A novel extraction model optimization with effective separation coefficient for rare earth extraction process using improve differential evolution
The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we intr...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 11504 - 19 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
03.04.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system. |
|---|---|
| AbstractList | The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm's accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm's accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system. The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system. Abstract The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system. |
| ArticleNumber | 11504 |
| Author | Xu, Fangping Chang, Wenjia Zhu, Jianyong Yang, Hui |
| Author_xml | – sequence: 1 givenname: Fangping surname: Xu fullname: Xu, Fangping organization: School Electrical and Automation Engineering, East China Jiaotong University – sequence: 2 givenname: Hui surname: Yang fullname: Yang, Hui email: yhshuo@163.com organization: School Electrical and Automation Engineering, East China Jiaotong University – sequence: 3 givenname: Jianyong surname: Zhu fullname: Zhu, Jianyong organization: School Electrical and Automation Engineering, East China Jiaotong University – sequence: 4 givenname: Wenjia surname: Chang fullname: Chang, Wenjia organization: School Electrical and Automation Engineering, East China Jiaotong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40180971$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAQxyNUREvpC3BAlrhwCfg7zrGq-KhUiQucLceeLF4l8WInS8tj8MTMbkqLOODL2OPf_GfGnufVyZQmqKqXjL5lVJh3RTLVmppyVRujdVvfPanOOJWq5oLzk7_2p9VFKVuKS_FWsvZZdSopM7Rt2Fn165JMaQ8Dgds5Oz_HNJExBXSk3RzH-NMdXT_i_I1A3wMSeyAFdi6vNz6hO_oI00z6lEl2GQi4fOAfJXc5eSiFLCVOGxJHPKNMiKiYMTI6LGCfhuUAv6ie9m4ocHFvz6uvH95_ufpU33z-eH11eVN7Kcxc4ysIaICL4LTQTPdBSKdbSdGAYFpwBiBcQwMPrVOtck531DETjJSG9uK8ul51Q3Jbu8txdPnOJhft0ZHyxmIb0Q9gO2oEb0B4wASKdR1TqulYkH3PFNUetd6sWtjY9wXKbMdYPAyDmyAtxQpmtFD4Yw2ir_9Bt2nJE3Z6pLiQXAukXt1TSzdCeCjvz88hwFfA51RKhv4BYdQeJsSuE2JxQuxxQuwdBok1qCA8bSA_5v5P1G_g4sAm |
| Cites_doi | 10.1109/TEVC.2017.2769108 10.1007/s40747-018-0086-8 10.1016/j.neucom.2020.09.007 10.1023/A:1008202821328 10.1016/j.swevo.2022.101142 10.1016/j.mineng.2013.01.011 10.1016/S1002-0721(09)60039-9 10.1016/j.ins.2023.03.043 10.1016/j.knosys.2020.106628 10.1109/TASE.2018.2865414 10.1016/j.knosys.2022.108582 10.1109/SSCI47803.2020.9308550 10.1016/j.engappai.2023.106008 10.1016/j.asoc.2014.01.038 10.1007/s11047-019-09757-3 10.1109/TASE.2020.2975287 10.1109/TEVC.2010.2087271 10.1109/CEC.2014.6900380 10.1016/j.ins.2023.119889 10.1007/s13042-017-0711-7 10.1007/s00500-023-09080-1 10.1016/j.knosys.2021.107636 10.1109/TITS.2024.3381344 10.4018/IJAMC.2019010101 10.1109/TEVC.2009.2014613 10.1109/TASE.2012.2224107 10.1109/ACCESS.2019.2926422 10.1016/j.engappai.2020.103479 10.1109/TCYB.2019.2921602 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-88669-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_b08327e3ce69451bb1557b1d4ff1506c 40180971 10_1038_s41598_025_88669_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the Open Research Project of the State Key Laboratory of Industrial Control Technol- ogy of China under Grant grantid: ICT2024B50 – fundername: the National Natural Science Foundation of China under Grant grantid: 62363010 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c438t-1033e7e23da63616fd34a694034ae316321ee3a70d2d9a595aa6b0a18d84480f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459316300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:33:33 EST 2025 Fri Sep 05 17:45:12 EDT 2025 Tue Oct 07 09:05:29 EDT 2025 Mon Jul 21 05:20:39 EDT 2025 Sat Nov 29 08:06:45 EST 2025 Fri Apr 04 01:15:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-1033e7e23da63616fd34a694034ae316321ee3a70d2d9a595aa6b0a18d84480f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3186234263?pq-origsite=%requestingapplication% |
| PMID | 40180971 |
| PQID | 3186234263 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b08327e3ce69451bb1557b1d4ff1506c proquest_miscellaneous_3186351597 proquest_journals_3186234263 pubmed_primary_40180971 crossref_primary_10_1038_s41598_025_88669_y springer_journals_10_1038_s41598_025_88669_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-03 |
| PublicationDateYYYYMMDD | 2025-04-03 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 88669_CR22 Z Jian-Yong (88669_CR7) 2019; 45 AA Hadi (88669_CR20) 2019; 5 88669_CR40 Q Sui (88669_CR29) 2024; 655 X Li (88669_CR38) 2021; 421 AW Mohamed (88669_CR27) 2019; 10 L Zhu (88669_CR36) 2020; 19 J-S Pan (88669_CR14) 2022; 245 LWH Vincent (88669_CR10) 2012; 10 C Li (88669_CR15) 2022; 235 TJ Choi (88669_CR21) 2021; 215 L Deng (88669_CR24) 2019; 7 W Yong (88669_CR18) 2011; 15 Y Wang (88669_CR23) 2014; 18 88669_CR4 88669_CR3 D Yongquan (88669_CR5) 2010; 28 88669_CR34 M Pant (88669_CR9) 2020; 90 88669_CR11 88669_CR1 88669_CR32 AW Mohamed (88669_CR13) 2019; 10 ZJ Wang (88669_CR26) 2018; 22 Y Yu (88669_CR28) 2022; 74 H Zhang (88669_CR30) 2023; 632 88669_CR19 A Ghosh (88669_CR25) 2020; 50 P Sun (88669_CR33) 2024; 25 88669_CR17 88669_CR39 88669_CR16 88669_CR37 R Storn (88669_CR8) 1997; 11 Y Zi-qing (88669_CR35) 2021; 38 C Liu (88669_CR12) 2019; 16 Y Lin (88669_CR31) 2023; 27 W Sheng (88669_CR2) 2004; 22 SC Chelgani (88669_CR6) 2013; 45 |
| References_xml | – volume: 22 start-page: 894 year: 2018 ident: 88669_CR26 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2769108 – volume: 5 start-page: 25 year: 2019 ident: 88669_CR20 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-018-0086-8 – volume: 421 start-page: 285 year: 2021 ident: 88669_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.007 – volume: 11 start-page: 341 year: 1997 ident: 88669_CR8 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: 88669_CR1 – volume: 74 start-page: 101142 year: 2022 ident: 88669_CR28 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101142 – ident: 88669_CR3 – volume: 45 start-page: 32 year: 2013 ident: 88669_CR6 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.01.011 – volume: 28 start-page: 7 year: 2010 ident: 88669_CR5 publication-title: Chin. Rare Earths doi: 10.1016/S1002-0721(09)60039-9 – ident: 88669_CR34 – volume: 632 start-page: 594 year: 2023 ident: 88669_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.03.043 – volume: 22 start-page: 17 year: 2004 ident: 88669_CR2 publication-title: J. Chin. Rare Earth Soc. – ident: 88669_CR32 – volume: 215 start-page: 106628 year: 2021 ident: 88669_CR21 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106628 – volume: 38 start-page: 10 year: 2021 ident: 88669_CR35 publication-title: Control Theory Appl. – volume: 16 start-page: 1097 year: 2019 ident: 88669_CR12 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2018.2865414 – volume: 245 start-page: 108582 year: 2022 ident: 88669_CR14 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108582 – ident: 88669_CR22 doi: 10.1109/SSCI47803.2020.9308550 – ident: 88669_CR40 doi: 10.1016/j.engappai.2023.106008 – volume: 18 start-page: 232 year: 2014 ident: 88669_CR23 publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.01.038 – volume: 19 start-page: 211 year: 2020 ident: 88669_CR36 publication-title: Nat. Comput. doi: 10.1007/s11047-019-09757-3 – ident: 88669_CR4 – ident: 88669_CR11 doi: 10.1109/TASE.2020.2975287 – volume: 15 start-page: 55 year: 2011 ident: 88669_CR18 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2087271 – ident: 88669_CR19 doi: 10.1109/CEC.2014.6900380 – ident: 88669_CR39 – volume: 655 start-page: 119889 year: 2024 ident: 88669_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119889 – ident: 88669_CR16 – volume: 10 start-page: 253 year: 2019 ident: 88669_CR27 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0711-7 – volume: 27 start-page: 17923 year: 2023 ident: 88669_CR31 publication-title: Soft. Comput. doi: 10.1007/s00500-023-09080-1 – ident: 88669_CR37 – volume: 235 start-page: 107636 year: 2022 ident: 88669_CR15 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107636 – volume: 25 start-page: 11753 year: 2024 ident: 88669_CR33 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3381344 – volume: 10 start-page: 1 year: 2019 ident: 88669_CR13 publication-title: Int. J. Appl. Metaheur. Comput. (IJAMC) doi: 10.4018/IJAMC.2019010101 – ident: 88669_CR17 doi: 10.1109/TEVC.2009.2014613 – volume: 10 start-page: 1161 year: 2012 ident: 88669_CR10 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2224107 – volume: 7 start-page: 88517 year: 2019 ident: 88669_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926422 – volume: 45 start-page: 12 year: 2019 ident: 88669_CR7 publication-title: Acta Autom. Sin. – volume: 90 start-page: 103479 year: 2020 ident: 88669_CR9 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103479 – volume: 50 start-page: 4821 year: 2020 ident: 88669_CR25 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2921602 |
| SSID | ssj0000529419 |
| Score | 2.452089 |
| Snippet | The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a... Abstract The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 11504 |
| SubjectTerms | 639/166 639/638 Algorithms Earth Evolution Humanities and Social Sciences multidisciplinary Mutation Objective function Rare earth elements Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB9KsdCLqLW6WiWCN7t0d5OXj2MViwcpHir0FvIxKwXdLe-9Pnj_hn-xk2Tfa4uKF08LmyEkmcl8JJnfALyNWnlhMNRSKVULsnG1Dt7XHY3ahJbCXJ85_Vmdn-vLS_PlTqmv9CaswAOXhTvx5CN0CnlAacSs9Z4MoPJtFH2fwPFC0r6NMneCqYLq3RnRmilLpuH6ZEGWKmWTdbNaaylNvb5niTJg_5-8zN9uSLPhOXsEDyePkZ2WkT6GHRyewF6pIbk-gJ-nbBhX-J2Rlp2XLAWWy9uwkbTBjynNkqXzVlYeb5B-YwssmN_UEkbMMBJkfRh5sIyiZ2Qk_4n-tsvrklDA0jv5b-wqH0Ug25RXITVBA1hNYvwUvp59vPjwqZ4KLdRBcL0kVcw5Kux4dJLLVvaRC0fL3dAHOXlsXYvInWpiF42bmZlz0jeu1VFTdNf0_BB2h3HA58BMoguoje-18KI30sQ-SlS9S7GwrODdZtHtdcHTsPkenGtbWGSJRTazyK4reJ_4sqVMWNj5B0mInSTE_ktCKjjacNVOG3RhSZWR45fQ6it4s22mrZXuS9yA402h4cnfUxU8K9KwHYnIwGeqreB4Ix63nf99Qi_-x4Rewn6X5Di9H-JHsLuc3-AreBBWy6vF_HXeCL8A69wNxw priority: 102 providerName: Directory of Open Access Journals |
| Title | A novel extraction model optimization with effective separation coefficient for rare earth extraction process using improve differential evolution |
| URI | https://link.springer.com/article/10.1038/s41598-025-88669-y https://www.ncbi.nlm.nih.gov/pubmed/40180971 https://www.proquest.com/docview/3186234263 https://www.proquest.com/docview/3186351597 https://doaj.org/article/b08327e3ce69451bb1557b1d4ff1506c |
| Volume | 15 |
| WOSCitedRecordID | wos001459316300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3batRA9GC7Cn3x3hqtywi-aWiSmZ3Lk7TSomCXIArr05DJTEpBk3V3u7C_4Rd7ZibZRby8-DKBzBBOONc5V4CXVgrDlKtTLoRIGeq4VNbGpAVCreocr7kmYPqDmE7lbKbK3uG27NMqB5kYBLXtau8jP0HaQ03t24u_mX9P_dQoH13tR2jswQgtm9yndF0W5dbH4qNYLFd9rUxG5ckS9ZWvKSsmqZScq3Tziz4Kbfv_ZGv-FicN6ufi3v8Cfh_u9oYnOY2U8gBuufYh3ImjKDeP4Mcpabu1-0pQWC9isQMJU3JIh0LlW1-tSbzblsQcEBSTZOli63DcqTsXulGgEiNoCBO8hDuCbOTP7z45j3UJxKfbX5Hr4NFwZJjSgtIGAVj33PAYPl-cf3r7Lu3nNaQ1o3KFEp1SJ1xBbcUpz3ljKau4Yhk-HEXDr8ido5XIbGFVNVGTquImq3JpJV4Ss4Yewn7bte4JEOXP1U4q00hmWKO4so3lTjSVv1LzBF4NWNPz2JZDh3A6lTriWCOOdcCx3iRw5hG7PelbaocX3eJK9xyqDRqjhXC0dgjyJDcGLS1hcsuaxndhrBM4HvCrez5f6h1yE3ix3UYO9WGXqnXdTTxDvdkoEjiK5LSFhIX-aSJP4PVAX7uP__2Hnv4blmdwUHgS9wlG9Bj2V4sb9xxu1-vV9XIxhj0xE2GVYxidnU_Lj-PgihgH7vGrwHVUvr8sv_wE2okjIQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFE3sdePA0LlUbXqsuqhSL2ZOHGqSrBZsttF-zf4IfxGZuxkV4jHrQdOkWLLGtufZ8bjeQA8q7RywvgylUqpVKCMS3XpXJoj1abM8Jrrwk6P1Hisj4_N4Qb86GNhyK2y54mBUVdNSTbybcQeSmpKL_56-jWlqlH0utqX0IiwOPDLb3hlm73af4f7-zzPd98fvd1Lu6oCaSm4niPf4dwrn_OqkFxmsq64KKQRA_x4jupJnnnPCzWo8soUQzMsCukGRaYrjVeZQc1x3AtwUVBmMXIVzA9XNh16NROZ6WJzBlxvz1A-UgxbPky1ltKky1_kXygT8Cfd9rd32SDudq__bwt1A651ijXbiSfhJmz4yS24HEttLm_D9x02aRb-M0Nh1MZgDhaqALEGmeaXLhqVkVmaRR8XFANs5mNqdGwpGx-ybaCQZqjos7ZoPcNpUv_1kNMYd8EonOCEnQaLjWd9FRrkpkjAojvtd-DjuSzIXdicNBN_H5ihfqXXxtVaOFEbaaq6kl7VBZkMZAIvepTYaUw7YoO7ANc2YsoipmzAlF0m8IaAtOpJKcPDj6Y9sR0Hsg6V7Vx5XnokeZg5h5qkclkl6pqyTJYJbPV4sh0fm9k1mBJ4umpGDkTPSsXEN2exDye1WCVwL8J3RYkI-eFUlsDLHs_rwf8-oQf_puUJXNk7-jCyo_3xwUO4mtPxImcqvgWb8_bMP4JL5WJ-Omsfh_PJ4NN54_wnnBt2xA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThA1iV0_DggtLBXVLlUPIC0nb5w4q5V2m5J2i_o3-Dn8OsZ20grxuO2BU6TEsibJ52_G43kAPC-lMEzZIuZCiJihjotlYUycodSqSHGba_yfPhDjsTw8VJMt-NHlwriwyo4TPVGXdeF85H3EHmpqV168X7VhEZO94ZvZ19h1kHInrV07jQCRfbv6htu3-evRHv7rF1k2fP_p3Ye47TAQF4zKBXIQpVbYjJY5pzzlVUlZzhVL8GIpmipZai3NRVJmpcoHapDn3CR5KkuJ25qkojjvJdhGk5xlPdiejD5Ovqw9PO4MjaWqzdRJqOzPUVu6jLZsEEvJuYpXv2hD3zTgT5bub6e0XvkNb_zPn-0mXG9NbrIb1sgt2LLT23AlNOFc3YHvu2RaL-0pQaGbkOZBfH8gUiOdnrV5qsQ5rEmIfkEFQeY2FE3HJ0VtfR0OVN8EtwCkyRtL8DXd-M2Us5CRQVyiwTE58b4cS7r-NMizKMCy5YG78PlCPsg96E3rqX0ARLlxhZXKVJIZVimuyqrkVlS5cybwCF52iNGzUJBE-0ACKnXAl0Z8aY8vvYrgrQPVeqQrJu5v1M2xbrlJGzTDM2FpYVHkQWoM2pjCpCWrKld_sohgp8OWbhlurjfAiuDZ-jFykztwyqe2Pg9jqDOYRQT3A5TXkjBfOU6kEbzqsL2Z_O8v9PDfsjyFqwhvfTAa7z-Ca5lbaS7Kiu5Ab9Gc28dwuVguTubNk3axEji6aKD_BCx8gQ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+extraction+model+optimization+with+effective+separation+coefficient+for+rare+earth+extraction+process+using+improve+differential+evolution&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Fangping&rft.au=Yang%2C+Hui&rft.au=Zhu%2C+Jianyong&rft.au=Chang%2C+Wenjia&rft.date=2025-04-03&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=11504&rft_id=info:doi/10.1038%2Fs41598-025-88669-y&rft_id=info%3Apmid%2F40180971&rft.externalDocID=40180971 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |