Planar Minimization Diagrams via Subdivision with Applications to Anisotropic Voronoi Diagrams

Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 5; s. 229 - 247
Hlavní autoři: Bennett, H., Papadopoulou, E., Yap, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.08.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi‐algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
Bibliografie:ArticleID:CGF12979
istex:FE3E80C9E7922B52CEDE558E09766C85AE01521A
ark:/67375/WNG-HG73N5NS-8
Chee and Huck are supported by NSF Grant #CCF‐1423228.
Evanthia is supported by SNSF #20GG21‐134355, #200021E‐154387.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12979