Automated navigation of condensate phase behavior with active machine learning

Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 16; H. 1; S. 9598 - 15
Hauptverfasser: Leurs, Yannick H. A., van den Hout, Willem, Gardin, Andrea, van Dongen, Joost L. J., Rodriguez-Abetxuko, Andoni, Erkamp, Nadia A., van Hest, Jan C. M., Grisoni, Francesca, Brunsveld, Luc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 30.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomolecular condensates are essential cellular structures formed via biomacromolecule phase separation. Synthetic condensates allow for systematic engineering and understanding of condensate formation mechanisms and to serve as cell-mimetic platforms. Phase diagrams give comprehensive insight into phase separation behavior, but their mapping is time-consuming and labor-intensive. Here, we present an automated platform for efficiently mapping multi-dimensional condensate phase diagrams. The automated platform incorporates a pipetting system for sample formulation and an autonomous confocal microscope for particle property analysis. Active machine learning is used for iterative model improvement by learning from previous results and steering subsequent experiments towards efficient exploration of the binodal. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides, producing detailed and reproducible multidimensional phase diagrams. The self-driven platform also quantifies key condensate properties such as particle size, count, and volume fraction, adding functional insights to phase diagrams. Researchers developed a self-driving lab, including automated confocal imaging, that uses machine learning to rapidly map the phase behavior of biomolecular condensates.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-025-64617-2