Automated navigation of condensate phase behavior with active machine learning

Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 9598 - 15
Main Authors: Leurs, Yannick H. A., van den Hout, Willem, Gardin, Andrea, van Dongen, Joost L. J., Rodriguez-Abetxuko, Andoni, Erkamp, Nadia A., van Hest, Jan C. M., Grisoni, Francesca, Brunsveld, Luc
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.10.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams. Researchers developed a self-driving lab, including automated confocal imaging, that uses machine learning to rapidly map the phase behavior of biomolecular condensates.
AbstractList Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams.
Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams. Researchers developed a self-driving lab, including automated confocal imaging, that uses machine learning to rapidly map the phase behavior of biomolecular condensates.
Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams.Researchers developed a self-driving lab, including automated confocal imaging, that uses machine learning to rapidly map the phase behavior of biomolecular condensates.
Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams.Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams.
Abstract Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams.
ArticleNumber 9598
Author Erkamp, Nadia A.
van Hest, Jan C. M.
van Dongen, Joost L. J.
Gardin, Andrea
Brunsveld, Luc
Leurs, Yannick H. A.
van den Hout, Willem
Grisoni, Francesca
Rodriguez-Abetxuko, Andoni
Author_xml – sequence: 1
  givenname: Yannick H. A.
  surname: Leurs
  fullname: Leurs, Yannick H. A.
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 2
  givenname: Willem
  surname: van den Hout
  fullname: van den Hout, Willem
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 3
  givenname: Andrea
  surname: Gardin
  fullname: Gardin, Andrea
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 4
  givenname: Joost L. J.
  surname: van Dongen
  fullname: van Dongen, Joost L. J.
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 5
  givenname: Andoni
  orcidid: 0000-0002-7652-1297
  surname: Rodriguez-Abetxuko
  fullname: Rodriguez-Abetxuko, Andoni
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 6
  givenname: Nadia A.
  surname: Erkamp
  fullname: Erkamp, Nadia A.
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 7
  givenname: Jan C. M.
  orcidid: 0000-0001-7973-2404
  surname: van Hest
  fullname: van Hest, Jan C. M.
  email: j.c.m.v.hest@tue.nl
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 8
  givenname: Francesca
  orcidid: 0000-0001-8552-6615
  surname: Grisoni
  fullname: Grisoni, Francesca
  email: f.grisoni@tue.nl
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
– sequence: 9
  givenname: Luc
  orcidid: 0000-0001-5675-511X
  surname: Brunsveld
  fullname: Brunsveld, Luc
  email: l.brunsveld@tue.nl
  organization: Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41168205$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpH-CALHHhEvBn7D1WFbSVKrjA2Zo4k12vEnuxkyL-Pe6mFMQBX2yNn3nn431JTmKKSMhrzt5zJu2HorhqTcOEblrVctOIZ-RMMMUbboQ8-et9Si5K2bN65IZbpV6QU8V5awXTZ-Tz5TKnCWbsaYT7sIU5pEjTQH2KPcZSf-hhBwVph7sKpEx_hHlHwc_hHukEfhci0hEhxxC3r8jzAcaCF4_3Ofn26ePXq5vm7sv17dXlXeOVtHMjGOtBbVqrDUo0WnqDrJeDMBYNaJSemdq6Np023KLtKoMDdn3LOyV6Kc_J7arbJ9i7Qw4T5J8uQXDHQMpbB3kOfkTnxUagEqYObBQTsGkNqM4CWm6sZ7pqvVu1Djl9X7DMbgrF4zhCxLQUJ0Vr6rIteyj79h90n5Yc66RHShhdR6rUm0dq6Sbsn9r7vfUKiBXwOZWScXhCOHMP7rrVXVfddUd3nahJck0qFY5bzH9q_yfrF_VopCc
Cites_doi 10.1038/s41580-020-00303-z
10.15302/J-QB-021-0264
10.1016/j.molcel.2015.08.018
10.1021/acs.accounts.6b00512
10.1021/JACS.4C08946
10.1038/nrm.2017.7
10.1016/j.ijpharm.2024.124905
10.1146/annurev-cellbio-100913-013325
10.1021/acs.biomac.4c00738
10.1038/s41467-022-35265-7
10.1038/nprot.2016.105
10.1038/s41573-022-00505-4
10.1016/j.cell.2016.06.010
10.1039/D3DD00135K
10.1016/j.compbiomed.2024.108734
10.1021/acs.biochem.8b00001
10.1039/D2LC00622G
10.1038/s43588-024-00697-2
10.1038/s41557-023-01423-7
10.1186/s12859-024-05764-z
10.1021/acs.chemrev.4c00055
10.1038/s41467-019-10792-y
10.1038/s41467-020-19775-w
10.1016/j.tcb.2016.03.004
10.1038/s41557-020-0511-7
10.7551/MITPRESS/3206.001.0001
10.1038/s41570-024-00635-w
10.1016/bs.mie.2020.06.007
10.1042/BJ20120957
10.1038/s41467-020-18224-y
10.1021/acsami.4c00976
10.1038/s41586-024-07034-7
10.1016/j.neuroimage.2023.120253
10.1021/acs.jpcb.0c00402
10.1038/s41557-020-00585-y
10.1016/j.molcel.2017.02.013
10.1038/s41586-020-2442-2
10.1038/s41557-024-01630-w
10.1039/D4DD00104D
10.1063/1.474547
10.1021/acs.jctc.2c00752
10.1016/j.cell.2018.12.035
10.26434/CHEMRXIV-2024-VGVHK-V2
10.1039/D3DD00142C
10.1021/acs.langmuir.3c01640
10.1038/s41586-020-2256-2
10.1021/acs.chemrev.2c00814
10.1007/s11831-024-10064-z
10.1002/adma.201702888
10.1038/s41587-019-0341-6
10.1021/jacs.7b10846
10.1038/s42256-024-00928-1
10.1039/D0LC00613K
10.1038/s41589-022-01252-8
10.1021/acs.analchem.2c05495
10.1038/s44222-023-00052-6
10.1038/s41467-023-41864-9
10.1038/s41570-019-0120-4
10.3390/e21050485
10.1038/s44286-024-00077-7
10.1016/j.tcb.2018.02.004
10.1146/annurev-physchem-071819-113553
10.1016/j.drudis.2014.12.004
10.1109/83.623193
10.1038/s42255-022-00645-2
10.1021/jacs.5c03740
10.1002/ADMA.202405868
10.1016/j.celrep.2021.108705
10.1016/j.biotechadv.2024.108452
10.1016/j.cell.2020.11.050
10.1021/acs.biomac.4c00814
10.1016/j.xcrp.2022.101041
10.1021/acs.accounts.3c00689
10.1038/s41467-023-39513-2
10.1016/j.sbi.2024.102818
10.1557/s43577-022-00466-4
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-64617-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_c292e4276827402a967a4b8ae8178c05
41168205
10_1038_s41467_025_64617_2
Genre Journal Article
GrantInformation_xml – fundername: Ministerie van Volksgezondheid, Welzijn en Sport (Dutch Ministry of Health, Welfare and Sport)
  grantid: National Growth Fund Big Chemistry 1420578
  funderid: https://doi.org/10.13039/501100002999
– fundername: Ministerie van Volksgezondheid, Welzijn en Sport (Dutch Ministry of Health, Welfare and Sport)
  grantid: National Growth Fund Big Chemistry 1420578
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c438t-200da496857e3e753c7e0d3f278e7a5e3c0717257b5718e8be75efebd61b42d33
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606731000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Mon Nov 10 19:22:36 EST 2025
Sat Nov 01 12:10:44 EDT 2025
Sat Nov 01 12:01:09 EDT 2025
Tue Nov 04 01:48:39 EST 2025
Wed Nov 05 20:50:15 EST 2025
Sat Nov 01 10:37:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-200da496857e3e753c7e0d3f278e7a5e3c0717257b5718e8be75efebd61b42d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7973-2404
0000-0001-8552-6615
0000-0002-7652-1297
0000-0001-5675-511X
OpenAccessLink https://www.proquest.com/docview/3267275685?pq-origsite=%requestingapplication%
PMID 41168205
PQID 3267275685
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c292e4276827402a967a4b8ae8178c05
proquest_miscellaneous_3267414803
proquest_journals_3267275685
pubmed_primary_41168205
crossref_primary_10_1038_s41467_025_64617_2
springer_journals_10_1038_s41467_025_64617_2
PublicationCentury 2000
PublicationDate 2025-10-30
PublicationDateYYYYMMDD 2025-10-30
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SS Ribeiro (64617_CR55) 2019; 3
AS Lyon (64617_CR7) 2020; 22
WE Arter (64617_CR34) 2022; 13
D Reker (64617_CR38) 2015; 20
NA Erkamp (64617_CR62) 2023; 95
MA Bray (64617_CR35) 2016; 11
L Bar-Peled (64617_CR2) 2022; 4
Y Eldar (64617_CR47) 1997; 6
F Di Fiore (64617_CR37) 2024; 31
RB Canty (64617_CR49) 2023; 2
FP Cakmak (64617_CR30) 2020; 11
B Ramm (64617_CR10) 2023; 14
S Boeynaems (64617_CR4) 2018; 28
R Vescovi (64617_CR70) 2023; 2
AN Milin (64617_CR57) 2018; 57
64617_CR67
S Liu (64617_CR21) 2020; 12
A Bremer (64617_CR36) 2020; 20
D van Tilborg (64617_CR58) 2024; 86
A Gangwal (64617_CR60) 2024; 179
MHI van Haren (64617_CR50) 2024; 15
D van Tilborg (64617_CR39) 2024; 4
SF Banani (64617_CR6) 2017; 18
AP Minton (64617_CR65) 2020; 124
T Chen (64617_CR32) 2021; 9
B Maruyama (64617_CR68) 2022; 47
Y Lin (64617_CR78) 2015; 60
B Alberts (64617_CR3) 1994; 22
NA Erkamp (64617_CR31) 2022; 23
N Seegobin (64617_CR41) 2024; 667
GL Dignon (64617_CR56) 2020; 71
JA Riback (64617_CR63) 2020; 581
KY Chin (64617_CR23) 2024; 25
F Nielsen (64617_CR61) 2019; 21
V Castelletto (64617_CR25) 2024; 25
P Thölke (64617_CR59) 2023; 277
B Tsang (64617_CR79) 2020; 183
T Nobeyama (64617_CR26) 2023; 39
D Bracha (64617_CR77) 2019; 37
BS Visser (64617_CR12) 2024; 8
G Tom (64617_CR48) 2024; 124
T Ukmar-Godec (64617_CR53) 2019; 10
RS Fisher (64617_CR52) 2020; 11
BC Buddingh (64617_CR13) 2017; 50
NA Erkamp (64617_CR15) 2024; 1
A Aguzzi (64617_CR8) 2016; 26
S Song (64617_CR16) 2024; 25
64617_CR43
H Fu (64617_CR75) 2024; 626
AA Hyman (64617_CR5) 2014; 30
Y Diekmann (64617_CR1) 2013; 449
RM Welles (64617_CR11) 2024; 16
A Sathyavageeswaran (64617_CR51) 2024; 57
B Burger (64617_CR69) 2020; 583
M Muschol (64617_CR64) 1997; 107
M Dzuricky (64617_CR22) 2020; 12
RV Pappu (64617_CR66) 2023; 123
YHA Leurs (64617_CR54) 2025; 147
64617_CR46
M Poudyal (64617_CR29) 2023; 14
S Alberti (64617_CR45) 2019; 176
S Boeynaems (64617_CR28) 2017; 65
F Pedregosa (64617_CR80) 2011; 12
Y Dai (64617_CR19) 2023; 19
64617_CR72
A Duro-Castano (64617_CR20) 2017; 29
A Patel (64617_CR24) 2017; 356
64617_CR76
64617_CR73
SF Banani (64617_CR27) 2016; 166
64617_CR74
L Chen (64617_CR71) 2024; 16
Y Khalak (64617_CR40) 2022; 18
L Wan (64617_CR9) 2024; 77
S Ambadi Thody (64617_CR18) 2024; 16
A Ortiz-Perez (64617_CR42) 2024; 3
AF Mason (64617_CR44) 2017; 139
DM Mitrea (64617_CR17) 2022; 21
KK Nakashima (64617_CR33) 2021; 646
Y Dai (64617_CR14) 2023; 1
References_xml – volume: 22
  start-page: 215
  year: 2020
  ident: 64617_CR7
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00303-z
– volume: 9
  start-page: 255
  year: 2021
  ident: 64617_CR32
  publication-title: Quant. Biol.
  doi: 10.15302/J-QB-021-0264
– volume: 60
  start-page: 208
  year: 2015
  ident: 64617_CR78
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 50
  start-page: 769
  year: 2017
  ident: 64617_CR13
  publication-title: Acc. Chem. Res
  doi: 10.1021/acs.accounts.6b00512
– ident: 64617_CR67
  doi: 10.1021/JACS.4C08946
– volume: 18
  start-page: 285
  year: 2017
  ident: 64617_CR6
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 667
  year: 2024
  ident: 64617_CR41
  publication-title: Int J. Pharm.
  doi: 10.1016/j.ijpharm.2024.124905
– volume: 30
  start-page: 39
  year: 2014
  ident: 64617_CR5
  publication-title: Annu Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 25
  start-page: 5321
  year: 2024
  ident: 64617_CR25
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.4c00738
– volume: 13
  start-page: 1
  year: 2022
  ident: 64617_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35265-7
– volume: 11
  start-page: 1757
  year: 2016
  ident: 64617_CR35
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.105
– volume: 21
  start-page: 841
  year: 2022
  ident: 64617_CR17
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-022-00505-4
– volume: 166
  start-page: 651
  year: 2016
  ident: 64617_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.010
– volume: 2
  start-page: 1259
  year: 2023
  ident: 64617_CR49
  publication-title: Digital Discov.
  doi: 10.1039/D3DD00135K
– volume: 179
  start-page: 108734
  year: 2024
  ident: 64617_CR60
  publication-title: Comput Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108734
– volume: 57
  start-page: 2470
  year: 2018
  ident: 64617_CR57
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00001
– volume: 23
  start-page: 9
  year: 2022
  ident: 64617_CR31
  publication-title: Lab Chip
  doi: 10.1039/D2LC00622G
– volume: 4
  start-page: 786
  year: 2024
  ident: 64617_CR39
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-024-00697-2
– volume: 16
  start-page: 1062
  year: 2024
  ident: 64617_CR11
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-023-01423-7
– volume: 25
  start-page: 1
  year: 2024
  ident: 64617_CR23
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-024-05764-z
– volume: 356
  start-page: 753
  year: 2017
  ident: 64617_CR24
  publication-title: Science (1979)
– volume: 124
  start-page: 9633
  year: 2024
  ident: 64617_CR48
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.4c00055
– volume: 10
  start-page: 1
  year: 2019
  ident: 64617_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10792-y
– volume: 11
  start-page: 1
  year: 2020
  ident: 64617_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19775-w
– volume: 26
  start-page: 547
  year: 2016
  ident: 64617_CR8
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.03.004
– volume: 22
  start-page: 641
  year: 1994
  ident: 64617_CR3
  publication-title: Biochem Educ.
– volume: 12
  start-page: 814
  year: 2020
  ident: 64617_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0511-7
– ident: 64617_CR46
  doi: 10.7551/MITPRESS/3206.001.0001
– volume: 8
  start-page: 686
  year: 2024
  ident: 64617_CR12
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-024-00635-w
– volume: 646
  start-page: 353
  year: 2021
  ident: 64617_CR33
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2020.06.007
– volume: 449
  start-page: 319
  year: 2013
  ident: 64617_CR1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20120957
– volume: 11
  start-page: 1
  year: 2020
  ident: 64617_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18224-y
– volume: 16
  start-page: 25473
  year: 2024
  ident: 64617_CR71
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c00976
– volume: 626
  start-page: 1011
  year: 2024
  ident: 64617_CR75
  publication-title: Nature
  doi: 10.1038/s41586-024-07034-7
– volume: 277
  year: 2023
  ident: 64617_CR59
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120253
– volume: 124
  start-page: 2363
  year: 2020
  ident: 64617_CR65
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c00402
– volume: 12
  start-page: 1165
  year: 2020
  ident: 64617_CR21
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00585-y
– volume: 65
  start-page: 1044
  year: 2017
  ident: 64617_CR28
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.013
– volume: 583
  start-page: 237
  year: 2020
  ident: 64617_CR69
  publication-title: Nature
  doi: 10.1038/s41586-020-2442-2
– volume: 12
  start-page: 2825
  year: 2011
  ident: 64617_CR80
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 1794
  year: 2024
  ident: 64617_CR18
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-024-01630-w
– volume: 3
  start-page: 1280
  year: 2024
  ident: 64617_CR42
  publication-title: Digital Discov.
  doi: 10.1039/D4DD00104D
– volume: 107
  start-page: 1953
  year: 1997
  ident: 64617_CR64
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474547
– volume: 18
  start-page: 6259
  year: 2022
  ident: 64617_CR40
  publication-title: J. Chem. Theory Comput
  doi: 10.1021/acs.jctc.2c00752
– volume: 176
  start-page: 419
  year: 2019
  ident: 64617_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– ident: 64617_CR72
  doi: 10.26434/CHEMRXIV-2024-VGVHK-V2
– volume: 2
  start-page: 1980
  year: 2023
  ident: 64617_CR70
  publication-title: Digital Discov.
  doi: 10.1039/D3DD00142C
– volume: 39
  start-page: 17043
  year: 2023
  ident: 64617_CR26
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c01640
– volume: 581
  start-page: 209
  year: 2020
  ident: 64617_CR63
  publication-title: Nature
  doi: 10.1038/s41586-020-2256-2
– volume: 123
  start-page: 8945
  year: 2023
  ident: 64617_CR66
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00814
– volume: 31
  start-page: 2985
  year: 2024
  ident: 64617_CR37
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-024-10064-z
– volume: 29
  year: 2017
  ident: 64617_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702888
– volume: 37
  start-page: 1435
  year: 2019
  ident: 64617_CR77
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0341-6
– volume: 139
  start-page: 17309
  year: 2017
  ident: 64617_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10846
– ident: 64617_CR73
  doi: 10.1038/s42256-024-00928-1
– volume: 20
  start-page: 4225
  year: 2020
  ident: 64617_CR36
  publication-title: Lab Chip
  doi: 10.1039/D0LC00613K
– volume: 19
  start-page: 518
  year: 2023
  ident: 64617_CR19
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01252-8
– volume: 95
  start-page: 5362
  year: 2023
  ident: 64617_CR62
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c05495
– volume: 1
  start-page: 466
  year: 2023
  ident: 64617_CR14
  publication-title: Nat. Rev. Bioeng.
  doi: 10.1038/s44222-023-00052-6
– volume: 14
  start-page: 1
  year: 2023
  ident: 64617_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41864-9
– volume: 3
  start-page: 552
  year: 2019
  ident: 64617_CR55
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0120-4
– volume: 21
  start-page: 485
  year: 2019
  ident: 64617_CR61
  publication-title: Entropy
  doi: 10.3390/e21050485
– volume: 1
  start-page: 430
  year: 2024
  ident: 64617_CR15
  publication-title: Nat. Chem. Eng.
  doi: 10.1038/s44286-024-00077-7
– volume: 28
  start-page: 420
  year: 2018
  ident: 64617_CR4
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.02.004
– volume: 15
  start-page: 1
  year: 2024
  ident: 64617_CR50
  publication-title: Nat. Commun.
– volume: 71
  start-page: 53
  year: 2020
  ident: 64617_CR56
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-071819-113553
– volume: 20
  start-page: 458
  year: 2015
  ident: 64617_CR38
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.12.004
– volume: 6
  start-page: 1305
  year: 1997
  ident: 64617_CR47
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.623193
– volume: 4
  start-page: 1232
  year: 2022
  ident: 64617_CR2
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-022-00645-2
– volume: 147
  start-page: 18412
  year: 2025
  ident: 64617_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5c03740
– ident: 64617_CR76
  doi: 10.1002/ADMA.202405868
– ident: 64617_CR74
  doi: 10.1016/j.celrep.2021.108705
– volume: 77
  start-page: 108452
  year: 2024
  ident: 64617_CR9
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2024.108452
– volume: 183
  start-page: 1742
  year: 2020
  ident: 64617_CR79
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.050
– volume: 25
  start-page: 5468
  year: 2024
  ident: 64617_CR16
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.4c00814
– ident: 64617_CR43
  doi: 10.1016/j.xcrp.2022.101041
– volume: 57
  start-page: 386
  year: 2024
  ident: 64617_CR51
  publication-title: Acc. Chem. Res
  doi: 10.1021/acs.accounts.3c00689
– volume: 14
  start-page: 1
  year: 2023
  ident: 64617_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39513-2
– volume: 86
  year: 2024
  ident: 64617_CR58
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2024.102818
– volume: 47
  start-page: 1154
  year: 2022
  ident: 64617_CR68
  publication-title: MRS Bull.
  doi: 10.1557/s43577-022-00466-4
SSID ssj0000391844
Score 2.4858394
Snippet Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering...
Abstract Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9598
SubjectTerms 49/56
639/301/357/341
639/301/923/966
639/638/298/54/989
639/638/455/953
639/638/563/606
Automation
Cellular structure
Condensates
Humanities and Social Sciences
Learning algorithms
Machine learning
Mapping
Microscopy
multidisciplinary
Navigation behavior
Phase diagrams
Phase separation
Polypeptides
Robotics
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7Et-uLCN60mCZpkx5VFA-yeFDxFtJ0qh5sF3dX8N87SbqrouLFaxPSZCaZmS-P-Qg5kAqBNHMiqVPIE1lX0hO510nmeW6rtHRZuOV7d6X6fX1_X1x_ovryd8JieuAouGPHCw6SY1SM-IlxW-TKylJb0KnSLmYvZar4BKaCDRYFQhfZvZJhQh8PZbAJnr01l-i2E_7FE4WE_T9Fmd9OSIPjuVgii13ESE9iT5fJDDQrZD5ySL6tkv7JeNRi2AkVbexrSJjRNrStKQJdtClDLKGDR_RVdPIin_q9V2qDoaPP4TIl0I494mGN3F6c35xdJh1JQuKk0CM_yysri1xnCgQg-HAKWCVqrjQom4FwHrHhwiwzdEOgS6wDNZRVnpaSV0Ksk9mmbWCTUKWYdSho1I-SttA6RQ-qc6YVZ1DXtkcOJwIzg5gLw4QzbKFNFK9B8ZogXsN75NTLdFrT57EOH1C7ptOu-Uu7PbIz0YjpFtfQYMSpfNZ6jcX702JcFv6swzbQjmMd7JJmokc2oianPZFpiv_zjR9NVPvR-O8D2vqPAW2TBe7noPd-bIfMjl7GsEvm3OvoafiyFybxOyx872g
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated navigation of condensate phase behavior with active machine learning
URI https://link.springer.com/article/10.1038/s41467-025-64617-2
https://www.ncbi.nlm.nih.gov/pubmed/41168205
https://www.proquest.com/docview/3267275685
https://www.proquest.com/docview/3267414803
https://doaj.org/article/c292e4276827402a967a4b8ae8178c05
Volume 16
WOSCitedRecordID wos001606731000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIX3o9AWRmJG0R1bGftnFCLWoEEqwgBWrhYjuMUDiTLZrcS_54ZJ9kK8bhw8SG2nEnm5Rnb8wE8VRoDae5l2mRhnqqmVgTk3qQ54dzWWeXzeMr34xu9WJjlsijHhFs_HqucbGI01HXnKUd-iMsMTaXKTf5i9T0l1CjaXR0hNC7DPsFmk5zrpd7lWKj6uVFqvCvDpTnsVbQMhOE6V-i8U_GLP4pl-_-01vxtnzS6n9Mb_0v4Tbg-LjzZ0SApt-BSaG_D1QGK8scdWBxtNx2uXkPNWnce6250LesahvEymqYee9jqC7o8Nl3sZ5TCZS7aS_YtnskMbAShOLsLH05P3r98lY5YC6lX0mxIWWqnCqRSBxkwhvE68Fo2QpugXR6kp8AP9bvK0ZsFU-GY0ISqnmeVErWU92Cv7drwAJjW3HmMYpDNWrnCmAwdsZlzowUPTeMSeDb9cbsaSmrYuBUujR34Y5E_NvLHigSOiSm7kVQOOz7o1md21C7rRSGCEvhSDLK5cMVcO1UZF0ymjed5AgcTb-yoo729YEwCT3bdqF20ZeLa0G2HMUiS4TKB-4Mo7ChRWYbvo8mfT7JxMfnfP-jhv2l5BNcEiSe5R34Ae5v1NjyGK_5887Vfz6J8x9bMYP_4ZFG-m8U0wowOrZbYlvln7Clfvy0__QQqsQYD
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qpiC4sC-BAkaCE0RNHCd2DgiVpeqo09EcCion13GcwoFkmMwU9U_xG3nPSaZCLLceuMaWl_jz22y_D-CZkOhIRzYJq9hloahKQUTuVZgSz20ZFzb1t3w_TuR0qo6O8tkG_BjewtC1ykEmekFdNpZi5NtoZkhKVa7S1_NvIbFG0enqQKHRwWLfnX1Hl619NX6H6_uc8933h2_3wp5VILQiUUuCRWlEjg1Jlzi01q10UZlUXConTeoSSy4OIrlIUW47VWAdV7mizOJC8JICoCjyNwWCPRrB5mx8MPu0jupQvnUlRP86J0rUdiu8LCLW2EyguRDyXzSgJwr4k3X728msV3i71_-3X3UDrvWmNdvp9sJN2HD1LbjckW2e3YbpzmrZoH3uSlabU59ZpKlZUzHbEAtwiyVs_hmVOhtSFzAKUjPjNQL76m-dOtbTbJzcgQ8XMpm7MKqb2t0HJmVkLPppCGQpTK5UjKaGyiIleeSqygTwYlhhPe-Shmh_2J8o3eFBIx60x4PmAbwhEKxrUsJv_6FZnOhefmjLc-4Ex065RJff5Jk0olDGqVgqG6UBbA1Y0L0UavU5EAJ4ui5G-UGHQqZ2zaqrg0NSURLAvQ5665GIOMb-qPGXAxbPG__7hB78eyxP4Mre4cFET8bT_YdwldPWIGMg2oLRcrFyj-CSPV1-aReP-93F4PiiUfoTVVpctQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLSAuvB-BAkaCE0SbOE7sHBBqaVdUraIVAtSbcRyncCBZNrtF_Wv8OmacZCvE49YD19jyI_48nhmP5wN4JiQa0pFNwjp2WSjqShCRex2mxHNbxaVNfZTvxyNZFOr4OJ9twI_xLQyFVY4y0QvqqrXkI5-gmiEpVblKJ_UQFjHbm76efwuJQYpuWkc6jR4ih-7sO5pv3auDPVzr55xP99-_eRsODAOhFYlaEkQqI3JsVLrEoeZupYuqpOZSOWlSl1gydxDVZYoy3KkS67jalVUWl4JX5AxF8b-F843R8Nva3S9m79YeHsq9roQYXupEiZp0wsslYpDNBKoOIf_lNPSkAX_SdH-7pfWH3_T6__zbbsC1QeVmO_0euQkbrrkFl3sSzrPbUOysli3q7a5ijTn1GUfahrU1sy2xA3dYwuaf8bBnY0oDRs5rZvxJwb76aFTHBvqNkzvw4UImcxc2m7Zx94FJGRmL9hsCXAqTKxWjCqKySEkeubo2AbwYV1vP-2Qi2gcBJEr32NCIDe2xoXkAuwSIdU1KBO4_tIsTPcgVbXnOneDYKZci4ibPpBGlMk7FUtkoDWB7xIUepFOnz0ERwNN1McoVuiwyjWtXfR0ckoqSAO71MFyPRMQx9keNvxxxed743yf04N9jeQJXEJr66KA4fAhXOe0S0hGibdhcLlbuEVyyp8sv3eLxsNEYfLpokP4EmWplTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+navigation+of+condensate+phase+behavior+with+active+machine+learning&rft.jtitle=Nature+communications&rft.au=Leurs%2C+Yannick+H.+A.&rft.au=van+den+Hout%2C+Willem&rft.au=Gardin%2C+Andrea&rft.au=van+Dongen%2C+Joost+L.+J.&rft.date=2025-10-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-64617-2&rft.externalDocID=10_1038_s41467_025_64617_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon