Gas concentration prediction based on SSA algorithm with CNN-BiLSTM-attention

Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 34214 - 13
Hauptverfasser: Xing, Wenjing, Yang, Yanguo, Zhang, Yanxin, Yang, Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor generalization capability when achieving relatively high prediction accuracy but requiring longer prediction durations. To address these challenges, this study focuses on a tunneling face in a Shanxi coal mine and proposes a novel hybrid deep learning model (CNN-BiLSTM-Attention). The model employs a 1D-CNN to extract local spatial features of gas concentration, temperature, wind speed, rock pressure, and CO concentration, utilizes BiLSTM to model bidirectional temporal dependencies, and incorporates an attention mechanism to dynamically weight critical features, such as sudden changes in gas concentration. Additionally, the sparserow search algorithm (SSA) was applied to automatically optimize hyperparameters, including the number of CNN filters and BiLSTM hidden units. The results demonstrate that the proposed SCBA model achieves an RMSE of 0.0171 and MAPE of 0.084. Compared to mainstream models such as attention-LSTM, SSA-LSTM-aAttention, and rTransformer-LSTM, the RMSE was improved by 23.3%, 4.4%, and 30.2%, respectively, while the MAPE was improved by 38.7%, 14.3%, and 43.62%, respectively, indicating superior prediction accuracy. To validate the contribution of each module, ablation experiments were conducted by sequentially removing the CNN, BiLSTM, and Attention components for error analysis, confirming the necessity of the multi-module collaborative mechanism. In multi-step predictions, the proposed model exhibits better generalization capability as the prediction horizon increases, with the slowest error growth, providing insights for enhancing gas concentration prediction generalization. The model achieves the smallest error at 20 time steps, laying a foundation for subsequent anomaly analysis and offering miners sufficient safety evacuation time, thereby establishing a reliable basis for real-time gas disaster early warning.
AbstractList Abstract Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor generalization capability when achieving relatively high prediction accuracy but requiring longer prediction durations. To address these challenges, this study focuses on a tunneling face in a Shanxi coal mine and proposes a novel hybrid deep learning model (CNN-BiLSTM-Attention). The model employs a 1D-CNN to extract local spatial features of gas concentration, temperature, wind speed, rock pressure, and CO concentration, utilizes BiLSTM to model bidirectional temporal dependencies, and incorporates an attention mechanism to dynamically weight critical features, such as sudden changes in gas concentration. Additionally, the sparserow search algorithm (SSA) was applied to automatically optimize hyperparameters, including the number of CNN filters and BiLSTM hidden units. The results demonstrate that the proposed SCBA model achieves an RMSE of 0.0171 and MAPE of 0.084. Compared to mainstream models such as attention-LSTM, SSA-LSTM-aAttention, and rTransformer-LSTM, the RMSE was improved by 23.3%, 4.4%, and 30.2%, respectively, while the MAPE was improved by 38.7%, 14.3%, and 43.62%, respectively, indicating superior prediction accuracy. To validate the contribution of each module, ablation experiments were conducted by sequentially removing the CNN, BiLSTM, and Attention components for error analysis, confirming the necessity of the multi-module collaborative mechanism. In multi-step predictions, the proposed model exhibits better generalization capability as the prediction horizon increases, with the slowest error growth, providing insights for enhancing gas concentration prediction generalization. The model achieves the smallest error at 20 time steps, laying a foundation for subsequent anomaly analysis and offering miners sufficient safety evacuation time, thereby establishing a reliable basis for real-time gas disaster early warning.
Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor generalization capability when achieving relatively high prediction accuracy but requiring longer prediction durations. To address these challenges, this study focuses on a tunneling face in a Shanxi coal mine and proposes a novel hybrid deep learning model (CNN-BiLSTM-Attention). The model employs a 1D-CNN to extract local spatial features of gas concentration, temperature, wind speed, rock pressure, and CO concentration, utilizes BiLSTM to model bidirectional temporal dependencies, and incorporates an attention mechanism to dynamically weight critical features, such as sudden changes in gas concentration. Additionally, the sparserow search algorithm (SSA) was applied to automatically optimize hyperparameters, including the number of CNN filters and BiLSTM hidden units. The results demonstrate that the proposed SCBA model achieves an RMSE of 0.0171 and MAPE of 0.084. Compared to mainstream models such as attention-LSTM, SSA-LSTM-aAttention, and rTransformer-LSTM, the RMSE was improved by 23.3%, 4.4%, and 30.2%, respectively, while the MAPE was improved by 38.7%, 14.3%, and 43.62%, respectively, indicating superior prediction accuracy. To validate the contribution of each module, ablation experiments were conducted by sequentially removing the CNN, BiLSTM, and Attention components for error analysis, confirming the necessity of the multi-module collaborative mechanism. In multi-step predictions, the proposed model exhibits better generalization capability as the prediction horizon increases, with the slowest error growth, providing insights for enhancing gas concentration prediction generalization. The model achieves the smallest error at 20 time steps, laying a foundation for subsequent anomaly analysis and offering miners sufficient safety evacuation time, thereby establishing a reliable basis for real-time gas disaster early warning.Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor generalization capability when achieving relatively high prediction accuracy but requiring longer prediction durations. To address these challenges, this study focuses on a tunneling face in a Shanxi coal mine and proposes a novel hybrid deep learning model (CNN-BiLSTM-Attention). The model employs a 1D-CNN to extract local spatial features of gas concentration, temperature, wind speed, rock pressure, and CO concentration, utilizes BiLSTM to model bidirectional temporal dependencies, and incorporates an attention mechanism to dynamically weight critical features, such as sudden changes in gas concentration. Additionally, the sparserow search algorithm (SSA) was applied to automatically optimize hyperparameters, including the number of CNN filters and BiLSTM hidden units. The results demonstrate that the proposed SCBA model achieves an RMSE of 0.0171 and MAPE of 0.084. Compared to mainstream models such as attention-LSTM, SSA-LSTM-aAttention, and rTransformer-LSTM, the RMSE was improved by 23.3%, 4.4%, and 30.2%, respectively, while the MAPE was improved by 38.7%, 14.3%, and 43.62%, respectively, indicating superior prediction accuracy. To validate the contribution of each module, ablation experiments were conducted by sequentially removing the CNN, BiLSTM, and Attention components for error analysis, confirming the necessity of the multi-module collaborative mechanism. In multi-step predictions, the proposed model exhibits better generalization capability as the prediction horizon increases, with the slowest error growth, providing insights for enhancing gas concentration prediction generalization. The model achieves the smallest error at 20 time steps, laying a foundation for subsequent anomaly analysis and offering miners sufficient safety evacuation time, thereby establishing a reliable basis for real-time gas disaster early warning.
Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still suffer from issues such as low data utilization, difficulty in effectively integrating multivariate nonlinear spatiotemporal features, and poor generalization capability when achieving relatively high prediction accuracy but requiring longer prediction durations. To address these challenges, this study focuses on a tunneling face in a Shanxi coal mine and proposes a novel hybrid deep learning model (CNN-BiLSTM-Attention). The model employs a 1D-CNN to extract local spatial features of gas concentration, temperature, wind speed, rock pressure, and CO concentration, utilizes BiLSTM to model bidirectional temporal dependencies, and incorporates an attention mechanism to dynamically weight critical features, such as sudden changes in gas concentration. Additionally, the sparserow search algorithm (SSA) was applied to automatically optimize hyperparameters, including the number of CNN filters and BiLSTM hidden units. The results demonstrate that the proposed SCBA model achieves an RMSE of 0.0171 and MAPE of 0.084. Compared to mainstream models such as attention-LSTM, SSA-LSTM-aAttention, and rTransformer-LSTM, the RMSE was improved by 23.3%, 4.4%, and 30.2%, respectively, while the MAPE was improved by 38.7%, 14.3%, and 43.62%, respectively, indicating superior prediction accuracy. To validate the contribution of each module, ablation experiments were conducted by sequentially removing the CNN, BiLSTM, and Attention components for error analysis, confirming the necessity of the multi-module collaborative mechanism. In multi-step predictions, the proposed model exhibits better generalization capability as the prediction horizon increases, with the slowest error growth, providing insights for enhancing gas concentration prediction generalization. The model achieves the smallest error at 20 time steps, laying a foundation for subsequent anomaly analysis and offering miners sufficient safety evacuation time, thereby establishing a reliable basis for real-time gas disaster early warning.
ArticleNumber 34214
Author Zhang, Yanxin
Xing, Wenjing
Yang, Yanguo
Yang, Yong
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Xing
  fullname: Xing, Wenjing
  organization: College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Mingxiang Campus
– sequence: 2
  givenname: Yanguo
  surname: Yang
  fullname: Yang, Yanguo
  email: 591009403@qq.com
  organization: College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Mingxiang Campus
– sequence: 3
  givenname: Yanxin
  surname: Zhang
  fullname: Zhang, Yanxin
  organization: College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Mingxiang Campus
– sequence: 4
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Mingxiang Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41034433$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUhS1EVZ5_oAs0Ehs2bv1M7CVElCIFWISurTv2nXSiyTjYE1X99zUZChULLNm-sr5zbN9zRPb72CMhXzj7ypk037Li2hrKhKZcG2mo2iOHgilNhRRi_7_6gJzmvGJlaGEVt5_JgSoWSkl5SO5uIFc-9h77IcHQxr7aJAyt35U1ZAxVKRaLywq6ZUzt8Gtd_S5rNbu_p1ftfPF4R2EYirwITsinBrqMpy_7Mfn5_fpx9oPOH25uZ5dz6pU0AxUgG8MD88yAVtaGRtgQEIyxNasDV4gQpiqEwCammdYGUNfTaYPGS21qL4_J7egbIqzcJrVrSH9chNbtDmJaOkhD6zt0upGAqINCAWXWVkNjtWVKoZkIGYrXxei1SfFpi3lw6zZ77DroMW6zk0JPZOmb0QU9f4eu4jb15ac7ilshJS_U2Qu1rdcYXp_3r-kFECPgU8w5YfOKcOaew3VjuK6E63bhOlVEchTlAvdLTG93f6D6C_NvpPs
Cites_doi 10.3390/computers12050091
10.1016/j.eswa.2022.116944
10.1016/j.jlp.2023.105082
10.1007/s00477-023-02382-8
10.1016/j.fuel.2023.130462
10.1016/j.egyr.2024.01.026
10.1007/s11831-022-09804-w
10.1016/j.jlp.2011.01.014
10.3390/en16052318
10.1016/j.energy.2022.124889
10.1109/ACCESS.2024.3440631
10.1016/j.energy.2023.130158
10.3390/s22124412
10.1038/s43586-020-00001-2
10.1016/j.ins.2021.11.076
10.1016/j.jhydrol.2022.127445
10.3390/s22228977
10.1016/j.asoc.2020.106912
10.1016/S0925-4005(98)00036-7
10.1016/j.foodres.2024.113958
10.3390/su15043631
10.3390/su142012998
10.1007/978-3-031-73407-6_33
10.1016/j.psep.2021.06.005
10.1007/s42461-022-00654-5
10.1016/j.neucom.2021.03.091
10.1016/j.measurement.2022.112384
10.1016/j.ssci.2021.105420
10.1007/s00603-022-03028-x
10.3390/s21051597
10.1007/s10668-023-03412-9
10.31763/ijrcs.v2i4.888
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-15838-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_5f3aee5d4e2a4e2b95af959044e8623d
41034433
10_1038_s41598_025_15838_4
Genre Journal Article
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 5227041202
  funderid: https://doi.org/10.13039/100014718
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 5227041202
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-2a3f81d0c08a5499df29ddea889b0bd14eead74ddd068f7b8ae5b77fe8c358bc3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586640100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Oct 13 19:20:18 EDT 2025
Mon Oct 06 16:42:19 EDT 2025
Mon Oct 06 17:20:45 EDT 2025
Sun Oct 05 01:50:33 EDT 2025
Sat Nov 29 07:18:12 EST 2025
Thu Oct 02 04:42:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Sparrow optimization algorithm
Attention mechanism
Concentration prediction
Gas concentration
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-2a3f81d0c08a5499df29ddea889b0bd14eead74ddd068f7b8ae5b77fe8c358bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5f3aee5d4e2a4e2b95af959044e8623d
PMID 41034433
PQID 3256192331
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5f3aee5d4e2a4e2b95af959044e8623d
proquest_miscellaneous_3256394185
proquest_journals_3256192331
pubmed_primary_41034433
crossref_primary_10_1038_s41598_025_15838_4
springer_journals_10_1038_s41598_025_15838_4
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 15838_CR1
C Liu (15838_CR24) 2023; 16
H Zhang (15838_CR18) 2022; 22
Z Niu (15838_CR28) 2021; 452
K Wang (15838_CR22) 2024; 290
J Diaz (15838_CR6) 2023; 37
15838_CR12
K Li (15838_CR23) 2024; 359
N Xu (15838_CR25) 2022; 22
M You (15838_CR15) 2021; 143
P Li (15838_CR2) 2022; 14
K Sharifani (15838_CR9) 2023; 10
H Lin (15838_CR33) 2023; 207
F Gharehchopogh (15838_CR34) 2023; 30
Z Huo (15838_CR16) 2023; 15
R Van de Schoot (15838_CR3) 2021; 1
J Diaz (15838_CR5) 2022; 39
SM Tauseef (15838_CR7) 2011; 24
L Cheng (15838_CR20) 2022; 200
Z Meng (15838_CR13) 2022; 586
S Samantaray (15838_CR10) 2024; 26
MF Aslan (15838_CR30) 2021; 98
F Liu (15838_CR31) 2024; 11
W Zha (15838_CR26) 2022; 260
P Purwono (15838_CR32) 2022; 2
DH Nguyen (15838_CR14) 2022; 606
MAREK (15838_CR4) 2012; 22
MM Taye (15838_CR19) 2023; 12
LS Breda (15838_CR11) 2024; 179
15838_CR21
15838_CR27
H Ishida (15838_CR8) 1998; B49
K Zhang (15838_CR17) 2023; 83
15838_CR29
References_xml – volume: 12
  start-page: 91
  issue: 5
  year: 2023
  ident: 15838_CR19
  publication-title: Computers
  doi: 10.3390/computers12050091
– volume: 200
  start-page: 116944
  year: 2022
  ident: 15838_CR20
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116944
– volume: 83
  start-page: 105082
  year: 2023
  ident: 15838_CR17
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2023.105082
– volume: 37
  start-page: 2099
  year: 2023
  ident: 15838_CR6
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-023-02382-8
– volume: 359
  start-page: 130462
  year: 2024
  ident: 15838_CR23
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.130462
– volume: 11
  start-page: 1570
  year: 2024
  ident: 15838_CR31
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.01.026
– volume: 30
  start-page: 427
  issue: 1
  year: 2023
  ident: 15838_CR34
  publication-title: Comput. Methods Eng.
  doi: 10.1007/s11831-022-09804-w
– volume: 24
  start-page: 371
  issue: 4
  year: 2011
  ident: 15838_CR7
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2011.01.014
– volume: 16
  start-page: 2318
  issue: 5
  year: 2023
  ident: 15838_CR24
  publication-title: Energies
  doi: 10.3390/en16052318
– volume: 260
  start-page: 124889
  year: 2022
  ident: 15838_CR26
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124889
– ident: 15838_CR21
  doi: 10.1109/ACCESS.2024.3440631
– volume: 290
  start-page: 130158
  year: 2024
  ident: 15838_CR22
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130158
– volume: 22
  start-page: 4412
  issue: 12
  year: 2022
  ident: 15838_CR25
  publication-title: Sensors
  doi: 10.3390/s22124412
– volume: 1
  start-page: 1
  issue: 1
  year: 2021
  ident: 15838_CR3
  publication-title: Nat. Reviews Methods Primers
  doi: 10.1038/s43586-020-00001-2
– volume: 10
  start-page: 3897
  issue: 07
  year: 2023
  ident: 15838_CR9
  publication-title: World Inform. Technol. Eng. J.
– volume: 586
  start-page: 176
  year: 2022
  ident: 15838_CR13
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.076
– volume: 606
  start-page: 127445
  year: 2022
  ident: 15838_CR14
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127445
– volume: 22
  start-page: 8977
  issue: 22
  year: 2022
  ident: 15838_CR18
  publication-title: Sensors
  doi: 10.3390/s22228977
– volume: 98
  start-page: 106912
  year: 2021
  ident: 15838_CR30
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106912
– volume: B49
  start-page: 52
  issue: 1-2
  year: 1998
  ident: 15838_CR8
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/S0925-4005(98)00036-7
– volume: 179
  start-page: 113958
  year: 2024
  ident: 15838_CR11
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2024.113958
– volume: 15
  start-page: 3631
  issue: 4
  year: 2023
  ident: 15838_CR16
  publication-title: Sustainability
  doi: 10.3390/su15043631
– volume: 22
  start-page: 477
  issue: 2
  year: 2012
  ident: 15838_CR4
  publication-title: Int. J. Appl. Math. Sci.
– volume: 14
  start-page: 12998
  issue: 20
  year: 2022
  ident: 15838_CR2
  publication-title: Sustainability
  doi: 10.3390/su142012998
– ident: 15838_CR1
  doi: 10.1007/978-3-031-73407-6_33
– ident: 15838_CR27
  doi: 10.1016/j.psep.2021.06.005
– volume: 39
  start-page: 1961
  year: 2022
  ident: 15838_CR5
  publication-title: Min. Metall. Explor.
  doi: 10.1007/s42461-022-00654-5
– volume: 452
  start-page: 48
  year: 2021
  ident: 15838_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 207
  start-page: 112384
  year: 2023
  ident: 15838_CR33
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112384
– volume: 143
  start-page: 105420
  year: 2021
  ident: 15838_CR15
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105420
– ident: 15838_CR29
  doi: 10.1007/s00603-022-03028-x
– ident: 15838_CR12
  doi: 10.3390/s21051597
– volume: 26
  start-page: 18699
  issue: 7
  year: 2024
  ident: 15838_CR10
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-023-03412-9
– volume: 2
  start-page: 739
  issue: 4
  year: 2022
  ident: 15838_CR32
  publication-title: Int. J. Rob. Control Syst.
  doi: 10.31763/ijrcs.v2i4.888
SSID ssj0000529419
Score 2.4604478
Snippet Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods still...
Abstract Accurate prediction of coal mine gas concentration is a crucial prerequisite for preventing gas exceed and disasters. However, the existing methods...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 34214
SubjectTerms 639/166
639/4077
639/705
704/172
Accuracy
Algorithms
Artificial intelligence
Attention mechanism
Coal mines
Concentration prediction
Deep learning
Foraging behavior
Forecasting
Gas concentration
Humanities and Social Sciences
Integrated approach
Machine learning
Mining
multidisciplinary
Neural networks
Occupational safety
Optimization algorithms
Predictions
Science
Science (multidisciplinary)
Sparrow optimization algorithm
Support vector machines
Time series
Wind speed
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egoCBxA6uJHxv7hNqKwoFdVdoi9Wb52VaC7LLZIvHv8TjerRCPC4dIVmI5TmbGM54ZfwPwesKiNdx74pLxSrhglJh2Iki0jUtyHhS1MReb6GYzeXqqjovDbShplZs1MS_UfuHQR77Hkm5Ga4S175bfCFaNwuhqKaFxHW4ky6bFlK4pPd76WDCKxVtVzso0TO4NSV_hmTIqSIsBQ8J_0UcZtv9PtuZvcdKsfo7u_u_E78GdYnjW-yOn3IdroX8At8ZSlD8ewvSDGWqHZxj7AqRbL1cYxMlN1HW-To35fL82X87S-OvzrzU6cevD2YwcXHyan0wJYnXm7MlH8Pno_cnhR1JKLRDHmVwTalhMlmvjGmlwx-gjVWnhM1Iq21jf8pA4rks09c1Exs5KE4TtuhikY0Jaxx7DTr_ow1OoWROSUhSWygmiC8ZEbWcQZayLKrTMV_Bm88P1ckTU0DkSzqQeyaMTeXQmj-YVHCBNtj0RDTvfWKzOdBEuLSIzIQjPAzXpskqYqIRqOA9pw4av3N2QRhcRHfQVXSp4tX2chAsjJqYPi8uxD1OI71PBk5ETtjPhLaIlMlbB2w1rXA3-9w969u-5PIfbNHMnpgvuws56dRlewE33fX0xrF5m9v4JyKIAYQ
  priority: 102
  providerName: ProQuest
Title Gas concentration prediction based on SSA algorithm with CNN-BiLSTM-attention
URI https://link.springer.com/article/10.1038/s41598-025-15838-4
https://www.ncbi.nlm.nih.gov/pubmed/41034433
https://www.proquest.com/docview/3256192331
https://www.proquest.com/docview/3256394185
https://doaj.org/article/5f3aee5d4e2a4e2b95af959044e8623d
Volume 15
WOSCitedRecordID wos001586640100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BBtJeEN8ERhUk3sBa4o_aflynDZBoFNEhlSfLTmyoBOnUdpP47_E5aRkCxAsPOUWJFdn3s33nnP07gJdjFpzlbUua6LwSLhglthwLElzRxHHuNXUhJZuQVaXmc11fS_WFe8J6euBecUciMOu9aLmnNl5OCxu00AXnPjrjrMXZt5D62mKqZ_Wmmpd6OCVTMHW0jpYKT5NRQUoMFRL-iyVKhP1_8jJ_i5Amw3N2F-4MHmN-3Nf0Htzw3X243eeQ_P4Apm_sOm_w8GE3MODmFyuMvqRbNFJtHm9ms-Pcfv28XC02X77l-Pc1P6kqMlm8n51PCZJspm2PD-Hj2en5yVsy5EggDWdqQ6hlIbqcRVMoi0u9NlAdZyyrlHaFa0vuY1eREYy2GKsgnbJeOCmDVw0TyjXsEex1y84_gZwVPloz4agaIy1giDA1FunBZNC-ZG0Gr7b6Mhc9FYZJIWymTK9dE7VrknYNz2CCKt2VRBrr9CCCawZwzb_AzeBwC4gZxtbasOiloV_Kygxe7F7HUYGhDtv55WVfhmkk5sngcQ_kria8RJpDxjJ4vUX258f_3qCn_6NBz-CApi6IuwEPYW-zuvTP4VZztVmsVyO4KecySTWC_clpVX8YpX4d5ZTWKGWU-_W7af3pB9rA-eY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qgQJDgRK0mfmycA0JtobTqblRpF6k3Yyd2Wwmyy2YL6p_iN-Jxkq0Qj1sPHCJZieXYyTcPe-xvAF4OmDOaVxUpvfNKuGCU6HQgiDNJ6eXc5tS4kGwiKwp5dJQfrsCP_iwMbqvsdWJQ1NW0xDXyTeZtM3ojLH07-0owaxRGV_sUGi0sDuz5dz9la97sv_P_9xWlu-8nO3ukyypASs7kglDNnHfSkjKRGidHlaO5l3EtZW4SU6Xc-o-b-e5XyUC6zEhthckyZ2XJhDQl8-1egascmcVwqyA9XK7pYNSMp3l3NidhcrPx9hHPsFFBUgxQEv6L_QtpAv7k2_4Wlw3mbvf2__ah7sCtzrGOt1pJuAsrtr4H19tUm-f3YfRBN3GJZzTrjig4ns0xSBWKaMur2BfG461Yfz7241mcfIlxkTreKQqyfTocT0YEuUjD7tAH8PFSxvIQVutpbR9BzBLrjb4wVA6QPdF5NJcaWdQyl9uUVRG87n-wmrWMISpE-plULRyUh4MKcFA8gm3EwLImsn2HG9P5seqUhxKOaWtFxS3V_jK50C4XecK59RNSfOV6DwXVqaBGXeAgghfLx155YERI13Z61tZhOfIXRbDWIm_ZE54iGyRjEWz0ULxo_O8DevzvvjyHG3uT0VAN94uDJ3CTBsnArZHrsLqYn9mncK38tjht5s-CaMXw6bIh-hP3umEz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VLVS8cB-BAkGCJ7A2sZ2N84BQDxZW7UYrbZHaJ-MkdlsJsstmC-pf49cxk2MrxPHWBx4iWYnl-PjmsGc8A_BiIFxmZFGwHJVXJiPBmQkHEXNZkCOd24Rnrk42EaepOjxMJmvwo7sLQ26VHU-sGXUxy-mMvC9QNpM2IsK-a90iJrvDt_OvjDJIkaW1S6fRQGTPnn_H7Vv1ZrSLa_2S8-G7g50PrM0wwHIp1JJxIxwqbEEeKEMbpcLxBOndKJVkQVaE0uJExziUIhgoF2fK2CiLY2dVLiKV5QLbvQLrqJJL3oP1yWg8OVqd8JANTYZJe1MnEKpfobSkG208YiGZK5n8RRrWSQP-pOn-ZqWthd_w5v88bbfgRqty-1sNjdyGNVvegWtNEs7zuzB-byo_p9ubZRtC2J8vyHxVF0nKFz4WptMt33w-xvEsT774dHzt76Qp2z7dnx6MGUUprf1G78HHSxnLfeiVs9I-BF8EFtWBKONqQHEVHeI8NxRfLXaJDUXhwatusfW8iSWiax8AoXQDDY3Q0DU0tPRgm_CwqklxwOsXs8WxbtmKjpww1kaFtNzgkyWRcUmUBFJa3KrSLzc7WOiWOVX6AhMePF99RrZCtiJT2tlZU0ckFNnIgwcNClc9kSHFiRTCg9cdLC8a__uAHv27L89gA5Gp90fp3mO4zmsiIZ_JTegtF2f2CVzNvy1Pq8XTls58-HTZGP0J7cNrfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+concentration+prediction+based+on+SSA+algorithm+with+CNN-BiLSTM-attention&rft.jtitle=Scientific+reports&rft.au=Wenjing+Xing&rft.au=Yanguo+Yang&rft.au=Yanxin+Zhang&rft.au=Yong+Yang&rft.date=2025-10-01&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-025-15838-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f3aee5d4e2a4e2b95af959044e8623d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon