Optoelectronic resistive random access memory for neuromorphic vision sensors

Neuromorphic visual systems have considerable potential to emulate basic functions of the human visual system even beyond the visible light region. However, the complex circuitry of artificial visual systems based on conventional image sensors, memory and processing units presents serious challenges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology Jg. 14; H. 8; S. 776 - 782
Hauptverfasser: Zhou, Feichi, Zhou, Zheng, Chen, Jiewei, Choy, Tsz Hin, Wang, Jingli, Zhang, Ning, Lin, Ziyuan, Yu, Shimeng, Kang, Jinfeng, Wong, H-S Philip, Chai, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Nature Publishing Group 01.08.2019
Schlagworte:
ISSN:1748-3387, 1748-3395, 1748-3395
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromorphic visual systems have considerable potential to emulate basic functions of the human visual system even beyond the visible light region. However, the complex circuitry of artificial visual systems based on conventional image sensors, memory and processing units presents serious challenges in terms of device integration and power consumption. Here we show simple two-terminal optoelectronic resistive random access memory (ORRAM) synaptic devices for an efficient neuromorphic visual system that exhibit non-volatile optical resistive switching and light-tunable synaptic behaviours. The ORRAM arrays enable image sensing and memory functions as well as neuromorphic visual pre-processing with an improved processing efficiency and image recognition rate in the subsequent processing tasks. The proof-of-concept device provides the potential to simplify the circuitry of a neuromorphic visual system and contribute to the development of applications in edge computing and the internet of things.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1748-3387
1748-3395
1748-3395
DOI:10.1038/s41565-019-0501-3