Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices
Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that...
Uložené v:
| Vydané v: | AgriEngineering Ročník 7; číslo 3; s. 75 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.03.2025
|
| Predmet: | |
| ISSN: | 2624-7402, 2624-7402 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that are difficult to determine due to the inherent variability in field configurations and operational conditions. This study aimed to simplify field efficiency estimation by training machine learning regression algorithms on data generated from a farm management information system covering a combination of different field areas and shapes, working patterns, and machine-related parameters. The gradient-boosting regression-based model was the most effective, achieving a high mean R2 value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. The developed model showed also strong predictive performance for indicative agricultural fields located in Europe and North America, reducing considerably the computational time by an average of 73.4% compared to the corresponding analytical approach. Overall, the results of this study highlight the potential of machine learning for simplifying field efficiency prediction without requiring detailed knowledge of a plethora of variables associated with agricultural operations. This can be particularly valuable for farmers who need to make informed decisions about resource allocation and operational planning. |
|---|---|
| AbstractList | Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost, maximizing productivity, and supporting sustainability. Field efficiency is influenced by several unpredictable and stochastic factors that are difficult to determine due to the inherent variability in field configurations and operational conditions. This study aimed to simplify field efficiency estimation by training machine learning regression algorithms on data generated from a farm management information system covering a combination of different field areas and shapes, working patterns, and machine-related parameters. The gradient-boosting regression-based model was the most effective, achieving a high mean R2 value of 0.931 in predicting field efficiency, by taking into account only basic geometric field indices. The developed model showed also strong predictive performance for indicative agricultural fields located in Europe and North America, reducing considerably the computational time by an average of 73.4% compared to the corresponding analytical approach. Overall, the results of this study highlight the potential of machine learning for simplifying field efficiency prediction without requiring detailed knowledge of a plethora of variables associated with agricultural operations. This can be particularly valuable for farmers who need to make informed decisions about resource allocation and operational planning. |
| Author | Kateris, Dimitrios Grøn Sørensen, Claus Asiminari, Gavriela Pearson, Simon Bochtis, Dionysis Busato, Patrizia Achillas, Charisios Benos, Lefteris |
| Author_xml | – sequence: 1 givenname: Gavriela surname: Asiminari fullname: Asiminari, Gavriela – sequence: 2 givenname: Lefteris orcidid: 0000-0003-2150-5166 surname: Benos fullname: Benos, Lefteris – sequence: 3 givenname: Dimitrios orcidid: 0000-0002-5731-9472 surname: Kateris fullname: Kateris, Dimitrios – sequence: 4 givenname: Patrizia surname: Busato fullname: Busato, Patrizia – sequence: 5 givenname: Charisios orcidid: 0000-0001-5503-1777 surname: Achillas fullname: Achillas, Charisios – sequence: 6 givenname: Claus surname: Grøn Sørensen fullname: Grøn Sørensen, Claus – sequence: 7 givenname: Simon orcidid: 0000-0002-4297-4837 surname: Pearson fullname: Pearson, Simon – sequence: 8 givenname: Dionysis orcidid: 0000-0002-7058-5986 surname: Bochtis fullname: Bochtis, Dionysis |
| BookMark | eNqFkVFrGzEMx83oYF3XrzAO9pxNPvvOZ9jLKGkXSNnD2udD1smZw8XO7Osg336XpIwyBnuS-Ev_n4T0VlzEFFmI9xI-KmXhE25y4LgJkTmHuDGgAEzzSlzWba0XRkN98SJ_I65L2QJA3YBurL0U_D3s9mPwh9lc3QYeh-oh4y_O5SgsvQ808-lQLcsUdjiFFKvHU-0e6cc8tloz5ngUMA7VHacdTznQM2sVh0Bc3onXHsfC18_xSjzeLh9uvi7W3-5WN1_WC9Kqmxa1Q2g1dMCDIucb5kEactyp2oM0gLXzTOAH563Umo3TjIRWWmMaA6SuxOrMHRJu-32eN86HPmHoT0LKmx7zFGjk3ilnrEdwvus0krSWXItEqBtgJj-zPpxZ-5x-PnGZ-m16ynFev1eyk0pJaOu5qz13UU6lZPZ_pkrojx_q__2h2fj5LyOF6XTfKWMY_2f_DYCjogU |
| CitedBy_id | crossref_primary_10_3390_molecules30091879 crossref_primary_10_3390_app15137074 |
| Cites_doi | 10.3390/agriculture14112067 10.13031/2013.35797 10.3390/agronomy14123001 10.1007/s10687-023-00473-x 10.3390/app15020650 10.3390/su14159156 10.1007/s10064-020-02043-y 10.3390/agriengineering6010039 10.1016/j.compag.2013.08.014 10.1080/10447318.2023.2285640 10.3390/su162411086 10.1002/rob.20300 10.1186/s12874-021-01374-y 10.1016/S1537-5110(02)00279-9 10.3390/agronomy13122976 10.1016/j.compag.2023.108526 10.20944/preprints202305.1519.v1 10.3390/app10010329 10.3390/math11030709 10.3390/app11094146 10.3390/agronomy9040175 10.3390/agriculture13010163 10.1016/j.energy.2019.06.043 10.3390/agriculture12030313 10.1109/ACCESS.2023.3321861 10.1016/j.compag.2015.06.018 10.1007/s11119-023-10016-w 10.3390/make6020065 10.1007/s12559-023-10179-8 10.1007/s13347-024-00837-6 10.1080/0952813X.2022.2062458 10.1016/j.compstruc.2025.107657 10.1016/j.biosystemseng.2009.09.003 10.1016/j.agsy.2003.10.009 10.1002/rob.22286 10.3390/agriengineering2030030 10.1016/j.compag.2019.105088 10.3182/20130828-2-SF-3019.00065 10.1109/TIE.2021.3114740 10.5424/sjar/2013111-3290 10.20944/preprints202202.0345.v1 10.1073/pnas.1903070116 10.1016/j.compag.2013.05.011 10.1016/j.agsy.2023.103658 10.3390/agriculture13112112 10.1007/978-3-030-89010-0 10.1016/j.atech.2024.100511 10.1016/j.biosystemseng.2021.05.008 10.1007/s40003-024-00824-5 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/agriengineering7030075 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2624-7402 |
| ExternalDocumentID | oai_doaj_org_article_b3b79fa0bf884ac199cb6acca450eecf 10_3390_agriengineering7030075 |
| GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c438t-2ba064080ed3cbf5eed17cbe832f0170a2bfec0fdbf9144e7b4eaca91977570c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453474000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-7402 |
| IngestDate | Tue Oct 14 18:12:34 EDT 2025 Mon Jun 30 12:06:30 EDT 2025 Tue Nov 18 22:23:17 EST 2025 Sat Nov 29 07:16:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-2ba064080ed3cbf5eed17cbe832f0170a2bfec0fdbf9144e7b4eaca91977570c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5503-1777 0000-0002-7058-5986 0000-0003-2150-5166 0000-0002-4297-4837 0000-0002-5731-9472 |
| OpenAccessLink | https://www.proquest.com/docview/3181331062?pq-origsite=%requestingapplication% |
| PQID | 3181331062 |
| PQPubID | 5046921 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b3b79fa0bf884ac199cb6acca450eecf proquest_journals_3181331062 crossref_primary_10_3390_agriengineering7030075 crossref_citationtrail_10_3390_agriengineering7030075 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | AgriEngineering |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Bettucci (ref_1) 2024; 8 Allgaier (ref_39) 2024; 6 Baron (ref_49) 2025; 38 Gonzalez (ref_22) 2004; 82 Jeon (ref_3) 2021; 208 Asiminari (ref_25) 2024; 6 Li (ref_13) 2013; 11 ref_11 Jensen (ref_17) 2024; 14 ref_53 ref_51 ref_19 ref_16 Bochtis (ref_8) 2009; 104 Amiama (ref_21) 2010; 53 Zhou (ref_29) 2015; 116 ref_24 Sharma (ref_30) 2023; 11 Oksanen (ref_28) 2013; 98 ref_27 Griffel (ref_20) 2020; 168 ref_26 Singh (ref_32) 2024; 36 Konefal (ref_52) 2023; 208 Ha (ref_50) 2024; 40 ref_36 Kumar (ref_18) 2019; 182 Luck (ref_10) 2011; 54 ref_34 ref_33 Patel (ref_2) 2024; 41 ref_31 Ma (ref_35) 2022; 69 Tonle (ref_45) 2024; 217 ref_37 Grisso (ref_14) 2020; 2 Zandonadi (ref_23) 2013; 96 Belkin (ref_40) 2019; 116 Franklin (ref_15) 2023; 24 Palmer (ref_12) 2003; 84 Hassija (ref_47) 2024; 16 Oksanen (ref_9) 2009; 26 ref_46 ref_44 ref_43 Meng (ref_38) 2021; 80 Kazemi (ref_41) 2025; 308 ref_48 Oksanen (ref_7) 2013; 46 ref_5 ref_4 Velthoen (ref_42) 2023; 26 ref_6 |
| References_xml | – ident: ref_4 doi: 10.3390/agriculture14112067 – volume: 53 start-page: 1739 year: 2010 ident: ref_21 article-title: Prediction of Effective Field Capacity in Forage Harvesting and Disk Harrowing Operations publication-title: Trans. ASABE doi: 10.13031/2013.35797 – ident: ref_33 doi: 10.3390/agronomy14123001 – volume: 26 start-page: 639 year: 2023 ident: ref_42 article-title: Gradient boosting for extreme quantile regression publication-title: Extremes doi: 10.1007/s10687-023-00473-x – ident: ref_48 doi: 10.3390/app15020650 – ident: ref_6 doi: 10.3390/su14159156 – volume: 80 start-page: 2215 year: 2021 ident: ref_38 article-title: Application of the ridge regression in the back analysis of a virgin stress field publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-02043-y – volume: 6 start-page: 657 year: 2024 ident: ref_25 article-title: Integrated Route-Planning System for Agricultural Robots publication-title: AgriEngineering doi: 10.3390/agriengineering6010039 – volume: 98 start-page: 252 year: 2013 ident: ref_28 article-title: Shape-describing indices for agricultural field plots and their relationship to operational efficiency publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.08.014 – volume: 40 start-page: 8562 year: 2024 ident: ref_50 article-title: Improving Trust in AI with Mitigating Confirmation Bias: Effects of Explanation Type and Debiasing Strategy for Decision-Making with Explainable AI publication-title: Int. J. Hum. Comput. Interact. doi: 10.1080/10447318.2023.2285640 – ident: ref_34 doi: 10.3390/su162411086 – volume: 26 start-page: 651 year: 2009 ident: ref_9 article-title: Coverage path planning algorithms for agricultural field machines publication-title: J. F. Robot. doi: 10.1002/rob.20300 – ident: ref_37 doi: 10.1186/s12874-021-01374-y – volume: 84 start-page: 283 year: 2003 ident: ref_12 article-title: Improving the Efficiency of Field Operations publication-title: Biosyst. Eng. doi: 10.1016/S1537-5110(02)00279-9 – ident: ref_26 doi: 10.3390/agronomy13122976 – volume: 217 start-page: 108526 year: 2024 ident: ref_45 article-title: A road map for developing novel decision support system (DSS) for disseminating integrated pest management (IPM) technologies publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108526 – ident: ref_31 doi: 10.20944/preprints202305.1519.v1 – ident: ref_24 doi: 10.3390/app10010329 – ident: ref_36 doi: 10.3390/math11030709 – ident: ref_53 doi: 10.3390/app11094146 – ident: ref_16 doi: 10.3390/agronomy9040175 – ident: ref_46 doi: 10.3390/agriculture13010163 – volume: 182 start-page: 48 year: 2019 ident: ref_18 article-title: Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment publication-title: Energy doi: 10.1016/j.energy.2019.06.043 – ident: ref_51 doi: 10.3390/agriculture12030313 – volume: 11 start-page: 111255 year: 2023 ident: ref_30 article-title: Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3321861 – volume: 116 start-page: 173 year: 2015 ident: ref_29 article-title: Simulation model for the sequential in-field machinery operations in a potato production system publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.06.018 – volume: 24 start-page: 1738 year: 2023 ident: ref_15 article-title: Economics of field size and shape for autonomous crop machines publication-title: Precis. Agric. doi: 10.1007/s11119-023-10016-w – volume: 6 start-page: 1378 year: 2024 ident: ref_39 article-title: Cross-Validation Visualized: A Narrative Guide to Advanced Methods publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make6020065 – volume: 16 start-page: 45 year: 2024 ident: ref_47 article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence publication-title: Cognit. Comput. doi: 10.1007/s12559-023-10179-8 – volume: 38 start-page: 4 year: 2025 ident: ref_49 article-title: Trust, Explainability and AI publication-title: Philos. Technol. doi: 10.1007/s13347-024-00837-6 – volume: 36 start-page: 337 year: 2024 ident: ref_32 article-title: A novel machine learning approach for rice yield estimation publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2022.2062458 – volume: 308 start-page: 107657 year: 2025 ident: ref_41 article-title: RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2025.107657 – ident: ref_11 – volume: 104 start-page: 447 year: 2009 ident: ref_8 article-title: The vehicle routing problem in field logistics part I publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2009.09.003 – ident: ref_44 – volume: 82 start-page: 31 year: 2004 ident: ref_22 article-title: Evaluation of land distributions with joint regard to plot size and shape publication-title: Agric. Syst. doi: 10.1016/j.agsy.2003.10.009 – volume: 41 start-page: 823 year: 2024 ident: ref_2 article-title: Optimal guidance track generation for precision agriculture: A review of coverage path planning techniques publication-title: J. F. Robot. doi: 10.1002/rob.22286 – volume: 2 start-page: 447 year: 2020 ident: ref_14 article-title: Predicting Field Efficiency of Round-Baling Operations in High-Yielding Biomass Crops publication-title: AgriEngineering doi: 10.3390/agriengineering2030030 – volume: 168 start-page: 105088 year: 2020 ident: ref_20 article-title: Agricultural field shape descriptors as predictors of field efficiency for perennial grass harvesting: An empirical proof publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105088 – volume: 46 start-page: 202 year: 2013 ident: ref_7 article-title: Estimating operational efficiency of field work based on field shape publication-title: IFAC Proc. Vol. doi: 10.3182/20130828-2-SF-3019.00065 – volume: 69 start-page: 9575 year: 2022 ident: ref_35 article-title: Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3114740 – volume: 11 start-page: 56 year: 2013 ident: ref_13 article-title: Improving the efficiency of spatially selective operations for agricultural robotics in cropping field publication-title: Span. J. Agric. Res. doi: 10.5424/sjar/2013111-3290 – ident: ref_27 doi: 10.20944/preprints202202.0345.v1 – volume: 116 start-page: 15849 year: 2019 ident: ref_40 article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1903070116 – volume: 96 start-page: 217 year: 2013 ident: ref_23 article-title: Evaluating field shape descriptors for estimating off-target application area in agricultural fields publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.05.011 – volume: 208 start-page: 103658 year: 2023 ident: ref_52 article-title: Signs of agricultural sustainability: A global assessment of sustainability governance initiatives and their indicators in crop farming publication-title: Agric. Syst. doi: 10.1016/j.agsy.2023.103658 – ident: ref_19 – ident: ref_5 doi: 10.3390/agriculture13112112 – ident: ref_43 doi: 10.1007/978-3-030-89010-0 – volume: 8 start-page: 100511 year: 2024 ident: ref_1 article-title: A data-driven approach to agricultural machinery working states analysis during ploughing operations publication-title: Smart Agric. Technol. doi: 10.1016/j.atech.2024.100511 – volume: 54 start-page: 1237 year: 2011 ident: ref_10 article-title: A Case Study to Evaluate Field Shape Factors for Estimating Overlap Errors with Manual and Automatic Section Control publication-title: Trans. ASABE Am. Soc. Agric. Biol. Eng. – volume: 208 start-page: 79 year: 2021 ident: ref_3 article-title: Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.05.008 – volume: 14 start-page: 15 year: 2024 ident: ref_17 article-title: Improving On-farm Energy Use Efficiency by Optimizing Machinery Operations and Management: A Review publication-title: Agric. Res. doi: 10.1007/s40003-024-00824-5 |
| SSID | ssj0002504599 |
| Score | 2.3048048 |
| Snippet | Enhancing agricultural machinery field efficiency offers substantial benefits for farm management by optimizing the available resources, thereby reducing cost,... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 75 |
| SubjectTerms | Agricultural equipment Agricultural land agricultural machinery Agricultural technology Agriculture Algorithms Computing time Cost control coverage path planning Datasets Efficiency Energy consumption Farm machinery Farm management farm management information system (FMIS) Geographic information systems Learning algorithms Machine learning machine learning regression algorithms Management information systems Optimization precision agriculture predictive modeling Productivity Regression models Resource allocation |
| SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB6keNCD-MRqlRy8Lt3uZpvNsUqrHiyCFXpbkmxSCrqVPvz9zmTTUlDoxdPCskmWyTzykZlvAO6cw5gkjY7QEcqId0u0OS1xQ5JMJ5YrZ3Tpm02I4TAfj-XrVqsvygmr6YFrwbV1qoV0KtYuz7kyHYkTdxWuy7PYWuPI-8ZCboEp8sFEzJVJWZcEp4jr22pCvMEbij9S9JiSC7eikSft_-WTfaAZHMNROCGyXv1nJ7Bnq1M47E3mgSXDnoF9m1IiuC9RYgPKQWMjaiPkgT_re1YIKqlkfTTgujaR-dwA9uJzJy0LtKoTpqqSPdrZJzXWMmGu56ok93EO74P-6OEpCv0SIsPTfBklWtG9XB7bMjXaZRj-OsJoi0briCZHJdpZE7tSO4k4ygrN0e0q2cEzYCZik15Ao5pV9hIYHuS4SK1QaJ4cRaVVJkp8GJEqwZ1sQraWW2ECmTj1tPgoEFSQvIu_5d2E9mbcV02nsXPEPW3L5muiw_YvUEmKoCTFLiVpQmu9qUWw0UWB3gwBOkLi5Oo_1riGg4R6A_v8tBY0lvOVvYF9872cLua3Xj1_ANVD8hY priority: 102 providerName: Directory of Open Access Journals |
| Title | Simplifying Field Traversing Efficiency Estimation Using Machine Learning and Geometric Field Indices |
| URI | https://www.proquest.com/docview/3181331062 https://doaj.org/article/b3b79fa0bf884ac199cb6acca450eecf |
| Volume | 7 |
| WOSCitedRecordID | wos001453474000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M0K dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: PIMPY dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPOjBbyOKpAevC2Pr7HoyYECJgRA_Ej0tbdcSEx0I6N_ve6WgiUYPXrakW5el76vv9b3fI-TUWrBJQqsAFKEI2FkOMqcEECRKVGSYtFrlrtkE7_fThwcx8AG3qU-rXOhEp6jzkcYYeR14D9wpcGCi8_FrgF2j8HTVt9BYJWVEKgM-L7fa_cHNMsqCAF2JEPPS4Bj8-7ocIn7wEuoPGT7EJMMvVsmB93_Tzc7gdLb--6vbZNNvNWlzzhs7ZMUUu2SjOZx4uA2zR8ztE2aUu1on2sFkNnqH_YhcBIG2HbwE1mbSNmiCeZEjdUkGtOeSMA31-KxDKoucXprRC3bo0v5b3SJHPbRP7jvtu4urwDdeCDSL01kQKYkHfGlo8lgrm4AdbXCtDEi_RbwdGSlrdGhzZQU4ZIYrBvpbigZsJhMe6viAlIpRYQ4JhR0h47HhEuScwVormfAcbprHkjMrKiRZLHymPSo5Nsd4zsA7QYJlPxOsQurLeeM5LsefM1pI1-XbiKvtBkaTYebFNFOx4sLKUNk0ZVI3BLDxmQQuZ0lojLYVUl2QPPPCPs0-6X30--Njsh5h-2CXwlYlpdnkzZyQNf0-e5pOap53ay4sANdeeA1jg25v8PgB7EAClg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbhMxEB21KVLhQKEUEWjBBziustn11usDqgokNGoTRSJI5bTYXjuqBJuSBFB_qt_YGa83VKIqpx44RUqyKyV-88bjnXkP4LVzmJOk0RESoYz4fokxpyUuSJLpxHLljC692YQYjfLTUzleg8tmFobaKhtO9ERdzgydkXcQe1hOYQGTHJz_iMg1ip6uNhYaNSyO7cVvLNkWbwcfcH3fJEm_N3l_FAVXgcjwNF9GiVb09CqPbZka7TJMEl1htEVoOxKTUYl21sSu1E5itWGF5khOSnZxp5SJ2KR433XY4AT2FmyMB8Pxl9WpDgmCZVLWo8hpKuOOmpJe8UpakAIspqbGa1nQmwX8lQt8gutv_W9_zSN4GLbS7LDG_mNYs9U2PDiczoOciH0C9tMZdcz7WS7Wp2Y9NiG_JX9CwnpePoNmT1kPma4e4mS-iYINfZOpZUF_dspUVbKPdvadHMhMuNegKolnd-DznfzOp9CqZpV9Bgx3vFykVijkMY5rq1UmSnwxIlWCO9mGrFnowgTVdTL_-FZg9UUAKW4GSBs6q-vOa92Rf17xjnC0-jbphvs3ZvNpEWio0KkW0qlYuzznynQlhum-wijmWWytcW3YbSBWBDJbFH_w9fz2j1_B5tFkeFKcDEbHL-B-QlbJvl1vF1rL-U-7B_fMr-XZYv4yxA2Dr3eNxyvlal8C |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFCE40PKlBlrwAY6rbLzeen2oUKEJRG2jSBSpnBbba0eV6KYkgYq_xq9jxusNlajg1AOnSEl2pcRv3ni8M-8BvPQec5KyJkEiVInYrTDmjMIF4bnhTmhvTRXMJuR4XJyeqska_GxnYaitsuXEQNTVzNIZeQ-xh-UUFjC852NbxORg-Pria0IOUvSktbXTaCBy6H5cYvm22Bsd4Fq_4nw4OHn7PokOA4kVWbFMuNH0JKtIXZVZ43NMGH1pjUOYexKW0dx4Z1NfGa-w8nDSCCQqrfq4a8plajO87y1Yxy254B1Yn4yOJ59WJzwkDpYr1YwlZ5lKe3pK2sUrmUEKtpQaHK9kxGAc8EdeCMluuPE__02bcD9usdl-ExMPYM3VD-He_nQeZUbcI3AfzqiTPsx4sSE18bET8mEKJydsEGQ1aCaVDZABm-FOFpor2HFoPnUs6tJOma4r9s7NzsmZzMZ7jeqK-PcxfLyR3_kEOvWsdlvAcCcsZOakRn4TuM5G57LCFyszLYVXXcjbRS9tVGMnU5AvJVZlBJbyerB0obe67qLRI_nnFW8IU6tvk554eGM2n5aRnkqTGam8To0vCqFtX2H47mqMbpGnzlnfhe0WbmUkuUX5G2tP__7xC7iDICyPRuPDZ3CXk4Ny6OLbhs5y_s3twG37fXm2mD-PIcTg803D8RdZsmfC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplifying+Field+Traversing+Efficiency+Estimation+Using+Machine+Learning+and+Geometric+Field+Indices&rft.jtitle=AgriEngineering&rft.au=Asiminari%2C+Gavriela&rft.au=Benos%2C+Lefteris&rft.au=Kateris%2C+Dimitrios&rft.au=Busato%2C+Patrizia&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=7&rft.issue=3&rft.spage=75&rft_id=info:doi/10.3390%2Fagriengineering7030075&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |