Multi-view deep learning framework for the detection of chest X-rays compatible with pediatric pulmonary tuberculosis

Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The W...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature communications Ročník 16; číslo 1; s. 9170 - 16
Hlavní autori: Capellán-Martín, Daniel, Gómez-Valverde, Juan J., Sánchez-Jacob, Ramón, Hernanz-Lobo, Alicia, Schaaf, H. Simon, García-Delgado, Lara, Augusto, Orvalho, Roshanitabrizi, Pooneh, García-Basteiro, Alberto L., Ribó, Jose Luis, Lancharro, Ángel, Noguera-Julian, Antoni, Blázquez-Gamero, Daniel, Linguraru, Marius George, Santiago-García, Begoña, López-Varela, Elisa, Ledesma-Carbayo, María J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 27.10.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2041-1723, 2041-1723
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings. In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings.
AbstractList Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings. In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings.
Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.In this work, authors present an AI framework to detect pediatric tuberculosis by using both frontal and lateral chest X-rays, showing robust performance across several age groups and settings.
Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.
Abstract Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5–18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.
Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.
ArticleNumber 9170
Author López-Varela, Elisa
Ledesma-Carbayo, María J.
Blázquez-Gamero, Daniel
Linguraru, Marius George
Hernanz-Lobo, Alicia
Lancharro, Ángel
Noguera-Julian, Antoni
Schaaf, H. Simon
Sánchez-Jacob, Ramón
Roshanitabrizi, Pooneh
Capellán-Martín, Daniel
García-Delgado, Lara
Gómez-Valverde, Juan J.
Augusto, Orvalho
García-Basteiro, Alberto L.
Santiago-García, Begoña
Ribó, Jose Luis
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-9743-0845
  surname: Capellán-Martín
  fullname: Capellán-Martín, Daniel
  email: daniel.capellan@upm.es
  organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital
– sequence: 2
  givenname: Juan J.
  orcidid: 0000-0002-5073-5908
  surname: Gómez-Valverde
  fullname: Gómez-Valverde, Juan J.
  email: juanjo.gomez@upm.es
  organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III
– sequence: 3
  givenname: Ramón
  surname: Sánchez-Jacob
  fullname: Sánchez-Jacob, Ramón
  organization: Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University
– sequence: 4
  givenname: Alicia
  surname: Hernanz-Lobo
  fullname: Hernanz-Lobo, Alicia
  organization: Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Gregorio Marañón Research Health Institute (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, RITIP Translational Research Network in Pediatric Infectious Diseases
– sequence: 5
  givenname: H. Simon
  orcidid: 0000-0001-5755-4133
  surname: Schaaf
  fullname: Schaaf, H. Simon
  organization: Desmond Tutu TB Centre, Department of Pediatrics and Child Health, Stellenbosch University
– sequence: 6
  givenname: Lara
  surname: García-Delgado
  fullname: García-Delgado, Lara
  organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III
– sequence: 7
  givenname: Orvalho
  orcidid: 0000-0002-0005-3968
  surname: Augusto
  fullname: Augusto, Orvalho
  organization: Department of Global Health, University of Washington, Centro de Investigação em Saúde de Manhiça
– sequence: 8
  givenname: Pooneh
  orcidid: 0000-0002-8853-2786
  surname: Roshanitabrizi
  fullname: Roshanitabrizi, Pooneh
  organization: Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital
– sequence: 9
  givenname: Alberto L.
  orcidid: 0000-0002-2038-5505
  surname: García-Basteiro
  fullname: García-Basteiro, Alberto L.
  organization: Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Centro de Investigação em Saúde de Manhiça, ISGlobal, Hospital Clnic, Universitat de Barcelona
– sequence: 10
  givenname: Jose Luis
  surname: Ribó
  fullname: Ribó, Jose Luis
  organization: Hospital Universitari General de Catalunya
– sequence: 11
  givenname: Ángel
  orcidid: 0000-0001-9439-1951
  surname: Lancharro
  fullname: Lancharro, Ángel
  organization: Gregorio Marañón Research Health Institute (IiSGM), Radiología Pediátrica, Hospital Materno Infantil Gregorio Marañón, Radiología Pediátrica, HM Hospitales
– sequence: 12
  givenname: Antoni
  surname: Noguera-Julian
  fullname: Noguera-Julian, Antoni
  organization: RITIP Translational Research Network in Pediatric Infectious Diseases, Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Department, Hospital Sant Joan de Déu Research Foundation, Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Epidemiologa y Salud Pública (CIBERESP), Instituto de Salud Carlos III
– sequence: 13
  givenname: Daniel
  surname: Blázquez-Gamero
  fullname: Blázquez-Gamero, Daniel
  organization: Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, RITIP Translational Research Network in Pediatric Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (imas12), Pediatric Infectious Diseases Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
– sequence: 15
  givenname: Marius George
  surname: Linguraru
  fullname: Linguraru, Marius George
  organization: Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University
– sequence: 16
  givenname: Begoña
  surname: Santiago-García
  fullname: Santiago-García, Begoña
  organization: Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Gregorio Marañón Research Health Institute (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
– sequence: 17
  givenname: Elisa
  orcidid: 0000-0002-6725-5687
  surname: López-Varela
  fullname: López-Varela, Elisa
  organization: Centro de Investigação em Saúde de Manhiça, ISGlobal, Hospital Clnic, Universitat de Barcelona
– sequence: 18
  givenname: María J.
  orcidid: 0000-0001-6846-3923
  surname: Ledesma-Carbayo
  fullname: Ledesma-Carbayo, María J.
  email: mj.ledesma@upm.es
  organization: Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41145423$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi3UipbSP8ABWeLCJeCvOM4RVVAqFXFppd4s25nsekniYDtd9d_jbkpBHPDFlueZd2bs9xU6msIECL2h5AMlXH1MggrZVITVlRS8pRV9gU4ZEeXQMH701_kEnae0I2UVTAnxEp0ISkUtGD9Fy7dlyL6697DHHcCMBzBx8tMG99GMsA_xB-5DxHkLJZ7BZR8mHHrstpAyvquieUjYhXE22dsB8N7nLZ6h8yZH7_C8DGOYTHzAebEQ3TKE5NNrdNybIcH5036Gbr98vrn4Wl1_v7y6-HRdOcFVrqiTxJq2aYVlTdfJBlhvKDPcctb1hLYgnbWMGKkUBcVqyVoCUKK8ceWR-Bm6WnW7YHZ6jn4snehgvD5chLjRJmbvBtDMtC2hlDfWKqHqxiipiljPKK3r1oqi9X7VmmP4uZTh9eiTg2EwE4Qlac5k3RIhRFPQd_-gu7DEqUx6oGQpQHmh3j5Rix2he27v9-cUgK2AiyGlCP0zQol-NIFeTaCLCfTBBJqWJL4mpQJPG4h_av8n6xc-ArLM
Cites_doi 10.1109/CVPR.2017.369
10.1016/j.acra.2018.02.018
10.1007/s00247-017-3890-1
10.1109/ISBI53787.2023.10230500
10.1007/s13244-016-0534-1
10.1109/TMI.2013.2284099
10.1109/ISBI56570.2024.10635520
10.1007/s11548-019-01917-1
10.1016/B978-0-12-336156-1.50061-6
10.1016/S1473-3099(16)30474-1
10.1093/cid/civ581
10.1016/S2352-4642(23)00004-4
10.7196/sajr.655
10.1371/journal.pgph.0001799
10.1109/TPAMI.2018.2858826
10.5588/ijtld.15.0201
10.1007/s00247-023-05606-9
10.1016/S2214-109X(21)00462-9
10.3390/ijms17060960
10.1542/pir.2018-0093
10.1016/S2589-7500(24)00118-3
10.1007/s10916-018-0991-9
10.1183/13993003.00811-2024
10.1101/2024.10.08.24314837
10.1007/s00247-017-3887-9
10.1016/j.arbres.2025.05.006
10.1016/j.acra.2019.10.003
10.1097/INF.0000000000004016
10.23937/2469-5793/1510073
10.1002/14651858.CD013693
10.1097/INF.0000000000000710
10.1007/s12098-018-02847-7
10.1093/infdis/jis008
10.4269/ajtmh.20-0535
10.1016/S2589-7500(21)00116-3
10.3389/frai.2022.827299
10.1007/s11263-019-01228-7
10.1038/s41598-019-51503-3
10.1148/radiol.2017162326
10.1145/3561048
10.1609/aaai.v33i01.3301590
10.1016/j.acra.2018.11.006
10.5588/ijtldopen.24.0328
10.1183/2312508X.10021817
10.3389/fgene.2022.864724
10.2196/51743
10.1097/INF.0000000000001270
10.1016/j.media.2021.102125
10.1038/s41598-019-42557-4
10.1371/journal.pone.0127323
10.1016/j.idc.2021.11.008
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor pTBred network
CorporateAuthor_xml – name: pTBred network
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-64391-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_2a9901137bb84857a86890ef211559b4
41145423
10_1038_s41467_025_64391_1
Genre Journal Article
GrantInformation_xml – fundername: Universidad Politécnica de Madrid (Technical University of Madrid)
  funderid: 501100003759
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c438t-1c60ba9794b27dd67e2fa12a3b32df019e6cbb20a6881e8256290eeb3237c0383
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603687300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Mon Nov 10 19:22:55 EST 2025
Wed Oct 29 12:21:20 EDT 2025
Tue Oct 28 09:43:02 EDT 2025
Sat Nov 01 14:17:11 EDT 2025
Wed Oct 29 21:22:10 EDT 2025
Tue Oct 28 02:38:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-1c60ba9794b27dd67e2fa12a3b32df019e6cbb20a6881e8256290eeb3237c0383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6846-3923
0000-0002-0005-3968
0000-0002-2038-5505
0000-0001-5755-4133
0000-0002-5073-5908
0000-0002-8853-2786
0000-0002-9743-0845
0000-0002-6725-5687
0000-0001-9439-1951
OpenAccessLink https://www.proquest.com/docview/3265684813?pq-origsite=%requestingapplication%
PMID 41145423
PQID 3265684813
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2a9901137bb84857a86890ef211559b4
proquest_miscellaneous_3265904447
proquest_journals_3265684813
pubmed_primary_41145423
crossref_primary_10_1038_s41467_025_64391_1
springer_journals_10_1038_s41467_025_64391_1
PublicationCentury 2000
PublicationDate 2025-10-27
PublicationDateYYYYMMDD 2025-10-27
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References MJM Peña (64391_CR68) 2018; 88
P Naranje (64391_CR12) 2019; 86
S Jaeger (64391_CR28) 2014; 33
SM Graham (64391_CR63) 2012; 205
A Wong (64391_CR33) 2022; 5
B Santiago-García (64391_CR53) 2016; 35
L Richter-Joubert (64391_CR19) 2017; 47
KS Gunasekera (64391_CR14) 2023; 7
A Hernanz-Lobo (64391_CR44) 2023; 42
ZZ Qin (64391_CR26) 2021; 3
AP Brady (64391_CR15) 2017; 8
ZZ Qin (64391_CR27) 2024; 6
64391_CR22
64391_CR21
64391_CR65
F Pasa (64391_CR31) 2019; 9
M Palmer (64391_CR39) 2023; 3
MP McBee (64391_CR23) 2018; 25
P Rajpurkar (64391_CR32) 2020; 3
64391_CR62
AJ Degnan (64391_CR16) 2019; 26
E Çallı (64391_CR49) 2021; 72
P Lakhani (64391_CR29) 2017; 284
D Jaganath (64391_CR5) 2022; 36
TY Lin (64391_CR67) 2020; 42
64391_CR13
64391_CR56
64391_CR11
64391_CR55
L Galli (64391_CR17) 2016; 17
64391_CR54
AL García-Basteiro (64391_CR18) 2015; 10
JJ Gómez-Valverde (64391_CR57) 2024; 7
64391_CR59
64391_CR58
S Yerramsetti (64391_CR6) 2022; 10
S Candemir (64391_CR35) 2019; 14
ZZ Qin (64391_CR25) 2019; 9
HE Jenkins (64391_CR4) 2017; 17
B Melingui (64391_CR51) 2024; 1
PJ Holmberg (64391_CR3) 2019; 40
R Triasih (64391_CR52) 2015; 19
64391_CR9
N Mahomed (64391_CR50) 2023; 5
64391_CR46
64391_CR45
64391_CR8
64391_CR2
S Vajda (64391_CR30) 2018; 42
64391_CR1
RR Selvaraju (64391_CR47) 2020; 128
A Mouton (64391_CR38) 2010; 6363 LNCS
64391_CR41
64391_CR40
L Wang (64391_CR60) 2020; 10
G Siracusano (64391_CR66) 2020; 12
S Rajaraman (64391_CR48) 2022; 13
E López-Varela (64391_CR7) 2015; 34
A George (64391_CR20) 2017; 47
K Murphy (64391_CR42) 2020; 10
MA Orsi (64391_CR10) 2020; 103
64391_CR34
SM Graham (64391_CR43) 2015; 61
S Jaeger (64391_CR61) 2014; 4
S Kulkarni (64391_CR24) 2020; 27
J Naidoo (64391_CR37) 2023; 53
D Capellán-Martín (64391_CR64) 2023; 12465
64391_CR36
References_xml – ident: 64391_CR59
  doi: 10.1109/CVPR.2017.369
– volume: 25
  start-page: 1472
  year: 2018
  ident: 64391_CR23
  publication-title: Academic Radiol.
  doi: 10.1016/j.acra.2018.02.018
– volume: 47
  start-page: 1277
  year: 2017
  ident: 64391_CR20
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-017-3890-1
– ident: 64391_CR34
  doi: 10.1109/ISBI53787.2023.10230500
– volume: 8
  start-page: 171
  year: 2017
  ident: 64391_CR15
  publication-title: Insights into imaging
  doi: 10.1007/s13244-016-0534-1
– volume: 33
  start-page: 233
  year: 2014
  ident: 64391_CR28
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2284099
– ident: 64391_CR40
  doi: 10.1109/ISBI56570.2024.10635520
– volume: 14
  start-page: 563
  year: 2019
  ident: 64391_CR35
  publication-title: Int. J. computer Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01917-1
– ident: 64391_CR65
  doi: 10.1016/B978-0-12-336156-1.50061-6
– volume: 88
  start-page: 52
  year: 2018
  ident: 64391_CR68
  publication-title: An. de. Pediatr. (Engl. Ed.)
– volume: 17
  start-page: 285
  year: 2017
  ident: 64391_CR4
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)30474-1
– volume: 61
  start-page: S179
  year: 2015
  ident: 64391_CR43
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/civ581
– ident: 64391_CR62
– volume: 12
  start-page: 1
  year: 2020
  ident: 64391_CR66
  publication-title: Sustainability (Switz.)
– volume: 7
  start-page: 336
  year: 2023
  ident: 64391_CR14
  publication-title: Lancet Child Adolesc. Health
  doi: 10.1016/S2352-4642(23)00004-4
– ident: 64391_CR22
  doi: 10.7196/sajr.655
– volume: 3
  start-page: e0001799
  year: 2023
  ident: 64391_CR39
  publication-title: PLOS Glob. public health
  doi: 10.1371/journal.pgph.0001799
– volume: 42
  start-page: 318
  year: 2020
  ident: 64391_CR67
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– volume: 19
  start-page: 1428
  year: 2015
  ident: 64391_CR52
  publication-title: Int. J. Tuberculosis Lung Dis.
  doi: 10.5588/ijtld.15.0201
– volume: 53
  start-page: 1733
  year: 2023
  ident: 64391_CR37
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-023-05606-9
– volume: 10
  start-page: e207
  year: 2022
  ident: 64391_CR6
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(21)00462-9
– volume: 17
  start-page: 960
  year: 2016
  ident: 64391_CR17
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17060960
– ident: 64391_CR9
– volume: 40
  start-page: 168
  year: 2019
  ident: 64391_CR3
  publication-title: Pediatrics Rev.
  doi: 10.1542/pir.2018-0093
– ident: 64391_CR56
– volume: 6
  start-page: e605
  year: 2024
  ident: 64391_CR27
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(24)00118-3
– volume: 42
  start-page: 1
  year: 2018
  ident: 64391_CR30
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0991-9
– volume: 12465
  start-page: 451
  year: 2023
  ident: 64391_CR64
  publication-title: Med. Imaging 2023: Computer-Aided Diagnosis
– ident: 64391_CR41
  doi: 10.1183/13993003.00811-2024
– ident: 64391_CR36
  doi: 10.1101/2024.10.08.24314837
– volume: 47
  start-page: 1283
  year: 2017
  ident: 64391_CR19
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-017-3887-9
– volume: 10
  start-page: 1
  year: 2020
  ident: 64391_CR60
  publication-title: Sci. Rep. 2020 10:1
– ident: 64391_CR21
  doi: 10.1016/j.arbres.2025.05.006
– ident: 64391_CR45
– volume: 6363 LNCS
  start-page: 619
  year: 2010
  ident: 64391_CR38
  publication-title: Lect. Notes Computer Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.)
– volume: 4
  start-page: 475
  year: 2014
  ident: 64391_CR61
  publication-title: Quant. Imaging Med. Surg.
– volume: 27
  start-page: 71
  year: 2020
  ident: 64391_CR24
  publication-title: Academic Radiol.
  doi: 10.1016/j.acra.2019.10.003
– volume: 42
  start-page: 837
  year: 2023
  ident: 64391_CR44
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000004016
– ident: 64391_CR11
  doi: 10.23937/2469-5793/1510073
– ident: 64391_CR1
– ident: 64391_CR8
  doi: 10.1002/14651858.CD013693
– volume: 34
  start-page: 686
  year: 2015
  ident: 64391_CR7
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000000710
– volume: 86
  start-page: 448
  year: 2019
  ident: 64391_CR12
  publication-title: Indian J. Pediatrics
  doi: 10.1007/s12098-018-02847-7
– volume: 205
  start-page: S199
  year: 2012
  ident: 64391_CR63
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis008
– volume: 103
  start-page: 822
  year: 2020
  ident: 64391_CR10
  publication-title: Am. J. Tropical Med. Hyg.
  doi: 10.4269/ajtmh.20-0535
– volume: 3
  start-page: e543
  year: 2021
  ident: 64391_CR26
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00116-3
– volume: 5
  start-page: 85
  year: 2023
  ident: 64391_CR50
  publication-title: Wits J. Clin. Med.
– ident: 64391_CR55
– volume: 5
  start-page: 827299
  year: 2022
  ident: 64391_CR33
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.827299
– volume: 128
  start-page: 336
  year: 2020
  ident: 64391_CR47
  publication-title: Int. J. Computer Vis.
  doi: 10.1007/s11263-019-01228-7
– volume: 9
  start-page: 1
  year: 2019
  ident: 64391_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51503-3
– volume: 284
  start-page: 574
  year: 2017
  ident: 64391_CR29
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– ident: 64391_CR46
  doi: 10.1145/3561048
– ident: 64391_CR58
  doi: 10.1609/aaai.v33i01.3301590
– volume: 26
  start-page: 833
  year: 2019
  ident: 64391_CR16
  publication-title: Academic Radiol.
  doi: 10.1016/j.acra.2018.11.006
– volume: 1
  start-page: 449
  year: 2024
  ident: 64391_CR51
  publication-title: IJTLD open
  doi: 10.5588/ijtldopen.24.0328
– ident: 64391_CR2
  doi: 10.1183/2312508X.10021817
– volume: 13
  start-page: 864724
  year: 2022
  ident: 64391_CR48
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.864724
– volume: 7
  start-page: e51743
  year: 2024
  ident: 64391_CR57
  publication-title: JMIR pediatrics Parent.
  doi: 10.2196/51743
– ident: 64391_CR13
– volume: 3
  start-page: 1
  year: 2020
  ident: 64391_CR32
  publication-title: npj Digital Med. 2020 3:1
– volume: 35
  start-page: 1175
  year: 2016
  ident: 64391_CR53
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000001270
– volume: 72
  start-page: 102125
  year: 2021
  ident: 64391_CR49
  publication-title: Med. image Anal.
  doi: 10.1016/j.media.2021.102125
– ident: 64391_CR54
– volume: 9
  start-page: 1
  year: 2019
  ident: 64391_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42557-4
– volume: 10
  start-page: e0127323
  year: 2015
  ident: 64391_CR18
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0127323
– volume: 10
  start-page: 1
  year: 2020
  ident: 64391_CR42
  publication-title: Sci. Rep. 2020 10:1
– volume: 36
  start-page: 49
  year: 2022
  ident: 64391_CR5
  publication-title: Infect. Dis. Clin. North Am.
  doi: 10.1016/j.idc.2021.11.008
SSID ssj0000391844
Score 2.4853804
Snippet Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with...
Abstract Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9170
SubjectTerms 639/166/985
639/705/117
692/308/3187
692/699/255/1856
Abnormalities
Adolescent
Age
Age groups
Artificial intelligence
Assessments
Chest
Child
Child, Preschool
Classification
Clinical medicine
Compatibility
Coronaviruses
Datasets
Deep Learning
Diagnosis
Disease
Female
Global health
Humanities and Social Sciences
Humans
Infant
Male
Medical diagnosis
multidisciplinary
Pandemics
Pediatrics
Public health
Radiography, Thoracic - methods
Science
Science (multidisciplinary)
Tuberculosis
Tuberculosis, Pulmonary - diagnosis
Tuberculosis, Pulmonary - diagnostic imaging
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgRd321rhLBm4btTnryOK7isqfFg8LcQtKpyMDQM_RjYf69lXT3uKLixWsnNElVJalKVb6PkHdShAZq4xko6VgdSsd0XQcmJegQG-9WOmayCXVzo9dr8-UO1VeqCZvggSfBXXCXMjeVUN7rWq-U01KbEiIGLugM-4wEWipzJ5jKe7AwGLrU8yuZUuiLvs57QmJvza9NWfXLSZQB-__kZf6WIc0Hz9Vj8mj2GOnlNNJTcg_aM_Jg4pA8PCFjfkLL0g0_DQB7OvNAfKdxqbui6JhSdPSwfciVVy3dRZqZsuiade7Q01yKPmz8Fmi6maX7hcGD7sctWqrrDnQYPXTNuN31m_4p-Xb1-eunazZzKbCmFnpgVSNL7wyuPs9VCFIBj67iTnjBQ0Q_D2TjPS-d1LoCDBslRyljpM2FalB-4hk5aXctvCDUeRON4aFMWHdReu2BB53gDMBFMLEg7xe52v0EmWFzqltoO2nBohZs1oKtCvIxif7YM8Fd5w9oBHY2AvsvIyjI-aI4O6_B3qJjupKJLUAU5O2xGVdPSom4Fnbj1MckyDxVkOeTwo8jqTFUXKG3WZAPiwX8_PnfJ_Tyf0zoFXnIk6niIcnVOTkZuhFek_vN7bDpuzfZ1n8A6qL_sQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-view deep learning framework for the detection of chest X-rays compatible with pediatric pulmonary tuberculosis
URI https://link.springer.com/article/10.1038/s41467-025-64391-1
https://www.ncbi.nlm.nih.gov/pubmed/41145423
https://www.proquest.com/docview/3265684813
https://www.proquest.com/docview/3265904447
https://doaj.org/article/2a9901137bb84857a86890ef211559b4
Volume 16
WOSCitedRecordID wos001603687300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0TkEQP049q-cSwTcN16bdJH0ST-7QB5ciCqsvJWmSY2HZrv042P_eSdruIX68-NKHJqRTZiaZr8wP4BVPTWWzXFMruKKZiRWVWWYo51YaV2k1ly6ATYjFQi6XeTEG3NqxrHLaE8NGberKx8hP0cyYc9_7PX27_UE9apTPro4QGjfh0MNmezkXS7GPsfju5_jl8a5MnMrTNgs7g8dwDXdOafLLeRTa9v_J1vwtTxqOn4v7_0v4A7g3Gp7k3SApD-GG3RzB7QGKcncEd4f4HRmuJT2CPtzMpX5tYqzdkhFe4pK4qZyLoL1L0H7E8S4UdG1I7UgA4CJL2qhdS0KFe7fSa0t8wJdsJ2AQsu3XSJhqdqTrtW2qfl23q_YxfL04__L-Ax0hGmiVpbKjScVjrXJUas2EMVxY5lTCVKpTZhyaj5ZXWrNYcSkTi94oZ3ls0YFnqaiQIekTONjUG_sUiNK5y3NmYt9Cz3EttWVG-i4JVjmbuwheT4wqt0MnjjJk0FNZDmwtka1lYGuZRHDmebmf6btohxd1c1mOSlky5bOCSSq0RgbNhZJcInkOnWJ0tHQWwcnE0nJU7ba85mcEL_fDqJQ-06I2tu6HObnvxCciOB4kaE9Jhh7oHI3YCN5MInW9-N9_6Nm_aXkOd5iXajxVmTiBg67p7Qu4VV11q7aZBbUITzmDw7PzRfF5FqIPM1_rWuCzmH_HkeLjp-LbT_jmG44
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBIiKVsgQJGghNYTZyM4xwQYqs6ajuaQ5HKydixU400mgxZQPOn-I08O8lUiOXWA9fYsmzn8_N7fssH8JzHJrdJpqlNuaKJCRUVSWIo51aYItdqLApPNpFOp-L0NJttwY8hF8aFVQ4y0QtqU-bujXwP1Ywxd7Xf4zerr9SxRjnv6kCh0cHi0K6_o8lWv558wP_7grH9jyfvD2jPKkDzJBYNjXIeapUhDjVLjeGpZYWKmIp1zEyBGo_ludYsVFyIyKIBxVkWWrQ5WZzmIRp0OO4l2E4Q7OEItmeT49nnzauOq7eOa-2zc7D3Xp14WeRYY32WK41-uQE9UcCftNvfPLP-wtu_-b9t1S240avW5G13Fm7Dll3uwJWObHO9A9e7F0rSJV7dgdbnHlO3FmKsXZGeQOOMFEPAGkGNnqCGjO2ND1lbkrIgnmKMnNJKrWviY_ibuV5Y4p60yWqgPiGrdoEboao1aVptq7xdlPW8vgufLmQP7sFoWS7tAyBKZ0WWMRO6IoEF10JbZoSrA2FVYbMigJcDMOSqqzUifYxALGQHI4kwkh5GMgrgncPOpqerE-4_lNWZ7MWOZMr5PaM41RoBMU6V4AKnV6DZj6akTgLYHSAke-FVy3P8BPBs04xix_mS1NKWbdcnc7UG0wDud4jdzCRBG3uManoArwYInw_-9wU9_PdcnsLVg5PjI3k0mR4-gmvMnSjUIVi6C6Omau1juJx_a-Z19aQ_lAS-XDS4fwKzDnHg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFD6ssyqCeFlv1VUj6JOWadNOmj6IuO4OLivDIAr7FpMmWQaG6diLMn_NX-dJ2s4iXt72wdcmhCT9cnJOzuUDeM4SXZg0V6HJmAxTHcmQp6kOGTNc20LJCbeebCKbzfjpaT7fgR9DLowLqxxkohfUuizcG_kY1YwJc7Xfk7HtwyLmh9M366-hY5ByntaBTqODyInZfEfzrX59fIj_-gWl06NP796HPcNAWKQJb8K4YJGSOWJS0UxrlhlqZUxlohKqLWo_hhVK0UgyzmODxhSjeWTQ_qRJVkRo3OG4l2A3S9DoGcHuwdFs_nH7wuNqr-O6-0wd7D2uUy-XHIOsz3gN419uQ08a8CdN9zcvrb_8pjf_5227BTd6lZu87c7Ibdgxqz240pFwbvbgevdySbqErDvQ-pzk0K2LaGPWpCfWOCN2CGQjqOkT1JyxvfGhbCtSWuKpx8hpWMlNTXxsf7NQS0PcUzdZD5QoZN0ucSNktSFNq0xVtMuyXtR34fOF7ME9GK3KlXkARKrc5jnVkSseaJniylDNXX0II63JbQAvB5CIdVeDRPjYgYSLDlICISU8pEQcwIHD0banqx_uP5TVmejFkaDS-UPjJFMKwTHJJGccp2dp7NzUKg1gf4CT6IVaLc6xFMCzbTOKI-djkitTtl2f3NUgzAK436F3O5MUbe8Jqu8BvBrgfD743xf08N9zeQpXEdHiw_Hs5BFco-5woWpBs30YNVVrHsPl4luzqKsn_fkk8OWisf0T8h16eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+deep+learning+framework+for+the+detection+of+chest+X-rays+compatible+with+pediatric+pulmonary+tuberculosis&rft.jtitle=Nature+communications&rft.au=Capell%C3%A1n-Mart%C3%ADn%2C+Daniel&rft.au=G%C3%B3mez-Valverde%2C+Juan+J.&rft.au=S%C3%A1nchez-Jacob%2C+Ram%C3%B3n&rft.au=Hernanz-Lobo%2C+Alicia&rft.date=2025-10-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-64391-1&rft.externalDocID=10_1038_s41467_025_64391_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon