Multi-view deep learning framework for the detection of chest X-rays compatible with pediatric pulmonary tuberculosis
Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The W...
Uložené v:
| Vydané v: | Nature communications Ročník 16; číslo 1; s. 9170 - 16 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
27.10.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.
In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings. |
|---|---|
| AbstractList | Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.
In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings. Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings. Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings. Abstract Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings. Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings. |
| ArticleNumber | 9170 |
| Author | López-Varela, Elisa Ledesma-Carbayo, María J. Blázquez-Gamero, Daniel Linguraru, Marius George Hernanz-Lobo, Alicia Lancharro, Ángel Noguera-Julian, Antoni Schaaf, H. Simon Sánchez-Jacob, Ramón Roshanitabrizi, Pooneh Capellán-Martín, Daniel García-Delgado, Lara Gómez-Valverde, Juan J. Augusto, Orvalho García-Basteiro, Alberto L. Santiago-García, Begoña Ribó, Jose Luis |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-9743-0845 surname: Capellán-Martín fullname: Capellán-Martín, Daniel email: daniel.capellan@upm.es organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital – sequence: 2 givenname: Juan J. orcidid: 0000-0002-5073-5908 surname: Gómez-Valverde fullname: Gómez-Valverde, Juan J. email: juanjo.gomez@upm.es organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III – sequence: 3 givenname: Ramón surname: Sánchez-Jacob fullname: Sánchez-Jacob, Ramón organization: Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University – sequence: 4 givenname: Alicia surname: Hernanz-Lobo fullname: Hernanz-Lobo, Alicia organization: Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Gregorio Marañón Research Health Institute (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, RITIP Translational Research Network in Pediatric Infectious Diseases – sequence: 5 givenname: H. Simon orcidid: 0000-0001-5755-4133 surname: Schaaf fullname: Schaaf, H. Simon organization: Desmond Tutu TB Centre, Department of Pediatrics and Child Health, Stellenbosch University – sequence: 6 givenname: Lara surname: García-Delgado fullname: García-Delgado, Lara organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III – sequence: 7 givenname: Orvalho orcidid: 0000-0002-0005-3968 surname: Augusto fullname: Augusto, Orvalho organization: Department of Global Health, University of Washington, Centro de Investigação em Saúde de Manhiça – sequence: 8 givenname: Pooneh orcidid: 0000-0002-8853-2786 surname: Roshanitabrizi fullname: Roshanitabrizi, Pooneh organization: Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital – sequence: 9 givenname: Alberto L. orcidid: 0000-0002-2038-5505 surname: García-Basteiro fullname: García-Basteiro, Alberto L. organization: Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Centro de Investigação em Saúde de Manhiça, ISGlobal, Hospital Clnic, Universitat de Barcelona – sequence: 10 givenname: Jose Luis surname: Ribó fullname: Ribó, Jose Luis organization: Hospital Universitari General de Catalunya – sequence: 11 givenname: Ángel orcidid: 0000-0001-9439-1951 surname: Lancharro fullname: Lancharro, Ángel organization: Gregorio Marañón Research Health Institute (IiSGM), Radiología Pediátrica, Hospital Materno Infantil Gregorio Marañón, Radiología Pediátrica, HM Hospitales – sequence: 12 givenname: Antoni surname: Noguera-Julian fullname: Noguera-Julian, Antoni organization: RITIP Translational Research Network in Pediatric Infectious Diseases, Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Department, Hospital Sant Joan de Déu Research Foundation, Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Epidemiologa y Salud Pública (CIBERESP), Instituto de Salud Carlos III – sequence: 13 givenname: Daniel surname: Blázquez-Gamero fullname: Blázquez-Gamero, Daniel organization: Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, RITIP Translational Research Network in Pediatric Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (imas12), Pediatric Infectious Diseases Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid – sequence: 15 givenname: Marius George surname: Linguraru fullname: Linguraru, Marius George organization: Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University – sequence: 16 givenname: Begoña surname: Santiago-García fullname: Santiago-García, Begoña organization: Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Gregorio Marañón Research Health Institute (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III – sequence: 17 givenname: Elisa orcidid: 0000-0002-6725-5687 surname: López-Varela fullname: López-Varela, Elisa organization: Centro de Investigação em Saúde de Manhiça, ISGlobal, Hospital Clnic, Universitat de Barcelona – sequence: 18 givenname: María J. orcidid: 0000-0001-6846-3923 surname: Ledesma-Carbayo fullname: Ledesma-Carbayo, María J. email: mj.ledesma@upm.es organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41145423$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi3UipbSP8ABWeLCJeCvOM4RVVAqFXFppd4s25nsekniYDtd9d_jbkpBHPDFlueZd2bs9xU6msIECL2h5AMlXH1MggrZVITVlRS8pRV9gU4ZEeXQMH701_kEnae0I2UVTAnxEp0ISkUtGD9Fy7dlyL6697DHHcCMBzBx8tMG99GMsA_xB-5DxHkLJZ7BZR8mHHrstpAyvquieUjYhXE22dsB8N7nLZ6h8yZH7_C8DGOYTHzAebEQ3TKE5NNrdNybIcH5036Gbr98vrn4Wl1_v7y6-HRdOcFVrqiTxJq2aYVlTdfJBlhvKDPcctb1hLYgnbWMGKkUBcVqyVoCUKK8ceWR-Bm6WnW7YHZ6jn4snehgvD5chLjRJmbvBtDMtC2hlDfWKqHqxiipiljPKK3r1oqi9X7VmmP4uZTh9eiTg2EwE4Qlac5k3RIhRFPQd_-gu7DEqUx6oGQpQHmh3j5Rix2he27v9-cUgK2AiyGlCP0zQol-NIFeTaCLCfTBBJqWJL4mpQJPG4h_av8n6xc-ArLM |
| Cites_doi | 10.1109/CVPR.2017.369 10.1016/j.acra.2018.02.018 10.1007/s00247-017-3890-1 10.1109/ISBI53787.2023.10230500 10.1007/s13244-016-0534-1 10.1109/TMI.2013.2284099 10.1109/ISBI56570.2024.10635520 10.1007/s11548-019-01917-1 10.1016/B978-0-12-336156-1.50061-6 10.1016/S1473-3099(16)30474-1 10.1093/cid/civ581 10.1016/S2352-4642(23)00004-4 10.7196/sajr.655 10.1371/journal.pgph.0001799 10.1109/TPAMI.2018.2858826 10.5588/ijtld.15.0201 10.1007/s00247-023-05606-9 10.1016/S2214-109X(21)00462-9 10.3390/ijms17060960 10.1542/pir.2018-0093 10.1016/S2589-7500(24)00118-3 10.1007/s10916-018-0991-9 10.1183/13993003.00811-2024 10.1101/2024.10.08.24314837 10.1007/s00247-017-3887-9 10.1016/j.arbres.2025.05.006 10.1016/j.acra.2019.10.003 10.1097/INF.0000000000004016 10.23937/2469-5793/1510073 10.1002/14651858.CD013693 10.1097/INF.0000000000000710 10.1007/s12098-018-02847-7 10.1093/infdis/jis008 10.4269/ajtmh.20-0535 10.1016/S2589-7500(21)00116-3 10.3389/frai.2022.827299 10.1007/s11263-019-01228-7 10.1038/s41598-019-51503-3 10.1148/radiol.2017162326 10.1145/3561048 10.1609/aaai.v33i01.3301590 10.1016/j.acra.2018.11.006 10.5588/ijtldopen.24.0328 10.1183/2312508X.10021817 10.3389/fgene.2022.864724 10.2196/51743 10.1097/INF.0000000000001270 10.1016/j.media.2021.102125 10.1038/s41598-019-42557-4 10.1371/journal.pone.0127323 10.1016/j.idc.2021.11.008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | pTBred network |
| CorporateAuthor_xml | – name: pTBred network |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
| DOI | 10.1038/s41467-025-64391-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Public Health |
| EISSN | 2041-1723 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_2a9901137bb84857a86890ef211559b4 41145423 10_1038_s41467_025_64391_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universidad Politécnica de Madrid (Technical University of Madrid) funderid: 501100003759 |
| GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFFHD AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 |
| ID | FETCH-LOGICAL-c438t-1c60ba9794b27dd67e2fa12a3b32df019e6cbb20a6881e8256290eeb3237c0383 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603687300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 19:22:55 EST 2025 Wed Oct 29 12:21:20 EDT 2025 Tue Oct 28 09:43:02 EDT 2025 Sat Nov 01 14:17:11 EDT 2025 Wed Oct 29 21:22:10 EDT 2025 Tue Oct 28 02:38:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-1c60ba9794b27dd67e2fa12a3b32df019e6cbb20a6881e8256290eeb3237c0383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6846-3923 0000-0002-0005-3968 0000-0002-2038-5505 0000-0001-5755-4133 0000-0002-5073-5908 0000-0002-8853-2786 0000-0002-9743-0845 0000-0002-6725-5687 0000-0001-9439-1951 |
| OpenAccessLink | https://www.proquest.com/docview/3265684813?pq-origsite=%requestingapplication% |
| PMID | 41145423 |
| PQID | 3265684813 |
| PQPubID | 546298 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a9901137bb84857a86890ef211559b4 proquest_miscellaneous_3265904447 proquest_journals_3265684813 pubmed_primary_41145423 crossref_primary_10_1038_s41467_025_64391_1 springer_journals_10_1038_s41467_025_64391_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-27 |
| PublicationDateYYYYMMDD | 2025-10-27 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | MJM Peña (64391_CR68) 2018; 88 P Naranje (64391_CR12) 2019; 86 S Jaeger (64391_CR28) 2014; 33 SM Graham (64391_CR63) 2012; 205 A Wong (64391_CR33) 2022; 5 B Santiago-García (64391_CR53) 2016; 35 L Richter-Joubert (64391_CR19) 2017; 47 KS Gunasekera (64391_CR14) 2023; 7 A Hernanz-Lobo (64391_CR44) 2023; 42 ZZ Qin (64391_CR26) 2021; 3 AP Brady (64391_CR15) 2017; 8 ZZ Qin (64391_CR27) 2024; 6 64391_CR22 64391_CR21 64391_CR65 F Pasa (64391_CR31) 2019; 9 M Palmer (64391_CR39) 2023; 3 MP McBee (64391_CR23) 2018; 25 P Rajpurkar (64391_CR32) 2020; 3 64391_CR62 AJ Degnan (64391_CR16) 2019; 26 E Çallı (64391_CR49) 2021; 72 P Lakhani (64391_CR29) 2017; 284 D Jaganath (64391_CR5) 2022; 36 TY Lin (64391_CR67) 2020; 42 64391_CR13 64391_CR56 64391_CR11 64391_CR55 L Galli (64391_CR17) 2016; 17 64391_CR54 AL García-Basteiro (64391_CR18) 2015; 10 JJ Gómez-Valverde (64391_CR57) 2024; 7 64391_CR59 64391_CR58 S Yerramsetti (64391_CR6) 2022; 10 S Candemir (64391_CR35) 2019; 14 ZZ Qin (64391_CR25) 2019; 9 HE Jenkins (64391_CR4) 2017; 17 B Melingui (64391_CR51) 2024; 1 PJ Holmberg (64391_CR3) 2019; 40 R Triasih (64391_CR52) 2015; 19 64391_CR9 N Mahomed (64391_CR50) 2023; 5 64391_CR46 64391_CR45 64391_CR8 64391_CR2 S Vajda (64391_CR30) 2018; 42 64391_CR1 RR Selvaraju (64391_CR47) 2020; 128 A Mouton (64391_CR38) 2010; 6363 LNCS 64391_CR41 64391_CR40 L Wang (64391_CR60) 2020; 10 G Siracusano (64391_CR66) 2020; 12 S Rajaraman (64391_CR48) 2022; 13 E López-Varela (64391_CR7) 2015; 34 A George (64391_CR20) 2017; 47 K Murphy (64391_CR42) 2020; 10 MA Orsi (64391_CR10) 2020; 103 64391_CR34 SM Graham (64391_CR43) 2015; 61 S Jaeger (64391_CR61) 2014; 4 S Kulkarni (64391_CR24) 2020; 27 J Naidoo (64391_CR37) 2023; 53 D Capellán-Martín (64391_CR64) 2023; 12465 64391_CR36 |
| References_xml | – ident: 64391_CR59 doi: 10.1109/CVPR.2017.369 – volume: 25 start-page: 1472 year: 2018 ident: 64391_CR23 publication-title: Academic Radiol. doi: 10.1016/j.acra.2018.02.018 – volume: 47 start-page: 1277 year: 2017 ident: 64391_CR20 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-017-3890-1 – ident: 64391_CR34 doi: 10.1109/ISBI53787.2023.10230500 – volume: 8 start-page: 171 year: 2017 ident: 64391_CR15 publication-title: Insights into imaging doi: 10.1007/s13244-016-0534-1 – volume: 33 start-page: 233 year: 2014 ident: 64391_CR28 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2284099 – ident: 64391_CR40 doi: 10.1109/ISBI56570.2024.10635520 – volume: 14 start-page: 563 year: 2019 ident: 64391_CR35 publication-title: Int. J. computer Assist. Radiol. Surg. doi: 10.1007/s11548-019-01917-1 – ident: 64391_CR65 doi: 10.1016/B978-0-12-336156-1.50061-6 – volume: 88 start-page: 52 year: 2018 ident: 64391_CR68 publication-title: An. de. Pediatr. (Engl. Ed.) – volume: 17 start-page: 285 year: 2017 ident: 64391_CR4 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)30474-1 – volume: 61 start-page: S179 year: 2015 ident: 64391_CR43 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/civ581 – ident: 64391_CR62 – volume: 12 start-page: 1 year: 2020 ident: 64391_CR66 publication-title: Sustainability (Switz.) – volume: 7 start-page: 336 year: 2023 ident: 64391_CR14 publication-title: Lancet Child Adolesc. Health doi: 10.1016/S2352-4642(23)00004-4 – ident: 64391_CR22 doi: 10.7196/sajr.655 – volume: 3 start-page: e0001799 year: 2023 ident: 64391_CR39 publication-title: PLOS Glob. public health doi: 10.1371/journal.pgph.0001799 – volume: 42 start-page: 318 year: 2020 ident: 64391_CR67 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858826 – volume: 19 start-page: 1428 year: 2015 ident: 64391_CR52 publication-title: Int. J. Tuberculosis Lung Dis. doi: 10.5588/ijtld.15.0201 – volume: 53 start-page: 1733 year: 2023 ident: 64391_CR37 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-023-05606-9 – volume: 10 start-page: e207 year: 2022 ident: 64391_CR6 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(21)00462-9 – volume: 17 start-page: 960 year: 2016 ident: 64391_CR17 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17060960 – ident: 64391_CR9 – volume: 40 start-page: 168 year: 2019 ident: 64391_CR3 publication-title: Pediatrics Rev. doi: 10.1542/pir.2018-0093 – ident: 64391_CR56 – volume: 6 start-page: e605 year: 2024 ident: 64391_CR27 publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(24)00118-3 – volume: 42 start-page: 1 year: 2018 ident: 64391_CR30 publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0991-9 – volume: 12465 start-page: 451 year: 2023 ident: 64391_CR64 publication-title: Med. Imaging 2023: Computer-Aided Diagnosis – ident: 64391_CR41 doi: 10.1183/13993003.00811-2024 – ident: 64391_CR36 doi: 10.1101/2024.10.08.24314837 – volume: 47 start-page: 1283 year: 2017 ident: 64391_CR19 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-017-3887-9 – volume: 10 start-page: 1 year: 2020 ident: 64391_CR60 publication-title: Sci. Rep. 2020 10:1 – ident: 64391_CR21 doi: 10.1016/j.arbres.2025.05.006 – ident: 64391_CR45 – volume: 6363 LNCS start-page: 619 year: 2010 ident: 64391_CR38 publication-title: Lect. Notes Computer Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) – volume: 4 start-page: 475 year: 2014 ident: 64391_CR61 publication-title: Quant. Imaging Med. Surg. – volume: 27 start-page: 71 year: 2020 ident: 64391_CR24 publication-title: Academic Radiol. doi: 10.1016/j.acra.2019.10.003 – volume: 42 start-page: 837 year: 2023 ident: 64391_CR44 publication-title: Pediatr. Infect. Dis. J. doi: 10.1097/INF.0000000000004016 – ident: 64391_CR11 doi: 10.23937/2469-5793/1510073 – ident: 64391_CR1 – ident: 64391_CR8 doi: 10.1002/14651858.CD013693 – volume: 34 start-page: 686 year: 2015 ident: 64391_CR7 publication-title: Pediatr. Infect. Dis. J. doi: 10.1097/INF.0000000000000710 – volume: 86 start-page: 448 year: 2019 ident: 64391_CR12 publication-title: Indian J. Pediatrics doi: 10.1007/s12098-018-02847-7 – volume: 205 start-page: S199 year: 2012 ident: 64391_CR63 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis008 – volume: 103 start-page: 822 year: 2020 ident: 64391_CR10 publication-title: Am. J. Tropical Med. Hyg. doi: 10.4269/ajtmh.20-0535 – volume: 3 start-page: e543 year: 2021 ident: 64391_CR26 publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(21)00116-3 – volume: 5 start-page: 85 year: 2023 ident: 64391_CR50 publication-title: Wits J. Clin. Med. – ident: 64391_CR55 – volume: 5 start-page: 827299 year: 2022 ident: 64391_CR33 publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.827299 – volume: 128 start-page: 336 year: 2020 ident: 64391_CR47 publication-title: Int. J. Computer Vis. doi: 10.1007/s11263-019-01228-7 – volume: 9 start-page: 1 year: 2019 ident: 64391_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51503-3 – volume: 284 start-page: 574 year: 2017 ident: 64391_CR29 publication-title: Radiology doi: 10.1148/radiol.2017162326 – ident: 64391_CR46 doi: 10.1145/3561048 – ident: 64391_CR58 doi: 10.1609/aaai.v33i01.3301590 – volume: 26 start-page: 833 year: 2019 ident: 64391_CR16 publication-title: Academic Radiol. doi: 10.1016/j.acra.2018.11.006 – volume: 1 start-page: 449 year: 2024 ident: 64391_CR51 publication-title: IJTLD open doi: 10.5588/ijtldopen.24.0328 – ident: 64391_CR2 doi: 10.1183/2312508X.10021817 – volume: 13 start-page: 864724 year: 2022 ident: 64391_CR48 publication-title: Front. Genet. doi: 10.3389/fgene.2022.864724 – volume: 7 start-page: e51743 year: 2024 ident: 64391_CR57 publication-title: JMIR pediatrics Parent. doi: 10.2196/51743 – ident: 64391_CR13 – volume: 3 start-page: 1 year: 2020 ident: 64391_CR32 publication-title: npj Digital Med. 2020 3:1 – volume: 35 start-page: 1175 year: 2016 ident: 64391_CR53 publication-title: Pediatr. Infect. Dis. J. doi: 10.1097/INF.0000000000001270 – volume: 72 start-page: 102125 year: 2021 ident: 64391_CR49 publication-title: Med. image Anal. doi: 10.1016/j.media.2021.102125 – ident: 64391_CR54 – volume: 9 start-page: 1 year: 2019 ident: 64391_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-019-42557-4 – volume: 10 start-page: e0127323 year: 2015 ident: 64391_CR18 publication-title: PLOS ONE doi: 10.1371/journal.pone.0127323 – volume: 10 start-page: 1 year: 2020 ident: 64391_CR42 publication-title: Sci. Rep. 2020 10:1 – volume: 36 start-page: 49 year: 2022 ident: 64391_CR5 publication-title: Infect. Dis. Clin. North Am. doi: 10.1016/j.idc.2021.11.008 |
| SSID | ssj0000391844 |
| Score | 2.4853804 |
| Snippet | Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with... Abstract Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 9170 |
| SubjectTerms | 639/166/985 639/705/117 692/308/3187 692/699/255/1856 Abnormalities Adolescent Age Age groups Artificial intelligence Assessments Chest Child Child, Preschool Classification Clinical medicine Compatibility Coronaviruses Datasets Deep Learning Diagnosis Disease Female Global health Humanities and Social Sciences Humans Infant Male Medical diagnosis multidisciplinary Pandemics Pediatrics Public health Radiography, Thoracic - methods Science Science (multidisciplinary) Tuberculosis Tuberculosis, Pulmonary - diagnosis Tuberculosis, Pulmonary - diagnostic imaging X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgRd321rhLBm4btTnryOK7isqfFg8LcQtKpyMDQM_RjYf69lXT3uKLixWsnNElVJalKVb6PkHdShAZq4xko6VgdSsd0XQcmJegQG-9WOmayCXVzo9dr8-UO1VeqCZvggSfBXXCXMjeVUN7rWq-U01KbEiIGLugM-4wEWipzJ5jKe7AwGLrU8yuZUuiLvs57QmJvza9NWfXLSZQB-__kZf6WIc0Hz9Vj8mj2GOnlNNJTcg_aM_Jg4pA8PCFjfkLL0g0_DQB7OvNAfKdxqbui6JhSdPSwfciVVy3dRZqZsuiade7Q01yKPmz8Fmi6maX7hcGD7sctWqrrDnQYPXTNuN31m_4p-Xb1-eunazZzKbCmFnpgVSNL7wyuPs9VCFIBj67iTnjBQ0Q_D2TjPS-d1LoCDBslRyljpM2FalB-4hk5aXctvCDUeRON4aFMWHdReu2BB53gDMBFMLEg7xe52v0EmWFzqltoO2nBohZs1oKtCvIxif7YM8Fd5w9oBHY2AvsvIyjI-aI4O6_B3qJjupKJLUAU5O2xGVdPSom4Fnbj1MckyDxVkOeTwo8jqTFUXKG3WZAPiwX8_PnfJ_Tyf0zoFXnIk6niIcnVOTkZuhFek_vN7bDpuzfZ1n8A6qL_sQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-view deep learning framework for the detection of chest X-rays compatible with pediatric pulmonary tuberculosis |
| URI | https://link.springer.com/article/10.1038/s41467-025-64391-1 https://www.ncbi.nlm.nih.gov/pubmed/41145423 https://www.proquest.com/docview/3265684813 https://www.proquest.com/docview/3265904447 https://doaj.org/article/2a9901137bb84857a86890ef211559b4 |
| Volume | 16 |
| WOSCitedRecordID | wos001603687300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0TkEQP049q-cSwTcN16bdJH0ST-7QB5ciCqsvJWmSY2HZrv042P_eSdruIX68-NKHJqRTZiaZr8wP4BVPTWWzXFMruKKZiRWVWWYo51YaV2k1ly6ATYjFQi6XeTEG3NqxrHLaE8NGberKx8hP0cyYc9_7PX27_UE9apTPro4QGjfh0MNmezkXS7GPsfju5_jl8a5MnMrTNgs7g8dwDXdOafLLeRTa9v_J1vwtTxqOn4v7_0v4A7g3Gp7k3SApD-GG3RzB7QGKcncEd4f4HRmuJT2CPtzMpX5tYqzdkhFe4pK4qZyLoL1L0H7E8S4UdG1I7UgA4CJL2qhdS0KFe7fSa0t8wJdsJ2AQsu3XSJhqdqTrtW2qfl23q_YxfL04__L-Ax0hGmiVpbKjScVjrXJUas2EMVxY5lTCVKpTZhyaj5ZXWrNYcSkTi94oZ3ls0YFnqaiQIekTONjUG_sUiNK5y3NmYt9Cz3EttWVG-i4JVjmbuwheT4wqt0MnjjJk0FNZDmwtka1lYGuZRHDmebmf6btohxd1c1mOSlky5bOCSSq0RgbNhZJcInkOnWJ0tHQWwcnE0nJU7ba85mcEL_fDqJQ-06I2tu6HObnvxCciOB4kaE9Jhh7oHI3YCN5MInW9-N9_6Nm_aXkOd5iXajxVmTiBg67p7Qu4VV11q7aZBbUITzmDw7PzRfF5FqIPM1_rWuCzmH_HkeLjp-LbT_jmG44 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBIiKVsgQJGghNYTZyM4xwQYqs6ajuaQ5HKydixU400mgxZQPOn-I08O8lUiOXWA9fYsmzn8_N7fssH8JzHJrdJpqlNuaKJCRUVSWIo51aYItdqLApPNpFOp-L0NJttwY8hF8aFVQ4y0QtqU-bujXwP1Ywxd7Xf4zerr9SxRjnv6kCh0cHi0K6_o8lWv558wP_7grH9jyfvD2jPKkDzJBYNjXIeapUhDjVLjeGpZYWKmIp1zEyBGo_ludYsVFyIyKIBxVkWWrQ5WZzmIRp0OO4l2E4Q7OEItmeT49nnzauOq7eOa-2zc7D3Xp14WeRYY32WK41-uQE9UcCftNvfPLP-wtu_-b9t1S240avW5G13Fm7Dll3uwJWObHO9A9e7F0rSJV7dgdbnHlO3FmKsXZGeQOOMFEPAGkGNnqCGjO2ND1lbkrIgnmKMnNJKrWviY_ibuV5Y4p60yWqgPiGrdoEboao1aVptq7xdlPW8vgufLmQP7sFoWS7tAyBKZ0WWMRO6IoEF10JbZoSrA2FVYbMigJcDMOSqqzUifYxALGQHI4kwkh5GMgrgncPOpqerE-4_lNWZ7MWOZMr5PaM41RoBMU6V4AKnV6DZj6akTgLYHSAke-FVy3P8BPBs04xix_mS1NKWbdcnc7UG0wDud4jdzCRBG3uManoArwYInw_-9wU9_PdcnsLVg5PjI3k0mR4-gmvMnSjUIVi6C6Omau1juJx_a-Z19aQ_lAS-XDS4fwKzDnHg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFD6ssyqCeFlv1VUj6JOWadNOmj6IuO4OLivDIAr7FpMmWQaG6diLMn_NX-dJ2s4iXt72wdcmhCT9cnJOzuUDeM4SXZg0V6HJmAxTHcmQp6kOGTNc20LJCbeebCKbzfjpaT7fgR9DLowLqxxkohfUuizcG_kY1YwJc7Xfk7HtwyLmh9M366-hY5ByntaBTqODyInZfEfzrX59fIj_-gWl06NP796HPcNAWKQJb8K4YJGSOWJS0UxrlhlqZUxlohKqLWo_hhVK0UgyzmODxhSjeWTQ_qRJVkRo3OG4l2A3S9DoGcHuwdFs_nH7wuNqr-O6-0wd7D2uUy-XHIOsz3gN419uQ08a8CdN9zcvrb_8pjf_5227BTd6lZu87c7Ibdgxqz240pFwbvbgevdySbqErDvQ-pzk0K2LaGPWpCfWOCN2CGQjqOkT1JyxvfGhbCtSWuKpx8hpWMlNTXxsf7NQS0PcUzdZD5QoZN0ucSNktSFNq0xVtMuyXtR34fOF7ME9GK3KlXkARKrc5jnVkSseaJniylDNXX0II63JbQAvB5CIdVeDRPjYgYSLDlICISU8pEQcwIHD0banqx_uP5TVmejFkaDS-UPjJFMKwTHJJGccp2dp7NzUKg1gf4CT6IVaLc6xFMCzbTOKI-djkitTtl2f3NUgzAK436F3O5MUbe8Jqu8BvBrgfD743xf08N9zeQpXEdHiw_Hs5BFco-5woWpBs30YNVVrHsPl4luzqKsn_fkk8OWisf0T8h16eg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+deep+learning+framework+for+the+detection+of+chest+X-rays+compatible+with+pediatric+pulmonary+tuberculosis&rft.jtitle=Nature+communications&rft.au=Capell%C3%A1n-Mart%C3%ADn%2C+Daniel&rft.au=G%C3%B3mez-Valverde%2C+Juan+J.&rft.au=S%C3%A1nchez-Jacob%2C+Ram%C3%B3n&rft.au=Hernanz-Lobo%2C+Alicia&rft.date=2025-10-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-64391-1&rft.externalDocID=10_1038_s41467_025_64391_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |