Visual prediction method based on time series-driven LSTM model

Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorit...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 38057 - 14
Main Authors: Jumahong, Huxidan, Wang, Yongjie, Aili, Abuduwaili, Wang, Weina
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.10.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorithms in image temporal inference, this paper proposes a novel visual prediction framework based on the time series forecasting model, which can predict single-frame or multi-frame images by thoroughly analyzing their spatio-temporal features. Firstly, the ViT image feature extraction module is constructed by randomly masking and reconstructing the image to analyze the learned image and extract the features. Then, the time series construction module is designed to convert the extracted features into the time series model suitable for the LSTM network. Finally, the time series data is predicted based on LSTM, and the predicted time series data is transformed into the predicted image. A series of experiments is done on three types of cloud image datasets. The results are analyzed superficially and demonstrate the effectiveness and feasibility of the proposed method in terms of image prediction performance.
AbstractList Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorithms in image temporal inference, this paper proposes a novel visual prediction framework based on the time series forecasting model, which can predict single-frame or multi-frame images by thoroughly analyzing their spatio-temporal features. Firstly, the ViT image feature extraction module is constructed by randomly masking and reconstructing the image to analyze the learned image and extract the features. Then, the time series construction module is designed to convert the extracted features into the time series model suitable for the LSTM network. Finally, the time series data is predicted based on LSTM, and the predicted time series data is transformed into the predicted image. A series of experiments is done on three types of cloud image datasets. The results are analyzed superficially and demonstrate the effectiveness and feasibility of the proposed method in terms of image prediction performance.Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorithms in image temporal inference, this paper proposes a novel visual prediction framework based on the time series forecasting model, which can predict single-frame or multi-frame images by thoroughly analyzing their spatio-temporal features. Firstly, the ViT image feature extraction module is constructed by randomly masking and reconstructing the image to analyze the learned image and extract the features. Then, the time series construction module is designed to convert the extracted features into the time series model suitable for the LSTM network. Finally, the time series data is predicted based on LSTM, and the predicted time series data is transformed into the predicted image. A series of experiments is done on three types of cloud image datasets. The results are analyzed superficially and demonstrate the effectiveness and feasibility of the proposed method in terms of image prediction performance.
Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorithms in image temporal inference, this paper proposes a novel visual prediction framework based on the time series forecasting model, which can predict single-frame or multi-frame images by thoroughly analyzing their spatio-temporal features. Firstly, the ViT image feature extraction module is constructed by randomly masking and reconstructing the image to analyze the learned image and extract the features. Then, the time series construction module is designed to convert the extracted features into the time series model suitable for the LSTM network. Finally, the time series data is predicted based on LSTM, and the predicted time series data is transformed into the predicted image. A series of experiments is done on three types of cloud image datasets. The results are analyzed superficially and demonstrate the effectiveness and feasibility of the proposed method in terms of image prediction performance.
Abstract Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of time series or image processing separately, failing to integrate the advantages of both fields. To overcome the limitations of existing algorithms in image temporal inference, this paper proposes a novel visual prediction framework based on the time series forecasting model, which can predict single-frame or multi-frame images by thoroughly analyzing their spatio-temporal features. Firstly, the ViT image feature extraction module is constructed by randomly masking and reconstructing the image to analyze the learned image and extract the features. Then, the time series construction module is designed to convert the extracted features into the time series model suitable for the LSTM network. Finally, the time series data is predicted based on LSTM, and the predicted time series data is transformed into the predicted image. A series of experiments is done on three types of cloud image datasets. The results are analyzed superficially and demonstrate the effectiveness and feasibility of the proposed method in terms of image prediction performance.
ArticleNumber 38057
Author Jumahong, Huxidan
Wang, Yongjie
Wang, Weina
Aili, Abuduwaili
Author_xml – sequence: 1
  givenname: Huxidan
  surname: Jumahong
  fullname: Jumahong, Huxidan
  organization: School of Network Security and Information Technology, YiLi Normal University, Yili Key Laboratory of Intelligent Computing Research and Application, YiLi Normal University
– sequence: 2
  givenname: Yongjie
  surname: Wang
  fullname: Wang, Yongjie
  organization: School of Science, Jilin University of Chemical Technology
– sequence: 3
  givenname: Abuduwaili
  surname: Aili
  fullname: Aili, Abuduwaili
  organization: School of Network Security and Information Technology, YiLi Normal University
– sequence: 4
  givenname: Weina
  surname: Wang
  fullname: Wang, Weina
  email: wangweina@jlict.edu.cn
  organization: School of Network Security and Information Technology, YiLi Normal University, School of Science, Jilin University of Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41168321$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPHSEUhUmjqdb6B7poJunGzShcmAesmsa01eQZF9puCQN3LC8zwyvMNOm_F9-oNV3IBi75zrkXzjuyN8YRCfnA6CmjXJ1lwRqtagpNDUwzVus35BCoKCUH2HtxPiDHOW9oWQ1owfRbciAYWykO7JB8_hnybPtqm9AHN4U4VgNOv6KvWpvRV6WewoBVxhQw1z6FPzhW65vbq2qIHvv3ZL-zfcbjx_2I_Pj29fb8ol5ff788_7KuneBqqsFK7YVQupNU8ab1bRkFGJShUDoKHoWnfIW6kUyKzrXOIWWWdo2S2knOj8jl4uuj3ZhtCoNNf020wewuYrozNk3B9WgQQRalkkpyIRVtpQclUAI41jDbFa-TxWub4u8Z82SGkB32vR0xztlwWEnBBOiHtp_-QzdxTmN56Y4CqfgKCvXxkZrbAf3zeE_fXABYAJdizgm7Z4RR8xCnWeI0JU6zi9PoIuKLKBd4vMP0r_crqnsNh52f
Cites_doi 10.1016/j.eswa.2023.122333
10.1109/ICASSP49660.2025.10890581
10.1175/AIES-D-24-0104.1
10.1109/VCIP.2018.8698733
10.1016/j.asoc.2022.109945
10.1063/5.0219923
10.1016/j.displa.2024.102814
10.3390/app13095521
10.1080/13682199.2024.2331813
10.1109/TPAMI.2023.3293516
10.1016/j.ins.2022.01.010
10.1016/j.knosys.2025.113539
10.1109/ICCV51070.2023.01239
10.3389/dyst.2025.14224
10.1109/RTUCON62997.2024.10830763
10.1145/3696452
10.1162/neco_a_01199
10.1016/j.jwpe.2024.105231
10.1109/CVPR52733.2024.00186
10.1016/j.apenergy.2023.120936
10.1609/aaai.v39i17.33939
10.1093/bib/bbad464
10.1080/00207543.2021.2022803
10.1109/IJCNN60899.2024.10650375
10.1016/j.fuel.2024.132078
10.1016/j.neucom.2024.127433
10.1109/HPCC.2008.36
10.1109/TITS.2021.3054840
10.1016/j.eswa.2023.122801
10.1109/CVPR52734.2025.00337
10.1016/j.eswa.2022.119033
10.1109/IC2SPM62723.2024.10841347
10.1109/ACCESS.2024.3389808
10.1016/j.asoc.2024.111931
10.1177/03611981241258753
10.1016/j.compgeo.2024.106951
10.1155/2018/7068349
10.1007/978-3-030-87231-1_6
10.1038/s41598-024-54212-8
10.1109/TPAMI.2022.3165153
10.1016/j.eswa.2023.121502
10.1016/j.saa.2023.123416
10.1109/ICTAI56018.2022.00150
10.1016/j.eswa.2024.123276
10.1145/3664647.3689141
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-21911-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_ee27a0f878734780b7d284e722c151af
41168321
10_1038_s41598_025_21911_9
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jilin Provincial Department of Education
  grantid: JJKH20251304KJ
– fundername: Project of the Research Platform at Yili Normal University
  grantid: CXZK2021027
– fundername: National Natural Science Foundation of China
  grantid: 62266046
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-2a79d4489f70835bdb294212000e7c02de4d036e957174fcbcce01a0f5879c733
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606739500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 19:21:42 EST 2025
Sat Nov 01 12:11:22 EDT 2025
Sat Nov 01 12:00:28 EDT 2025
Tue Nov 04 01:48:39 EST 2025
Wed Nov 05 20:41:04 EST 2025
Sat Nov 01 10:35:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Visual prediction
Time series forecasting
Vision transformer
Masked autoencoders
Image processing
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-2a79d4489f70835bdb294212000e7c02de4d036e957174fcbcce01a0f5879c733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ee27a0f878734780b7d284e722c151af
PMID 41168321
PQID 3267278362
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_ee27a0f878734780b7d284e722c151af
proquest_miscellaneous_3267414293
proquest_journals_3267278362
pubmed_primary_41168321
crossref_primary_10_1038_s41598_025_21911_9
springer_journals_10_1038_s41598_025_21911_9
PublicationCentury 2000
PublicationDate 2025-10-30
PublicationDateYYYYMMDD 2025-10-30
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References X Dong (21911_CR30) 2024; 84
21911_CR27
H Yadav (21911_CR61) 2024; 238
R Lajić (21911_CR50) 2024; 16
D Zhuang (21911_CR4) 2023; 338
21911_CR25
21911_CR24
21911_CR63
U Kumar Lilhore (21911_CR23) 2024; 14
X Dong (21911_CR29) 2025; 2679
Y Huang (21911_CR10) 2024; 237
L Du (21911_CR6) 2022; 591
E Toivonen (21911_CR1) 2024; 61
J Maurício (21911_CR41) 2023; 13
TA Simon (21911_CR45) 2025; 4
Y Song (21911_CR14) 2024; 19
21911_CR38
21911_CR39
21911_CR34
Z Tong (21911_CR57) 2022; 35
21911_CR35
K Pinasthika (21911_CR22) 2024; 580
X Yin (21911_CR3) 2021; 23
21911_CR32
R Song (21911_CR2) 2024; 7
B Li (21911_CR12) 2023; 45
J Zou (21911_CR8) 2024; 242
H Li (21911_CR20) 2025; 73
21911_CR49
A Wang (21911_CR31) 2024; 37
21911_CR48
HV Dudukcu (21911_CR37) 2023; 133
H Zhang (21911_CR18) 2024; 164
A Stitsyuk (21911_CR62) 2025; 39
21911_CR44
21911_CR47
21911_CR46
21911_CR43
J Lin (21911_CR51) 2024; 20
21911_CR42
P Shi (21911_CR28) 2025; 318
Z Hu (21911_CR60) 2023; 229
K Fırıldak (21911_CR26) 2024; 13
21911_CR9
Y Zhou (21911_CR16) 2025; 179
Y Wang (21911_CR58) 2022; 45
H Zhang (21911_CR15) 2024; 371
MS Almutairi (21911_CR7) 2023; 213
21911_CR56
21911_CR11
21911_CR55
G-I Kim (21911_CR21) 2024; 12
A Voulodimos (21911_CR33) 2018; 2018
T Saidani (21911_CR13) 2024; 15
21911_CR52
Y Jia (21911_CR59) 2023; 25
M Razavi (21911_CR17) 2024; 247
Z Qin (21911_CR40) 2019; 1237
21911_CR54
B Zhou (21911_CR5) 2023; 61
21911_CR53
Y Yu (21911_CR36) 2019; 31
Z Wang (21911_CR19) 2024; 304
References_xml – volume: 13
  start-page: 1304
  year: 2024
  ident: 21911_CR26
  publication-title: BEFD.
– volume: 238
  year: 2024
  ident: 21911_CR61
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122333
– volume: 229
  year: 2023
  ident: 21911_CR60
  publication-title: CMPB.
– ident: 21911_CR63
  doi: 10.1109/ICASSP49660.2025.10890581
– ident: 21911_CR55
  doi: 10.1175/AIES-D-24-0104.1
– ident: 21911_CR54
  doi: 10.1109/VCIP.2018.8698733
– volume: 133
  year: 2023
  ident: 21911_CR37
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109945
– volume: 1237
  year: 2019
  ident: 21911_CR40
  publication-title: JPCS.
– volume: 16
  year: 2024
  ident: 21911_CR50
  publication-title: J. Renew. Sustain Energy
  doi: 10.1063/5.0219923
– volume: 84
  year: 2024
  ident: 21911_CR30
  publication-title: Displays
  doi: 10.1016/j.displa.2024.102814
– ident: 21911_CR56
– volume: 13
  start-page: 5521
  year: 2023
  ident: 21911_CR41
  publication-title: Appl. Sci.
  doi: 10.3390/app13095521
– volume: 73
  start-page: 150
  year: 2025
  ident: 21911_CR20
  publication-title: Imaging Sci J.
  doi: 10.1080/13682199.2024.2331813
– volume: 45
  start-page: 13586
  year: 2023
  ident: 21911_CR12
  publication-title: Ieee Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2023.3293516
– ident: 21911_CR52
– volume: 591
  start-page: 155
  year: 2022
  ident: 21911_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.010
– volume: 318
  year: 2025
  ident: 21911_CR28
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2025.113539
– ident: 21911_CR39
  doi: 10.1109/ICCV51070.2023.01239
– volume: 4
  start-page: 14224
  year: 2025
  ident: 21911_CR45
  publication-title: Dystonia
  doi: 10.3389/dyst.2025.14224
– ident: 21911_CR9
  doi: 10.1109/RTUCON62997.2024.10830763
– volume: 15
  year: 2024
  ident: 21911_CR13
  publication-title: Int. J. Adv. Comput. Sci.
– volume: 19
  start-page: 0292345
  year: 2024
  ident: 21911_CR14
  publication-title: PLoS ONE
– ident: 21911_CR38
– volume: 20
  start-page: 1
  year: 2024
  ident: 21911_CR51
  publication-title: Acm Trans. Multim. Comput.
  doi: 10.1145/3696452
– volume: 31
  start-page: 1235
  year: 2019
  ident: 21911_CR36
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– ident: 21911_CR48
– volume: 61
  year: 2024
  ident: 21911_CR1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2024.105231
– ident: 21911_CR34
  doi: 10.1109/CVPR52733.2024.00186
– volume: 338
  year: 2023
  ident: 21911_CR4
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120936
– ident: 21911_CR44
  doi: 10.1609/aaai.v39i17.33939
– volume: 25
  start-page: 464
  year: 2023
  ident: 21911_CR59
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbad464
– ident: 21911_CR24
– volume: 61
  start-page: 4117
  year: 2023
  ident: 21911_CR5
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.2022803
– ident: 21911_CR42
  doi: 10.1109/IJCNN60899.2024.10650375
– volume: 371
  year: 2024
  ident: 21911_CR15
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.132078
– volume: 580
  year: 2024
  ident: 21911_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127433
– ident: 21911_CR46
  doi: 10.1109/HPCC.2008.36
– volume: 23
  start-page: 4927
  year: 2021
  ident: 21911_CR3
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3054840
– volume: 242
  year: 2024
  ident: 21911_CR8
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122801
– ident: 21911_CR47
  doi: 10.1109/CVPR52734.2025.00337
– volume: 213
  year: 2023
  ident: 21911_CR7
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119033
– ident: 21911_CR43
  doi: 10.1109/IC2SPM62723.2024.10841347
– volume: 12
  start-page: 58625
  year: 2024
  ident: 21911_CR21
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3389808
– volume: 164
  year: 2024
  ident: 21911_CR18
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111931
– volume: 2679
  start-page: 1947
  year: 2025
  ident: 21911_CR29
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981241258753
– volume: 179
  year: 2025
  ident: 21911_CR16
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2024.106951
– volume: 2018
  start-page: 7068349
  year: 2018
  ident: 21911_CR33
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
– ident: 21911_CR27
  doi: 10.1007/978-3-030-87231-1_6
– ident: 21911_CR25
– volume: 14
  start-page: 4299
  year: 2024
  ident: 21911_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-54212-8
– ident: 21911_CR35
– volume: 45
  start-page: 2208
  year: 2022
  ident: 21911_CR58
  publication-title: IEEE TPAM.
  doi: 10.1109/TPAMI.2022.3165153
– volume: 7
  start-page: 1
  year: 2024
  ident: 21911_CR2
  publication-title: World J. Eng.
– volume: 37
  start-page: 107984
  year: 2024
  ident: 21911_CR31
  publication-title: NeurIPS
– ident: 21911_CR11
– volume: 35
  start-page: 10078
  year: 2022
  ident: 21911_CR57
  publication-title: NeurIPS.
– volume: 237
  year: 2024
  ident: 21911_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121502
– volume: 304
  year: 2024
  ident: 21911_CR19
  publication-title: Spectrochim Acta A.
  doi: 10.1016/j.saa.2023.123416
– ident: 21911_CR53
  doi: 10.1109/ICTAI56018.2022.00150
– volume: 247
  year: 2024
  ident: 21911_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123276
– ident: 21911_CR32
– volume: 39
  start-page: 20601
  year: 2025
  ident: 21911_CR62
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 21911_CR49
  doi: 10.1145/3664647.3689141
SSID ssj0000529419
Score 2.4629714
Snippet Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the field of...
Abstract Significant progress has been made in time series prediction and image processing problems. However, most of the studies have focused on either the...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 38057
SubjectTerms 639/166
639/705
Algorithms
Artificial intelligence
Classification
Computer vision
Cultural heritage
Deep learning
Design
Efficiency
Forecasting
Humanities and Social Sciences
Image processing
Interdisciplinary subjects
Masked autoencoders
multidisciplinary
Natural language processing
Neural networks
Predictions
Science
Science (multidisciplinary)
Semantics
Temporal variations
Time series
Time series forecasting
Vision transformer
Visual prediction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21C5W4tIW2kJZWQeJGLZzYWdsnVCpQD7BCfImbldgO4rK7TXaR-PfMJN5FiLaXHpNYkeM34zf2xPMAdjHCNrWrKhbc0DNZFQVD3qkZqXBXYei06vRTrk_UaKRvbsxZ3HBr42-Vizmxm6j9xNEe-T6GGYpUIYb5wfQ3I9Uoyq5GCY3XsEKVyuQAVg6PRmfny10WymPJzMTTMlzo_RYZi06V5QVDZ80yZp4xUle4_0_R5otMaUdAx-_-t-vv4W0MPdMfva2sw6sw3oA3vRjlwwc4uL5r5_h82lDuhvBKe3nplJjOp3hNQvQp2WxomW9onkxPLi5P005O5yNcHR9d_vzForwCc1LoGctLZbwkrBTFYZWvcKyQyXDUgnI890F65LdgClzySQTUucCzkteFVsYpIT7BYDwZhy1IM6G0KeqCyvvhEipUCLPASKQseKkd5wnsLYbYTvsqGrbLfgtte0AsAmI7QKxJ4JBQWLakCtjdjUlza6ND2RByhX3ROOEIqTSvlEemDSrPHQYxZZ3A9gIMG92ytU9IJLCzfIwORVmSchwm876NzJCmRQKbPfbLnsgsG5K0UwLfF8bw9PK_f9Dnf_flC6zlZI_EiHwbBrNmHr7Cqruf3bXNt2jSj1q3-aU
  priority: 102
  providerName: ProQuest
Title Visual prediction method based on time series-driven LSTM model
URI https://link.springer.com/article/10.1038/s41598-025-21911-9
https://www.ncbi.nlm.nih.gov/pubmed/41168321
https://www.proquest.com/docview/3267278362
https://www.proquest.com/docview/3267414293
https://doaj.org/article/ee27a0f878734780b7d284e722c151af
Volume 15
WOSCitedRecordID wos001606739500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3apIVeSr_rNl1cyC0VkSV5JZ1KUhJSyC6mScP2JGxZhlw2Yb1b6L_vjOTdJLSll1wEtoTRvJH0RsiaB7CLEbbtfNOw4MctU01ZMuSdjpEKdxPG3uion3JxqqdTM5vZ6pbUF_0TltIDJ-D2QxC65p3BgSWVNrzRLa6oQQvhkazqjlZfjHpubaZSVm9hVWGHWzJcmv0emYpuk4mS4SQtCmbvMFFM2P-3KPOPE9JIPMfP4OkQMeYHqafP4UGYv4DHSUPy10v4fHHZr7D-ekFHLgRznlShcyKoNsdn0o_PaaiFnrULWt7y07PzSR5VcF7B9-Oj8y8nbFBFYF5Js2Si1rZVBLGm8KlpGzQVCQiNDtpz0QbVIi0FW-JOTaEfvA-8QAhLo63XUr6GrfnVPLyFvJDa2LIrKSsf7nxCg96RGEDUJa-N5zyDvTVC7jolv3Dx0Foal_B0iKeLeDqbwSGBuGlJiavjC3SnG9zp_ufODHbWLnDDbOodhpiaFEHGIoOPm2qcB3S4Uc_D1Sq1UQWyq8zgTXLdpieqKMakyJTBp7Uvbz7-b4Pe3YdB7-GJoEFHdMd3YGu5WIUP8Mj_XF72ixE81DMdSzOC7cOjafVtFEcylhNRUamx3K6-TqofvwExl_CZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLQgu5Q2hBYIEJ7CaOM7aPqCKV9Wq2xUSS7U3k9gO2gO7S7IL6p_iN3bGSbZCPG49cEwcRePM52_GntgfwDPMsHVly5J5O3BMlHnOMO5UjFS4Sz-wSgb9lNOhHI3UZKI_bMDPfi8M_VbZc2Igaje3tEa-h2mGJFWIAd9ffGOkGkXV1V5Co4XFsT_7gVO25tXRO_Tvc84P3o_fHrJOVYBZkakl44XUTpCJktKP0pVcU1kUucFLm3DnhUNa9zrHmY7Afljrk7RIqlxJbSUtgCLlbyGPS_qFTE7kek2HqmYi1d3enCRTew3GR9rDxnOG1JCmTP8S_4JMwJ9y29_qsiHcHdz43z7UTdjuEuv4dTsSbsGGn92Gq63U5tkd2D-dNitsX9RUmSI0xq14dkxx3MV4vZx-9TGNSN8wV1MUiIcfxydxEAu6C58uxfp7sDmbz_wDiNNMKp1XOR1eiBNEXyKIM8yzijwplE2SCF70LjWL9owQE2r7mTItAAwCwAQAGB3BG_L6-kk63zvcmNdfTEcXxnsu0RaFdJoJqZJSOswjvOTcYopWVBHs9s43Hek05sLzETxdNyNdUA2omPn5qn1GpAjeLIL7LdbWlog0HZBwVQQve_BdvPzvHXr4b1uewLXD8cnQDI9GxztwndNYoNif7MLmsl75R3DFfl9Om_pxGEwxfL5sUJ4DkgZTRA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tloe48H4EFggSnMCq49i1fUArYKlYbbeqxLLamzdxHNQDbUla0P41fh0zeXSFeNz2wDEPVZPmm28-e2J_AM9RYdvS5zkLflgwmSvFsO6UjFy48zD0Rjf-KcdjPZmYkxM73YIf_VoY-qyy58SGqIuFpznyAcoMTa4QQzEou88ipnuj3eVXRg5S1Gnt7TRaiByEs-84fKtf7-_hu34hxOj90bsPrHMYYF6mZsVEpm0hKVxNUiQvcmGpRYo8EbTnogiyQIoPVuGoR-IzeR94kvFSGW29pslQpP9LWipF2XUoppv5HeqgycR263R4agY11kpazyYUQ5pIEmZ_qYWNZcCfdO5vPdqm9I1u_M9_2k243gnu-E2bIbdgK8xvw5XWgvPsDuwez-o1Xl9W1LEilMatqXZM9b2I8Xg1-xJiytRQs6Ki6hCPPx4dxo2J0F34dCHR34Pt-WIeHkCcpNpYVSra1BAHjiFHcKeovzLFM-M5j-Bl_3rdst07xDU9_9S4FgwOweAaMDgbwVtCwOZO2ve7ObGoPruORlwIQmMsBmk2ldrwXBeoL4IWwqN0y8oIdnoguI6ManeOggiebS4jjVBvKJuHxbq9RyYoTtII7re420Qik2RIhlYRvOqBeP7jf3-gh_-O5SlcRSy68f7k4BFcE5QWJAn4DmyvqnV4DJf9t9Wsrp40eRXD6UVj8ieMuVwR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+prediction+method+based+on+time+series-driven+LSTM+model&rft.jtitle=Scientific+reports&rft.au=Jumahong%2C+Huxidan&rft.au=Wang%2C+Yongjie&rft.au=Aili%2C+Abuduwaili&rft.au=Wang%2C+Weina&rft.date=2025-10-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-21911-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_21911_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon