A novel extraction model optimization with effective separation coefficient for rare earth extraction process using improve differential evolution

The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 11504 - 19
Hauptverfasser: Xu, Fangping, Yang, Hui, Zhu, Jianyong, Chang, Wenjia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 03.04.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.
AbstractList The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm's accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm's accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.
Abstract The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.
The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a significant discrepancy between the theoretical solute concentration at each stage and the actual process data. To rectify this issue, we introduce an effective separation coefficient, thereby enabling the creation of a model capable of accurately determining the concentration of rare earth elements (REE) within each extraction extractor. This model also facilitates the construction of an optimized objective function for determining the effective separation coefficient. Taking into account the multi-modal and multi-variable characteristics of the optimized objective function, we put forth an enhanced version of the improved differential evolution algorithm, the Linear-Chaos and Two Mutation Strategies of Adaptive Differential Evolution (LCTADE)with Covariance Matrix and Cauchy Perturbation(CC-LCTADE). First, a chaotic sequence is embedded into the improved algorithm to generate the initial population, enhancing population diversity. Next, during the mutation and crossover processes, a new feature coordinate system is established, and covariance matrices and Cauchy disturbances are added to enhance the algorithm’s accuracy and its ability to avoid premature convergence. Additionally, recognizing the different performance requirements for mutation strategies at various stages of evolution, we introduce a dual-mutation strategy method based on DE/current-to-pbest/1 and DE/rand/1. Finally, a parameter-adaptive method is used to set the values of F, CR, and NP. In the simulation experiments, the proposed CC-LCTADE method and LCTADE method are first tested against the CEC2017 function and compared with other algorithms, demonstrating their superiority. CC-LCTADE is then used to solve the effective separation coefficient based objective function for rare earth extraction process. The experiments shows CC-LCTADE is effective and can be applied to the actual the rare earth extraction simulation system.
ArticleNumber 11504
Author Xu, Fangping
Chang, Wenjia
Zhu, Jianyong
Yang, Hui
Author_xml – sequence: 1
  givenname: Fangping
  surname: Xu
  fullname: Xu, Fangping
  organization: School Electrical and Automation Engineering, East China Jiaotong University
– sequence: 2
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  email: yhshuo@163.com
  organization: School Electrical and Automation Engineering, East China Jiaotong University
– sequence: 3
  givenname: Jianyong
  surname: Zhu
  fullname: Zhu, Jianyong
  organization: School Electrical and Automation Engineering, East China Jiaotong University
– sequence: 4
  givenname: Wenjia
  surname: Chang
  fullname: Chang, Wenjia
  organization: School Electrical and Automation Engineering, East China Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40180971$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxyNUREvpC3BAlrhwCfg7zrGq-KhUiQucLceeLF4l8WInS8tj8MTMbkqLOODL2OPf_GfGnufVyZQmqKqXjL5lVJh3RTLVmppyVRujdVvfPanOOJWq5oLzk7_2p9VFKVuKS_FWsvZZdSopM7Rt2Fn165JMaQ8Dgds5Oz_HNJExBXSk3RzH-NMdXT_i_I1A3wMSeyAFdi6vNz6hO_oI00z6lEl2GQi4fOAfJXc5eSiFLCVOGxJHPKNMiKiYMTI6LGCfhuUAv6ie9m4ocHFvz6uvH95_ufpU33z-eH11eVN7Kcxc4ysIaICL4LTQTPdBSKdbSdGAYFpwBiBcQwMPrVOtck531DETjJSG9uK8ul51Q3Jbu8txdPnOJhft0ZHyxmIb0Q9gO2oEb0B4wASKdR1TqulYkH3PFNUetd6sWtjY9wXKbMdYPAyDmyAtxQpmtFD4Yw2ir_9Bt2nJE3Z6pLiQXAukXt1TSzdCeCjvz88hwFfA51RKhv4BYdQeJsSuE2JxQuxxQuwdBok1qCA8bSA_5v5P1G_g4sAm
Cites_doi 10.1109/TEVC.2017.2769108
10.1007/s40747-018-0086-8
10.1016/j.neucom.2020.09.007
10.1023/A:1008202821328
10.1016/j.swevo.2022.101142
10.1016/j.mineng.2013.01.011
10.1016/S1002-0721(09)60039-9
10.1016/j.ins.2023.03.043
10.1016/j.knosys.2020.106628
10.1109/TASE.2018.2865414
10.1016/j.knosys.2022.108582
10.1109/SSCI47803.2020.9308550
10.1016/j.engappai.2023.106008
10.1016/j.asoc.2014.01.038
10.1007/s11047-019-09757-3
10.1109/TASE.2020.2975287
10.1109/TEVC.2010.2087271
10.1109/CEC.2014.6900380
10.1016/j.ins.2023.119889
10.1007/s13042-017-0711-7
10.1007/s00500-023-09080-1
10.1016/j.knosys.2021.107636
10.1109/TITS.2024.3381344
10.4018/IJAMC.2019010101
10.1109/TEVC.2009.2014613
10.1109/TASE.2012.2224107
10.1109/ACCESS.2019.2926422
10.1016/j.engappai.2020.103479
10.1109/TCYB.2019.2921602
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-88669-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_b08327e3ce69451bb1557b1d4ff1506c
40180971
10_1038_s41598_025_88669_y
Genre Journal Article
GrantInformation_xml – fundername: the Open Research Project of the State Key Laboratory of Industrial Control Technol- ogy of China under Grant
  grantid: ICT2024B50
– fundername: the National Natural Science Foundation of China under Grant
  grantid: 62363010
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c438t-1033e7e23da63616fd34a694034ae316321ee3a70d2d9a595aa6b0a18d84480f3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459316300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:33 EST 2025
Fri Sep 05 17:45:12 EDT 2025
Tue Oct 07 09:05:29 EDT 2025
Mon Jul 21 05:20:39 EDT 2025
Sat Nov 29 08:06:45 EST 2025
Fri Apr 04 01:15:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-1033e7e23da63616fd34a694034ae316321ee3a70d2d9a595aa6b0a18d84480f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3186234263?pq-origsite=%requestingapplication%
PMID 40180971
PQID 3186234263
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b08327e3ce69451bb1557b1d4ff1506c
proquest_miscellaneous_3186351597
proquest_journals_3186234263
pubmed_primary_40180971
crossref_primary_10_1038_s41598_025_88669_y
springer_journals_10_1038_s41598_025_88669_y
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 88669_CR22
Z Jian-Yong (88669_CR7) 2019; 45
AA Hadi (88669_CR20) 2019; 5
88669_CR40
Q Sui (88669_CR29) 2024; 655
X Li (88669_CR38) 2021; 421
AW Mohamed (88669_CR27) 2019; 10
L Zhu (88669_CR36) 2020; 19
J-S Pan (88669_CR14) 2022; 245
LWH Vincent (88669_CR10) 2012; 10
C Li (88669_CR15) 2022; 235
TJ Choi (88669_CR21) 2021; 215
L Deng (88669_CR24) 2019; 7
W Yong (88669_CR18) 2011; 15
Y Wang (88669_CR23) 2014; 18
88669_CR4
88669_CR3
D Yongquan (88669_CR5) 2010; 28
88669_CR34
M Pant (88669_CR9) 2020; 90
88669_CR11
88669_CR1
88669_CR32
AW Mohamed (88669_CR13) 2019; 10
ZJ Wang (88669_CR26) 2018; 22
Y Yu (88669_CR28) 2022; 74
H Zhang (88669_CR30) 2023; 632
88669_CR19
A Ghosh (88669_CR25) 2020; 50
P Sun (88669_CR33) 2024; 25
88669_CR17
88669_CR39
88669_CR16
88669_CR37
R Storn (88669_CR8) 1997; 11
Y Zi-qing (88669_CR35) 2021; 38
C Liu (88669_CR12) 2019; 16
Y Lin (88669_CR31) 2023; 27
W Sheng (88669_CR2) 2004; 22
SC Chelgani (88669_CR6) 2013; 45
References_xml – volume: 22
  start-page: 894
  year: 2018
  ident: 88669_CR26
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2769108
– volume: 5
  start-page: 25
  year: 2019
  ident: 88669_CR20
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-018-0086-8
– volume: 421
  start-page: 285
  year: 2021
  ident: 88669_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.007
– volume: 11
  start-page: 341
  year: 1997
  ident: 88669_CR8
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: 88669_CR1
– volume: 74
  start-page: 101142
  year: 2022
  ident: 88669_CR28
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101142
– ident: 88669_CR3
– volume: 45
  start-page: 32
  year: 2013
  ident: 88669_CR6
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.01.011
– volume: 28
  start-page: 7
  year: 2010
  ident: 88669_CR5
  publication-title: Chin. Rare Earths
  doi: 10.1016/S1002-0721(09)60039-9
– ident: 88669_CR34
– volume: 632
  start-page: 594
  year: 2023
  ident: 88669_CR30
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.03.043
– volume: 22
  start-page: 17
  year: 2004
  ident: 88669_CR2
  publication-title: J. Chin. Rare Earth Soc.
– ident: 88669_CR32
– volume: 215
  start-page: 106628
  year: 2021
  ident: 88669_CR21
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106628
– volume: 38
  start-page: 10
  year: 2021
  ident: 88669_CR35
  publication-title: Control Theory Appl.
– volume: 16
  start-page: 1097
  year: 2019
  ident: 88669_CR12
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2865414
– volume: 245
  start-page: 108582
  year: 2022
  ident: 88669_CR14
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108582
– ident: 88669_CR22
  doi: 10.1109/SSCI47803.2020.9308550
– ident: 88669_CR40
  doi: 10.1016/j.engappai.2023.106008
– volume: 18
  start-page: 232
  year: 2014
  ident: 88669_CR23
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.01.038
– volume: 19
  start-page: 211
  year: 2020
  ident: 88669_CR36
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-019-09757-3
– ident: 88669_CR4
– ident: 88669_CR11
  doi: 10.1109/TASE.2020.2975287
– volume: 15
  start-page: 55
  year: 2011
  ident: 88669_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2087271
– ident: 88669_CR19
  doi: 10.1109/CEC.2014.6900380
– ident: 88669_CR39
– volume: 655
  start-page: 119889
  year: 2024
  ident: 88669_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119889
– ident: 88669_CR16
– volume: 10
  start-page: 253
  year: 2019
  ident: 88669_CR27
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0711-7
– volume: 27
  start-page: 17923
  year: 2023
  ident: 88669_CR31
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-023-09080-1
– ident: 88669_CR37
– volume: 235
  start-page: 107636
  year: 2022
  ident: 88669_CR15
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107636
– volume: 25
  start-page: 11753
  year: 2024
  ident: 88669_CR33
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3381344
– volume: 10
  start-page: 1
  year: 2019
  ident: 88669_CR13
  publication-title: Int. J. Appl. Metaheur. Comput. (IJAMC)
  doi: 10.4018/IJAMC.2019010101
– ident: 88669_CR17
  doi: 10.1109/TEVC.2009.2014613
– volume: 10
  start-page: 1161
  year: 2012
  ident: 88669_CR10
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2224107
– volume: 7
  start-page: 88517
  year: 2019
  ident: 88669_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926422
– volume: 45
  start-page: 12
  year: 2019
  ident: 88669_CR7
  publication-title: Acta Autom. Sin.
– volume: 90
  start-page: 103479
  year: 2020
  ident: 88669_CR9
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103479
– volume: 50
  start-page: 4821
  year: 2020
  ident: 88669_CR25
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2921602
SSID ssj0000529419
Score 2.4520097
Snippet The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight results in a...
Abstract The mechanistic model of the rare earth extraction process neglects the efficacy of the agitator within the extraction extractor. This oversight...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 11504
SubjectTerms 639/166
639/638
Algorithms
Earth
Evolution
Humanities and Social Sciences
multidisciplinary
Mutation
Objective function
Rare earth elements
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiPJMW5CRuEHUOE78OBZExQFVHAD1ZvkxQZUgqXa3K-3f4BcztrPbIkBcuCRS7Fi2Zzwztme-AXgZgwu0yEJN0h9r0tCqdt5FeugoXY-C56R9Xz6oszN9fm4-3kj1lXzCCjxwmbhjTzZCq1AElKbrufekAJXnsRuGBI4XkvRtlLmxmSqo3q3puJmjZBqhj5ekqVI0WdvXWktp6s0vmigD9v_JyvzthjQrntP7cG-2GNlJ6ek-3MLxAdwpOSQ3D-HHCRunNX5jJGUXJUqB5fQ2bCJp8H0Os2TpvJUV5w2Sb2yJBfObSsKEGUaCtA8jC5bR7hkZ8X-qf93kZQkoYMlP_iu7yEcRyLbpVUhMUAfWMxs_gs-n7z69fV_PiRbq0Am9IlEsBCpsRXRSSC6HKDpH093Qi6glRcsRhVNNbKNxvemdk75xXEdNu7tmEI9hb5xGfAps4MqJ2Phgui797DHZEBIlkj6M2lfwajvp9rLgadh8Dy60LSSyRCKbSWQ3FbxJdNnVTFjY-QNxiJ05xP6LQyo42lLVzgt0aUmUkeGX0OoreLErpqWV7kvciNNVqSOSvacqeFK4YdeTLgOfKV7B6y17XDf-9wEd_I8BHcLdNvFx8h8SR7C3WlzhM7gd1quL5eJ5Xgg_Ac00Dco
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel extraction model optimization with effective separation coefficient for rare earth extraction process using improve differential evolution
URI https://link.springer.com/article/10.1038/s41598-025-88669-y
https://www.ncbi.nlm.nih.gov/pubmed/40180971
https://www.proquest.com/docview/3186234263
https://www.proquest.com/docview/3186351597
https://doaj.org/article/b08327e3ce69451bb1557b1d4ff1506c
Volume 15
WOSCitedRecordID wos001459316300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bitQw9ODuKOyL90t1HSL4pmWbpk3SJ9mVXRTcoYjK-FTSJF0WtJ2dzg7Mb_jFniTtDOLlxZcU2rSccq45V4CXRiuNTKZjlP42Rg0tYlUrg4s0XOWWUT-078sHMZvJ-bwoB4dbP6RVjjLRC2rTaecjP0LaQ03t2ou_WVzFbmqUi64OIzT2YIKWDXUpXedpufWxuChWRouhViZh8qhHfeVqytI8lpLzIt78oo982_4_2Zq_xUm9-jm787-A34Xbg-FJjgOl3IMbtr0Pt8Ioys0D-HFM2m5tvxEU1stQ7ED8lBzSoVD5PlRrEue2JSEHBMUk6W1oHY5PdGd9NwpUYgQNYYKHcEuQjdz-3ScXoS6BuHT7C3LpPRqWjFNaUNogAOuBGx7C57PTT2_fxcO8hlhnTK5QojNmhU2ZUZxxyhvDMsWLLMELIp2zlFrLlEhMagqVF7lSvE4UlUbiITFp2CPYb7vWPgHSUKGYSWpdZJl7ubbOFOGWW1SrRtYRvBqxVi1CW47Kh9OZrAKOK8Rx5XFcbSI4cYjd7nQttf2NbnlRDRxa1WiMpsIybRHknNY1WlqipiZrGteFUUdwOOK3Gvi8r3bIjeDF9jFyqAu7qNZ212EPc2ajiOBxIKctJJnvnyZoBK9H-tp9_O8_9PTfsDyDg9SRuEswYoewv1pe2-dwU69Xl_1yCntiLvwqpzA5OZ2VH6feFTH13ONWgeukfH9efv0J2mkjJA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL74ehwCLBCazaXmdtHxAqj6pVQ9RDQb1t195xVamNg5MG5W_wQ_iNzOzaiRCPWw9cYiler8b2N9-Md-cB8MJWpiIlq0JifwzJQmehKY2ln9wqM0AZu6Z9X4bZaJQfHhb7a_Cjz4XhsMqeEx1R26biNfJNwh5Zai4v_nbyNeSuUby72rfQ8LDYw8U3-mSbvtn9QO_3ZZJsfzx4vxN2XQXCKpX5jHhHSswwkdYoqWJVW5kaVaQRHUg0JZMYUZossoktzKAYGKPKyMS5zelTJqolzXsJLqdcWYxDBZP95ZoO75qlcdHl5kQy35ySfeQctmQQ5rlSRbj4xf65NgF_8m1_25d15m775v_2oG7Bjc6xFlteE27DGo7vwFXfanNxF75viXEzx1NBxqj1yRzCdQESDZHmWZeNKnhZWvgYFzIDYoq-NDqdqRp01TbISAty9EVrWhR0mzx-NeXE510ITic4FiduxQZF34WG2JQEmHfafg8-X8gDuQ_r42aMD0HUcWakjcqqSFO-uER2tRQqJLfB5mUAr3qU6IkvO6JduIDMtceUJkxphym9COAdA2k5kkuGuz-a9lh3DKRLcraTDGWFJPIgLkvyJLMytmldc5XJKoCNHk-647GpXoEpgOfL08RAvK1kxtic-zGS3eIsgAcevktJUlcfLosDeN3jeTX532_o0b9leQbXdg4-DfVwd7T3GK4nrF4cTCU3YH3WnuMTuFLNZyfT9qnTTwFHF43zn_0Qdsc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvCmBAkaCE0SbxImTHBAqlBWrltUeAJWTceJJValslmS7aP8GP4dfx9hOdoV43HrgkkiJY02Sz9-M7XkAPNGlKmmQlT6xP_qkoVNfFUrTIdNCJchDW7Tv42E6mWRHR_l0C370sTDGrbLnREvUui7NGvmQsEea2qQXH1adW8R0f_Ry_tU3FaTMTmtfTsNB5ABX32j61r4Y79O_fhpFozfvX7_1uwoDfhnzbEEcxDmmGHGtBBehqDSPlcjjgE4kpuBRiMhVGuhI5yrJE6VEEagw0xlNa4KKU78XYJtM8jgawPZ0_G76ab3CY_bQ4jDvInUCng1b0pYmoi1K_CwTIvdXv2hDWzTgT5bub7u0VvmNrv3Pn-06XO1MbrbnxsgN2MLZTbjkinCubsH3PTarl3jKSOjGhXkwWx-I1USnX7o4VWYWrJnzfiEFwVp0SdPpTlmjzcNB6pvRFIA1qkFGr2nab7qcu4gMZgINjtmJXctB1tenIZ4lAZYdD9yGD-fyQe7AYFbP8C6wKkwV10FR5nFsHi7QGGECBZJBobPCg2c9YuTcJSSR1pGAZ9LhSxK-pMWXXHnwyoBq3dIkE7cX6uZYdtwkCzLDoxR5iSRyEhYF2ZhpEeq4qkz-ydKD3R5bsmO4Vm6A5cHj9W3iJrPhpGZYn7k23BjMqQc7DsprSWKbOS4NPXjeY3vT-d9f6N6_ZXkElwne8nA8ObgPVyIz0oyXFd-FwaI5wwdwsVwuTtrmYTdYGXw-b6D_BJiggRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+extraction+model+optimization+with+effective+separation+coefficient+for+rare+earth+extraction+process+using+improve+differential+evolution&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Fangping&rft.au=Yang%2C+Hui&rft.au=Zhu%2C+Jianyong&rft.au=Chang%2C+Wenjia&rft.date=2025-04-03&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=11504&rft_id=info:doi/10.1038%2Fs41598-025-88669-y&rft_id=info%3Apmid%2F40180971&rft.externalDocID=40180971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon