about resource allocation and operational planning.
AbstractList Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that are difficult to determine due to the inherent variability in field configurations and operational conditions. This study aimed to simplify field efficiency estimation by training machine learning regression algorithms on data generated from a farm management information system covering a combination of different field areas and shapes, working patterns, and machine-related parameters. The gradient-boosting regression-based model was the most effective, achieving a high mean R2 value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. The developed model showed also strong predictive performance for indicative agricultural fields located in Europe and North America, reducing considerably the computational time by an average of 73.4% compared to the corresponding analytical approach. Overall, the results of this study highlight the potential of machine learning for simplifying field efficiency prediction without requiring detailed knowledge of a plethora of variables associated with agricultural operations. This can be particularly valuable for farmers who need to make informed decisions about resource allocation and operational planning.
Author Kateris, Dimitrios
Grøn Sørensen, Claus
Asiminari, Gavriela
Pearson, Simon
Bochtis, Dionysis
Busato, Patrizia
Achillas, Charisios
Benos, Lefteris
Author_xml – sequence: 1
  givenname: Gavriela
  surname: Asiminari
  fullname: Asiminari, Gavriela
– sequence: 2
  givenname: Lefteris
  orcidid: 0000-0003-2150-5166
  surname: Benos
  fullname: Benos, Lefteris
– sequence: 3
  givenname: Dimitrios
  orcidid: 0000-0002-5731-9472
  surname: Kateris
  fullname: Kateris, Dimitrios
– sequence: 4
  givenname: Patrizia
  surname: Busato
  fullname: Busato, Patrizia
– sequence: 5
  givenname: Charisios
  orcidid: 0000-0001-5503-1777
  surname: Achillas
  fullname: Achillas, Charisios
– sequence: 6
  givenname: Claus
  surname: Grøn Sørensen
  fullname: Grøn Sørensen, Claus
– sequence: 7
  givenname: Simon
  orcidid: 0000-0002-4297-4837
  surname: Pearson
  fullname: Pearson, Simon
– sequence: 8
  givenname: Dionysis
  orcidid: 0000-0002-7058-5986
  surname: Bochtis
  fullname: Bochtis, Dionysis
BookMark eNqFkVFrGzEMx83oYF3XrzAO9pxNPvvOZ9jLKGkXSNnD2udD1smZw8XO7Osg336XpIwyBnuS-Ev_n4T0VlzEFFmI9xI-KmXhE25y4LgJkTmHuDGgAEzzSlzWba0XRkN98SJ_I65L2QJA3YBurL0U_D3s9mPwh9lc3QYeh-oh4y_O5SgsvQ808-lQLcsUdjiFFKvHU-0e6cc8tloz5ngUMA7VHacdTznQM2sVh0Bc3onXHsfC18_xSjzeLh9uvi7W3-5WN1_WC9Kqmxa1Q2g1dMCDIucb5kEactyp2oM0gLXzTOAH563Umo3TjIRWWmMaA6SuxOrMHRJu-32eN86HPmHoT0LKmx7zFGjk3ilnrEdwvus0krSWXItEqBtgJj-zPpxZ-5x-PnGZ-m16ynFev1eyk0pJaOu5qz13UU6lZPZ_pkrojx_q__2h2fj5LyOF6XTfKWMY_2f_DYCjogU
CitedBy_id crossref_primary_10_3390_molecules30091879
crossref_primary_10_3390_app15137074
Cites_doi 10.3390/agriculture14112067
10.13031/2013.35797
10.3390/agronomy14123001
10.1007/s10687-023-00473-x
10.3390/app15020650
10.3390/su14159156
10.1007/s10064-020-02043-y
10.3390/agriengineering6010039
10.1016/j.compag.2013.08.014
10.1080/10447318.2023.2285640
10.3390/su162411086
10.1002/rob.20300
10.1186/s12874-021-01374-y
10.1016/S1537-5110(02)00279-9
10.3390/agronomy13122976
10.1016/j.compag.2023.108526
10.20944/preprints202305.1519.v1
10.3390/app10010329
10.3390/math11030709
10.3390/app11094146
10.3390/agronomy9040175
10.3390/agriculture13010163
10.1016/j.energy.2019.06.043
10.3390/agriculture12030313
10.1109/ACCESS.2023.3321861
10.1016/j.compag.2015.06.018
10.1007/s11119-023-10016-w
10.3390/make6020065
10.1007/s12559-023-10179-8
10.1007/s13347-024-00837-6
10.1080/0952813X.2022.2062458
10.1016/j.compstruc.2025.107657
10.1016/j.biosystemseng.2009.09.003
10.1016/j.agsy.2003.10.009
10.1002/rob.22286
10.3390/agriengineering2030030
10.1016/j.compag.2019.105088
10.3182/20130828-2-SF-3019.00065
10.1109/TIE.2021.3114740
10.5424/sjar/2013111-3290
10.20944/preprints202202.0345.v1
10.1073/pnas.1903070116
10.1016/j.compag.2013.05.011
10.1016/j.agsy.2023.103658
10.3390/agriculture13112112
10.1007/978-3-030-89010-0
10.1016/j.atech.2024.100511
10.1016/j.biosystemseng.2021.05.008
10.1007/s40003-024-00824-5
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/agriengineering7030075
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
ExternalDocumentID oai_doaj_org_article_b3b79fa0bf884ac199cb6acca450eecf
10_3390_agriengineering7030075
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c438t-2ba064080ed3cbf5eed17cbe832f0170a2bfec0fdbf9144e7b4eaca91977570c3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453474000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-7402
IngestDate Tue Oct 14 18:12:34 EDT 2025
Mon Jun 30 12:06:30 EDT 2025
Tue Nov 18 22:23:17 EST 2025
Sat Nov 29 07:16:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-2ba064080ed3cbf5eed17cbe832f0170a2bfec0fdbf9144e7b4eaca91977570c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5503-1777
0000-0002-7058-5986
0000-0003-2150-5166
0000-0002-4297-4837
0000-0002-5731-9472
OpenAccessLink https://www.proquest.com/docview/3181331062?pq-origsite=%requestingapplication%
PQID 3181331062
PQPubID 5046921
ParticipantIDs doaj_primary_oai_doaj_org_article_b3b79fa0bf884ac199cb6acca450eecf
proquest_journals_3181331062
crossref_primary_10_3390_agriengineering7030075
crossref_citationtrail_10_3390_agriengineering7030075
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bettucci (ref_1) 2024; 8
Allgaier (ref_39) 2024; 6
Baron (ref_49) 2025; 38
Gonzalez (ref_22) 2004; 82
Jeon (ref_3) 2021; 208
Asiminari (ref_25) 2024; 6
Li (ref_13) 2013; 11
ref_11
Jensen (ref_17) 2024; 14
ref_53
ref_51
ref_19
ref_16
Bochtis (ref_8) 2009; 104
Amiama (ref_21) 2010; 53
Zhou (ref_29) 2015; 116
ref_24
Sharma (ref_30) 2023; 11
Oksanen (ref_28) 2013; 98
ref_27
Griffel (ref_20) 2020; 168
ref_26
Singh (ref_32) 2024; 36
Konefal (ref_52) 2023; 208
Ha (ref_50) 2024; 40
ref_36
Kumar (ref_18) 2019; 182
Luck (ref_10) 2011; 54
ref_34
ref_33
Patel (ref_2) 2024; 41
ref_31
Ma (ref_35) 2022; 69
Tonle (ref_45) 2024; 217
ref_37
Grisso (ref_14) 2020; 2
Zandonadi (ref_23) 2013; 96
Belkin (ref_40) 2019; 116
Franklin (ref_15) 2023; 24
Palmer (ref_12) 2003; 84
Hassija (ref_47) 2024; 16
Oksanen (ref_9) 2009; 26
ref_46
ref_44
ref_43
Meng (ref_38) 2021; 80
Kazemi (ref_41) 2025; 308
ref_48
Oksanen (ref_7) 2013; 46
ref_5
ref_4
Velthoen (ref_42) 2023; 26
ref_6
References_xml – ident: ref_4
  doi: 10.3390/agriculture14112067
– volume: 53
  start-page: 1739
  year: 2010
  ident: ref_21
  article-title: Prediction of Effective Field Capacity in Forage Harvesting and Disk Harrowing Operations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.35797
– ident: ref_33
  doi: 10.3390/agronomy14123001
– volume: 26
  start-page: 639
  year: 2023
  ident: ref_42
  article-title: Gradient boosting for extreme quantile regression
  publication-title: Extremes
  doi: 10.1007/s10687-023-00473-x
– ident: ref_48
  doi: 10.3390/app15020650
– ident: ref_6
  doi: 10.3390/su14159156
– volume: 80
  start-page: 2215
  year: 2021
  ident: ref_38
  article-title: Application of the ridge regression in the back analysis of a virgin stress field
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-02043-y
– volume: 6
  start-page: 657
  year: 2024
  ident: ref_25
  article-title: Integrated Route-Planning System for Agricultural Robots
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering6010039
– volume: 98
  start-page: 252
  year: 2013
  ident: ref_28
  article-title: Shape-describing indices for agricultural field plots and their relationship to operational efficiency
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.08.014
– volume: 40
  start-page: 8562
  year: 2024
  ident: ref_50
  article-title: Improving Trust in AI with Mitigating Confirmation Bias: Effects of Explanation Type and Debiasing Strategy for Decision-Making with Explainable AI
  publication-title: Int. J. Hum. Comput. Interact.
  doi: 10.1080/10447318.2023.2285640
– ident: ref_34
  doi: 10.3390/su162411086
– volume: 26
  start-page: 651
  year: 2009
  ident: ref_9
  article-title: Coverage path planning algorithms for agricultural field machines
  publication-title: J. F. Robot.
  doi: 10.1002/rob.20300
– ident: ref_37
  doi: 10.1186/s12874-021-01374-y
– volume: 84
  start-page: 283
  year: 2003
  ident: ref_12
  article-title: Improving the Efficiency of Field Operations
  publication-title: Biosyst. Eng.
  doi: 10.1016/S1537-5110(02)00279-9
– ident: ref_26
  doi: 10.3390/agronomy13122976
– volume: 217
  start-page: 108526
  year: 2024
  ident: ref_45
  article-title: A road map for developing novel decision support system (DSS) for disseminating integrated pest management (IPM) technologies
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108526
– ident: ref_31
  doi: 10.20944/preprints202305.1519.v1
– ident: ref_24
  doi: 10.3390/app10010329
– ident: ref_36
  doi: 10.3390/math11030709
– ident: ref_53
  doi: 10.3390/app11094146
– ident: ref_16
  doi: 10.3390/agronomy9040175
– ident: ref_46
  doi: 10.3390/agriculture13010163
– volume: 182
  start-page: 48
  year: 2019
  ident: ref_18
  article-title: Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.043
– ident: ref_51
  doi: 10.3390/agriculture12030313
– volume: 11
  start-page: 111255
  year: 2023
  ident: ref_30
  article-title: Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3321861
– volume: 116
  start-page: 173
  year: 2015
  ident: ref_29
  article-title: Simulation model for the sequential in-field machinery operations in a potato production system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.06.018
– volume: 24
  start-page: 1738
  year: 2023
  ident: ref_15
  article-title: Economics of field size and shape for autonomous crop machines
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10016-w
– volume: 6
  start-page: 1378
  year: 2024
  ident: ref_39
  article-title: Cross-Validation Visualized: A Narrative Guide to Advanced Methods
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make6020065
– volume: 16
  start-page: 45
  year: 2024
  ident: ref_47
  article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-023-10179-8
– volume: 38
  start-page: 4
  year: 2025
  ident: ref_49
  article-title: Trust, Explainability and AI
  publication-title: Philos. Technol.
  doi: 10.1007/s13347-024-00837-6
– volume: 36
  start-page: 337
  year: 2024
  ident: ref_32
  article-title: A novel machine learning approach for rice yield estimation
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2022.2062458
– volume: 308
  start-page: 107657
  year: 2025
  ident: ref_41
  article-title: RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2025.107657
– ident: ref_11
– volume: 104
  start-page: 447
  year: 2009
  ident: ref_8
  article-title: The vehicle routing problem in field logistics part I
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.09.003
– ident: ref_44
– volume: 82
  start-page: 31
  year: 2004
  ident: ref_22
  article-title: Evaluation of land distributions with joint regard to plot size and shape
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2003.10.009
– volume: 41
  start-page: 823
  year: 2024
  ident: ref_2
  article-title: Optimal guidance track generation for precision agriculture: A review of coverage path planning techniques
  publication-title: J. F. Robot.
  doi: 10.1002/rob.22286
– volume: 2
  start-page: 447
  year: 2020
  ident: ref_14
  article-title: Predicting Field Efficiency of Round-Baling Operations in High-Yielding Biomass Crops
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering2030030
– volume: 168
  start-page: 105088
  year: 2020
  ident: ref_20
  article-title: Agricultural field shape descriptors as predictors of field efficiency for perennial grass harvesting: An empirical proof
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105088
– volume: 46
  start-page: 202
  year: 2013
  ident: ref_7
  article-title: Estimating operational efficiency of field work based on field shape
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20130828-2-SF-3019.00065
– volume: 69
  start-page: 9575
  year: 2022
  ident: ref_35
  article-title: Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3114740
– volume: 11
  start-page: 56
  year: 2013
  ident: ref_13
  article-title: Improving the efficiency of spatially selective operations for agricultural robotics in cropping field
  publication-title: Span. J. Agric. Res.
  doi: 10.5424/sjar/2013111-3290
– ident: ref_27
  doi: 10.20944/preprints202202.0345.v1
– volume: 116
  start-page: 15849
  year: 2019
  ident: ref_40
  article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1903070116
– volume: 96
  start-page: 217
  year: 2013
  ident: ref_23
  article-title: Evaluating field shape descriptors for estimating off-target application area in agricultural fields
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.05.011
– volume: 208
  start-page: 103658
  year: 2023
  ident: ref_52
  article-title: Signs of agricultural sustainability: A global assessment of sustainability governance initiatives and their indicators in crop farming
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2023.103658
– ident: ref_19
– ident: ref_5
  doi: 10.3390/agriculture13112112
– ident: ref_43
  doi: 10.1007/978-3-030-89010-0
– volume: 8
  start-page: 100511
  year: 2024
  ident: ref_1
  article-title: A data-driven approach to agricultural machinery working states analysis during ploughing operations
  publication-title: Smart Agric. Technol.
  doi: 10.1016/j.atech.2024.100511
– volume: 54
  start-page: 1237
  year: 2011
  ident: ref_10
  article-title: A Case Study to Evaluate Field Shape Factors for Estimating Overlap Errors with Manual and Automatic Section Control
  publication-title: Trans. ASABE Am. Soc. Agric. Biol. Eng.
– volume: 208
  start-page: 79
  year: 2021
  ident: ref_3
  article-title: Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.05.008
– volume: 14
  start-page: 15
  year: 2024
  ident: ref_17
  article-title: Improving On-farm Energy Use Efficiency by Optimizing Machinery Operations and Management: A Review
  publication-title: Agric. Res.
  doi: 10.1007/s40003-024-00824-5
SSID ssj0002504599
Score 2.3048048
Snippet Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 75
SubjectTerms Agricultural equipment
Agricultural land
agricultural machinery
Agricultural technology
Agriculture
Algorithms
Computing time
Cost control
coverage path planning
Datasets
Efficiency
Energy consumption
Farm machinery
Farm management
farm management information system (FMIS)
Geographic information systems
Learning algorithms
Machine learning
machine learning regression algorithms
Management information systems
Optimization
precision agriculture
predictive modeling
Productivity
Regression models
Resource allocation
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB6keNCD-MRqlRy8Lt3uZpvNsUqrHiyCFXpbkmxSCrqVPvz9zmTTUlDoxdPCskmWyTzykZlvAO6cw5gkjY7QEcqId0u0OS1xQ5JMJ5YrZ3Tpm02I4TAfj-XrVqsvygmr6YFrwbV1qoV0KtYuz7kyHYkTdxWuy7PYWuPI-8ZCboEp8sFEzJVJWZcEp4jr22pCvMEbij9S9JiSC7eikSft_-WTfaAZHMNROCGyXv1nJ7Bnq1M47E3mgSXDnoF9m1IiuC9RYgPKQWMjaiPkgT_re1YIKqlkfTTgujaR-dwA9uJzJy0LtKoTpqqSPdrZJzXWMmGu56ok93EO74P-6OEpCv0SIsPTfBklWtG9XB7bMjXaZRj-OsJoi0briCZHJdpZE7tSO4k4ygrN0e0q2cEzYCZik15Ao5pV9hIYHuS4SK1QaJ4cRaVVJkp8GJEqwZ1sQraWW2ECmTj1tPgoEFSQvIu_5d2E9mbcV02nsXPEPW3L5muiw_YvUEmKoCTFLiVpQmu9qUWw0UWB3gwBOkLi5Oo_1riGg4R6A_v8tBY0lvOVvYF9872cLua3Xj1_ANVD8hY
  priority: 102
  providerName: Directory of Open Access Journals
Title Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices
URI https://www.proquest.com/docview/3181331062
https://doaj.org/article/b3b79fa0bf884ac199cb6acca450eecf
Volume 7
WOSCitedRecordID wos001453474000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M0K
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: PIMPY
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPOjBbyOKpAevC2Pr7HoyYECJgRA_Ej0tbdcSEx0I6N_ve6WgiUYPXrakW5el76vv9b3fI-TUWrBJQqsAFKEI2FkOMqcEECRKVGSYtFrlrtkE7_fThwcx8AG3qU-rXOhEp6jzkcYYeR14D9wpcGCi8_FrgF2j8HTVt9BYJWVEKgM-L7fa_cHNMsqCAF2JEPPS4Bj8-7ocIn7wEuoPGT7EJMMvVsmB93_Tzc7gdLb--6vbZNNvNWlzzhs7ZMUUu2SjOZx4uA2zR8ztE2aUu1on2sFkNnqH_YhcBIG2HbwE1mbSNmiCeZEjdUkGtOeSMA31-KxDKoucXprRC3bo0v5b3SJHPbRP7jvtu4urwDdeCDSL01kQKYkHfGlo8lgrm4AdbXCtDEi_RbwdGSlrdGhzZQU4ZIYrBvpbigZsJhMe6viAlIpRYQ4JhR0h47HhEuScwVormfAcbprHkjMrKiRZLHymPSo5Nsd4zsA7QYJlPxOsQurLeeM5LsefM1pI1-XbiKvtBkaTYebFNFOx4sLKUNk0ZVI3BLDxmQQuZ0lojLYVUl2QPPPCPs0-6X30--Njsh5h-2CXwlYlpdnkzZyQNf0-e5pOap53ay4sANdeeA1jg25v8PgB7EAClg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbhMxEB21KVLhQKEUEWjBBziustn11usDqgokNGoTRSJI5bTYXjuqBJuSBFB_qt_YGa83VKIqpx44RUqyKyV-88bjnXkP4LVzmJOk0RESoYz4fokxpyUuSJLpxHLljC692YQYjfLTUzleg8tmFobaKhtO9ERdzgydkXcQe1hOYQGTHJz_iMg1ip6uNhYaNSyO7cVvLNkWbwcfcH3fJEm_N3l_FAVXgcjwNF9GiVb09CqPbZka7TJMEl1htEVoOxKTUYl21sSu1E5itWGF5khOSnZxp5SJ2KR433XY4AT2FmyMB8Pxl9WpDgmCZVLWo8hpKuOOmpJe8UpakAIspqbGa1nQmwX8lQt8gutv_W9_zSN4GLbS7LDG_mNYs9U2PDiczoOciH0C9tMZdcz7WS7Wp2Y9NiG_JX9CwnpePoNmT1kPma4e4mS-iYINfZOpZUF_dspUVbKPdvadHMhMuNegKolnd-DznfzOp9CqZpV9Bgx3vFykVijkMY5rq1UmSnwxIlWCO9mGrFnowgTVdTL_-FZg9UUAKW4GSBs6q-vOa92Rf17xjnC0-jbphvs3ZvNpEWio0KkW0qlYuzznynQlhum-wijmWWytcW3YbSBWBDJbFH_w9fz2j1_B5tFkeFKcDEbHL-B-QlbJvl1vF1rL-U-7B_fMr-XZYv4yxA2Dr3eNxyvlal8C
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFCE40PKlBlrwAY6rbLzeen2oUKEJRG2jSBSpnBbba0eV6KYkgYq_xq9jxusNlajg1AOnSEl2pcRv3ni8M-8BvPQec5KyJkEiVInYrTDmjMIF4bnhTmhvTRXMJuR4XJyeqska_GxnYaitsuXEQNTVzNIZeQ-xh-UUFjC852NbxORg-Pria0IOUvSktbXTaCBy6H5cYvm22Bsd4Fq_4nw4OHn7PokOA4kVWbFMuNH0JKtIXZVZ43NMGH1pjUOYexKW0dx4Z1NfGa-w8nDSCCQqrfq4a8plajO87y1Yxy254B1Yn4yOJ59WJzwkDpYr1YwlZ5lKe3pK2sUrmUEKtpQaHK9kxGAc8EdeCMluuPE__02bcD9usdl-ExMPYM3VD-He_nQeZUbcI3AfzqiTPsx4sSE18bET8mEKJydsEGQ1aCaVDZABm-FOFpor2HFoPnUs6tJOma4r9s7NzsmZzMZ7jeqK-PcxfLyR3_kEOvWsdlvAcCcsZOakRn4TuM5G57LCFyszLYVXXcjbRS9tVGMnU5AvJVZlBJbyerB0obe67qLRI_nnFW8IU6tvk554eGM2n5aRnkqTGam8To0vCqFtX2H47mqMbpGnzlnfhe0WbmUkuUX5G2tP__7xC7iDICyPRuPDZ3CXk4Ny6OLbhs5y_s3twG37fXm2mD-PIcTg803D8RdZsmfC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplifying+Field+Traversing+Efficiency+Estimation+Using+Machine+Learning+and+Geometric+Field+Indices&rft.jtitle=AgriEngineering&rft.au=Asiminari%2C+Gavriela&rft.au=Benos%2C+Lefteris&rft.au=Kateris%2C+Dimitrios&rft.au=Busato%2C+Patrizia&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=7&rft.issue=3&rft.spage=75&rft_id=info:doi/10.3390%2Fagriengineering7030075&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon