Planar Minimization Diagrams via Subdivision with Applications to Anisotropic Voronoi Diagrams

Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 5; s. 229 - 247
Hlavní autoři: Bennett, H., Papadopoulou, E., Yap, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.08.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi‐algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
AbstractList Let X = {f 1 , …, f n } be a set of scalar functions of the form f i : ℝ 2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi‐algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi‐algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
Let X = {f1, ..., fn} be a set of scalar functions of the form fi : 2 [arrow right] which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered [epsi]-isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi-algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
Let X = {f sub(1), ..., f sub(n)} be a set of scalar functions of the form f sub(i) : super(2) arrow right which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered epsilon -isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi-algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.
Author Yap, C.
Papadopoulou, E.
Bennett, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Bennett
  fullname: Bennett, H.
  organization: Courant Institute, NYU, New York, USA
– sequence: 2
  givenname: E.
  surname: Papadopoulou
  fullname: Papadopoulou, E.
  organization: Faculty of Informatics, USI, Lugano, Switzerland
– sequence: 3
  givenname: C.
  surname: Yap
  fullname: Yap, C.
  organization: Courant Institute, NYU, New York, USA
BookMark eNp9kE9PwyAYh4nRxG168Bs08aKHOmgLtMdlumkyp4n_bhJKqb6zKxU6p356cVMPJsoFAs_vl5enizZrU2uE9gg-In711UN5RKKMZxuoQxLGw5TRbBN1MPFnjindRl3nZhjjhDPaQfeXlaylDc6hhjm8yxZMHRyDfLBy7oIXkMHVIi_gBdznwxLax2DQNBWoFemC1gSDGpxprWlABbfGmtrAT8MO2ipl5fTu195DN6OT6-FpOLkYnw0Hk1AlcZqFLMoY47lUuZRFrnScFbiUNMEsZSqPtL9hPCoLzLkqaJaqSOGY51FWasyKlMU9dLDubax5XmjXijk4pSv_OW0WTpA0ppRjb8ij-7_QmVnY2k_nKeKdJQSnnjpcU8oa56wuRWNhLu2bIFh8mhbetFiZ9mz_F6ugXflprYTqv8QSKv32d7UYjkffiXCdANfq15-EtE-C8ZhTcTcdi9Mxj6d0eiXS-AO2p6Fb
CitedBy_id crossref_primary_10_1090_mcom_3839
crossref_primary_10_1016_j_comgeo_2020_101683
Cites_doi 10.1016/j.comgeo.2015.04.002
10.1002/9780470317013
10.1007/978-3-540-33259-6
10.1137/0717044
10.1016/j.cad.2012.10.043
10.1007/BF02187681
10.1007/s00454-011-9345-9
10.1007/BF02187890
10.1016/j.jsc.2011.08.021
10.1142/8685
10.1142/S0218195906002191
10.1016/B978-044482537-7/50006-1
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12979
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 247
ExternalDocumentID 4147803361
10_1111_cgf_12979
CGF12979
ark_67375_WNG_HG73N5NS_8
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4389-629667bacbaadbce39d0fa540686cb2ece3672fd077cd598c2c037b29fe06d863
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383444500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 12:00:13 EST 2025
Fri Jul 25 23:44:57 EDT 2025
Sat Nov 29 03:41:13 EST 2025
Tue Nov 18 21:31:33 EST 2025
Wed Jan 22 16:45:13 EST 2025
Tue Nov 11 03:31:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4389-629667bacbaadbce39d0fa540686cb2ece3672fd077cd598c2c037b29fe06d863
Notes ArticleID:CGF12979
istex:FE3E80C9E7922B52CEDE558E09766C85AE01521A
ark:/67375/WNG-HG73N5NS-8
Chee and Huck are supported by NSF Grant #CCF‐1423228.
Evanthia is supported by SNSF #20GG21‐134355, #200021E‐154387.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1811464108
PQPubID 30877
PageCount 19
ParticipantIDs proquest_miscellaneous_1835570111
proquest_journals_1811464108
crossref_primary_10_1111_cgf_12979
crossref_citationtrail_10_1111_cgf_12979
wiley_primary_10_1111_cgf_12979_CGF12979
istex_primary_ark_67375_WNG_HG73N5NS_8
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Aurenhammer F., Klein R., Lee D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, 2013. 1
Lin L., Yap C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete and Comp. Geom. 45, 4 (2011), 760-795. 14
Ratschek H., Rokne J.: Computer Methods for the Range of Functions. Horwood Publishing Limited, Chichester, West Sussex, UK, 1984. 5
Munkres J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publishing Company, Inc, Menlo Park, CA, 1984. 2
Edelsbrunner H., Seidel R.: Voronoi diagrams and arrangements. Discrete and Comp. Geom. 1 (1986), 25-44. 2
Emiris I., Mantzaflaris A., Mourrain B.: Voronoi Diagrams of algebraic distance fields. Computer Aided Design 45, 2 (2013), 511-516. 2, 4, 9
Burr M., Choi S., Galehouse B., Yap C.: Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. J. Symbolic Computation 47, 2 (2012), 131-152. Special Issue for ISSAC 2008. 3, 6, 14, 15
Wang C., Chiang Y.-J., Yap C.: On Soft Predicates in Subdivision Motion Planning. Comput. Geometry: Theory and Appl. 48, 8 (Sept. 2015), 589-605. doi: 10.1016/j.comgeo.2015.04.002. 2
Moore R.E., Kioustelidis J.B.: A simple test for accuracy of approximate solutions to nonlinear (or linear) systems. SIAM J. Numer. Anal. 17, 4 (1980), 521-529. 6, 15, 16
Yap C.K.: An O (nlog n) algorithm for the Voronoi diagram for a set of simple curve segments. Discrete and Comp. Geom. 2 (1987), 365-394. 1
Chang E.-C., Choi S.W., Kwon D., Park H., Yap C.: Shortest paths for disc obstacles is computable. Int'l. J. Comput. Geometry and Appl. 16, 5-6 (2006), 567-590. Special Issue of IJCGA on Geometric Constraints. (Eds. X.S. Gao and D. Michelucci). 2, 3
Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations - Concepts and Applications of Voronoi Diagrams, 2nd ed. John Wiley and Sons, 2000. 1
Samet H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, 1990. 2
1980; 17
1986; 1
2015; 48
1987; 2
2012
2000
2013; 7921
2013; 45
2006; 16
2
2006
2014; 8503
1984
2016
2014; 2014
2011; 45
1993
2004
2003
2013
2012; 47
1989
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
Lien J.‐M. (e_1_2_7_13_2) 2014
e_1_2_7_6_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_10_2
Labelle F. (e_1_2_7_12_2) 2003
Ratschek H. (e_1_2_7_21_2) 1984
Klein R. (e_1_2_7_11_2) 1989
Milenkovic V. (e_1_2_7_16_2) 1993
Yap C. (e_1_2_7_25_2) 2012
Bennett H. (e_1_2_7_7_2) 2014
e_1_2_7_24_2
Yap C. (e_1_2_7_26_2) 2013
e_1_2_7_23_2
Munkres J.R. (e_1_2_7_18_2) 1984
Okabe A. (e_1_2_7_19_2) 2000
Plantinga S. (e_1_2_7_20_2) 2004
Samet H. (e_1_2_7_22_2); 2
References_xml – reference: Samet H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, 1990. 2
– reference: Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations - Concepts and Applications of Voronoi Diagrams, 2nd ed. John Wiley and Sons, 2000. 1
– reference: Ratschek H., Rokne J.: Computer Methods for the Range of Functions. Horwood Publishing Limited, Chichester, West Sussex, UK, 1984. 5
– reference: Moore R.E., Kioustelidis J.B.: A simple test for accuracy of approximate solutions to nonlinear (or linear) systems. SIAM J. Numer. Anal. 17, 4 (1980), 521-529. 6, 15, 16
– reference: Wang C., Chiang Y.-J., Yap C.: On Soft Predicates in Subdivision Motion Planning. Comput. Geometry: Theory and Appl. 48, 8 (Sept. 2015), 589-605. doi: 10.1016/j.comgeo.2015.04.002. 2
– reference: Edelsbrunner H., Seidel R.: Voronoi diagrams and arrangements. Discrete and Comp. Geom. 1 (1986), 25-44. 2
– reference: Lin L., Yap C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete and Comp. Geom. 45, 4 (2011), 760-795. 14
– reference: Yap C.K.: An O (nlog n) algorithm for the Voronoi diagram for a set of simple curve segments. Discrete and Comp. Geom. 2 (1987), 365-394. 1
– reference: Munkres J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publishing Company, Inc, Menlo Park, CA, 1984. 2
– reference: Burr M., Choi S., Galehouse B., Yap C.: Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. J. Symbolic Computation 47, 2 (2012), 131-152. Special Issue for ISSAC 2008. 3, 6, 14, 15
– reference: Emiris I., Mantzaflaris A., Mourrain B.: Voronoi Diagrams of algebraic distance fields. Computer Aided Design 45, 2 (2013), 511-516. 2, 4, 9
– reference: Chang E.-C., Choi S.W., Kwon D., Park H., Yap C.: Shortest paths for disc obstacles is computable. Int'l. J. Comput. Geometry and Appl. 16, 5-6 (2006), 567-590. Special Issue of IJCGA on Geometric Constraints. (Eds. X.S. Gao and D. Michelucci). 2, 3
– reference: Aurenhammer F., Klein R., Lee D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, 2013. 1
– volume: 16
  start-page: 567
  issue: 5
  year: 2006
  end-page: 6 590
  article-title: Shortest paths for disc obstacles is computable
  publication-title: Int'l. J. Comput. Geometry and Appl.
– volume: 47
  start-page: 131
  issue: 2
  year: 2012
  end-page: 152
  article-title: Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves
  publication-title: J. Symbolic Computation
– volume: 1
  start-page: 25
  year: 1986
  end-page: 44
  article-title: Voronoi diagrams and arrangements
  publication-title: Discrete and Comp. Geom.
– start-page: 191
  year: 2003
  end-page: 200
– volume: 7921
  start-page: 434
  year: 2013
  end-page: 444
– year: 1984
– year: 2016
  article-title: Complexity analysis of root clustering for a complex polynomial
– start-page: 473
  year: 1993
  end-page: 478
– volume: 2
  article-title: The Design and Analysis of Spatial Data Structures.
  publication-title: Addison Wesley, 1990.
– year: 2006
– year: 1989
– year: 2000
– volume: 2014
  start-page: 277
  year: 2014
  end-page: 282
– start-page: 201
  year: 2000
  end-page: 290
– volume: 17
  start-page: 521
  issue: 4
  year: 1980
  end-page: 529
  article-title: A simple test for accuracy of approximate solutions to nonlinear (or linear) systems
  publication-title: SIAM J. Numer. Anal.
– volume: 45
  start-page: 511
  issue: 2
  year: 2013
  end-page: 516
  article-title: Voronoi Diagrams of algebraic distance fields
  publication-title: Computer Aided Design
– volume: 8503
  start-page: 38
  year: 2014
  end-page: 49
– volume: 2
  start-page: 365
  year: 1987
  end-page: 394
  article-title: An ( log ) algorithm for the Voronoi diagram for a set of simple curve segments
  publication-title: Discrete and Comp. Geom.
– start-page: 760
  end-page: 795
  article-title: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach
– volume: 45
  start-page: 760
  issue: 4
  year: 2011
  end-page: 795
  article-title: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach
  publication-title: Discrete and Comp. Geom.
– start-page: 245
  year: 2004
  end-page: 254
– year: 2013
– volume: 48
  start-page: 589
  issue: 8
  year: 2015
  end-page: 605
  article-title: On Soft Predicates in Subdivision Motion Planning
  publication-title: Comput. Geometry: Theory and Appl.
– start-page: 2
  year: 2012
  end-page: 16
– ident: e_1_2_7_5_2
– ident: e_1_2_7_23_2
  doi: 10.1016/j.comgeo.2015.04.002
– volume-title: Spatial Tessellations — Concepts and Applications of Voronoi Diagrams
  year: 2000
  ident: e_1_2_7_19_2
  doi: 10.1002/9780470317013
– ident: e_1_2_7_6_2
  doi: 10.1007/978-3-540-33259-6
– ident: e_1_2_7_17_2
  doi: 10.1137/0717044
– ident: e_1_2_7_9_2
  doi: 10.1016/j.cad.2012.10.043
– ident: e_1_2_7_10_2
  doi: 10.1007/BF02187681
– ident: e_1_2_7_15_2
  doi: 10.1007/s00454-011-9345-9
– volume-title: Computer Methods for the Range of Functions
  year: 1984
  ident: e_1_2_7_21_2
– ident: e_1_2_7_24_2
  doi: 10.1007/BF02187890
– start-page: 38
  volume-title: Lect. Notes in C.S
  year: 2014
  ident: e_1_2_7_7_2
– start-page: 277
  volume-title: ICMS
  year: 2014
  ident: e_1_2_7_13_2
– start-page: 191
  volume-title: Proc. 19th ACM Symp. on Comp. Geom.
  year: 2003
  ident: e_1_2_7_12_2
– start-page: 473
  volume-title: Proc. 5th Canadian Conf. on Computational Geom. (CCCG) (1993)
  year: 1993
  ident: e_1_2_7_16_2
– ident: e_1_2_7_4_2
  doi: 10.1016/j.jsc.2011.08.021
– ident: e_1_2_7_14_2
  doi: 10.1007/s00454-011-9345-9
– volume-title: Elements of Algebraic Topology
  year: 1984
  ident: e_1_2_7_18_2
– ident: e_1_2_7_3_2
  doi: 10.1142/8685
– ident: e_1_2_7_8_2
  doi: 10.1142/S0218195906002191
– volume: 2
  ident: e_1_2_7_22_2
  article-title: The Design and Analysis of Spatial Data Structures.
  publication-title: Addison Wesley, 1990.
– start-page: 2
  volume-title: 9th Proc. Int'l. Symp. of Voronoi Diagrams in Science and Engineering (ISVD).
  year: 2012
  ident: e_1_2_7_25_2
– start-page: 245
  volume-title: Proc. Eurographics Symposium on Geometry Processing
  year: 2004
  ident: e_1_2_7_20_2
– start-page: 434
  volume-title: Lect. Notes in C.S
  year: 2013
  ident: e_1_2_7_26_2
– ident: e_1_2_7_2_2
  doi: 10.1016/B978-044482537-7/50006-1
– volume-title: Lecture Notes in Computer Science, No. 400
  year: 1989
  ident: e_1_2_7_11_2
SSID ssj0004765
Score 2.2236872
Snippet Let X = {f1, …, fn} be a set of scalar functions of the form fi : ℝ2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for...
Let X = {f 1 , …, f n } be a set of scalar functions of the form f i : ℝ 2 → ℝ which satisfy some natural properties. We describe a subdivision algorithm for...
Let X = {f1, ..., fn} be a set of scalar functions of the form fi : 2 [arrow right] which satisfy some natural properties. We describe a subdivision algorithm...
Let X = {f sub(1), ..., f sub(n)} be a set of scalar functions of the form f sub(i) : super(2) arrow right which satisfy some natural properties. We describe a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms Algorithms
Anisotropy
Categories and Subject Descriptors (according to ACM CCS)
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-Geometrical problems and computations
G.1.0 [Numerical Analysis]: General-Interval arithmetic
G.1.2 [Numerical Analysis]: Approximation-Approximation of surfaces and contours
G.4 [Mathematical Software]: -Algorithm design and analysis
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric algorithms
Image processing systems
Mathematical analysis
Mathematical models
Minimization
Optimization
Scalars
Studies
Subdivisions
Title Planar Minimization Diagrams via Subdivision with Applications to Anisotropic Voronoi Diagrams
URI https://api.istex.fr/ark:/67375/WNG-HG73N5NS-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12979
https://www.proquest.com/docview/1811464108
https://www.proquest.com/docview/1835570111
Volume 35
WOSCitedRecordID wos000383444500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gnQ_6gPhBPAWyEmN8qVlautuNTxfwjgdsiIry5GY_WtKoLWkPwp_vTK8tRyIJiW9NO20387EzuzvzG4C3Ec6M3HAfKHQAwT762EAlXgZ5ZJ1XPDYqb0Fcj2WaJmdn6mQNPva1MEt8iGHDjSyjna_JwI1tVozcnecf0FlJ9QDGIeptPILx4ZfZ6fFNWaQUcQ_tTaAxHbAQJfIML99yR2Pi7PWtWHM1Ym1dzuzJfw12A9a7SJNNl6rxFNay8hk8XsEffA4_qWWRqdnnoiz-dAWZ7LAwlLHVsKvCMJxXqGCLttQYbdmy6cqBN1tUbFoWTbWoq4vCse-EhlAVwxdewOns07eDo6BruBA4aoIeiBAXP9IaZ43x1mWR8jw3GNOJRDgbZnhHyDD3XErnY5W40PFI2lDlGRc-EdEmjMqqzF4CC_ccRgo837ce5eBzkyQGF0-GOwoYhJ3A-57v2nVo5NQU47fuVyXIMt2ybAK7A-nFEoLjX0TvWuENFKb-RTlrMtY_0rk-mssojdOvOpnAVi9d3ZlrozHMQY-BWouP3wyP0dDo9MSUWXVJNBHBleFfceytrO8ejT6Yz9qLV_cnfQ2PMBgTy-TCLRgt6stsGx66q0XR1Dudbv8FwCr8Mw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8gZyI-KH7FU5TVEMNLzdped7uJLxfw7ghHYwSEJzbb3ZY0Qkt6B-HPZ6bX1iPRxMS3pp22m52ZndnZmd8AbAW4MnLDnafQAHgDtLGeipz0siCxTvHQqKwGcZ3KOI5OT9X3Ffja1sIs8CG6gBtpRr1ek4JTQHpJy-159hmtlVQPoDdAMUL57u3-GB1Pf9dFShG22N6EGtMgC1EmT_fyPXvUo6m9vedsLrustc0ZPf2_0a7Dk8bXZMOFcDyDlbR4Do-XEAhfwBk1LTIVO8iL_LIpyWS7uaGcrRm7yQ3DlYVKtiioxihoy4ZLR95sXrJhkc_KeVVe5Zb9JDyEMu--8BKOR9-OdiZe03LBs9QG3RM-bn9kYmxijEtsGijHM4NenYiETfwU7wjpZ45LaV2oIutbHsjEV1nKhYtE8ApWi7JIXwPzv1j0FXg2SBwywmUmigxunwy35DKIpA_b7cRr2-CRU1uMC93uS3DKdD1lffjYkV4tQDj-RPSp5l5HYapflLUmQ30Sj_VkLIM4jA911IeNlr26UdiZRkcHbQbKLT7-0D1GVaPzE1Ok5TXRBARYhn_FsdfM_vto9M54VF-8-XfSTXg0OTqY6ulevP8W1tA1E4tUww1YnVfX6Tt4aG_m-ax63wj6HdbbADI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEB7OXRF98Le4emoUEV8qsd0mDfiy3No9cS2HenpPhjRppKjt0t07_POd6bZ1DxQE30o7bUMmk_mSzHwD8DTCmZEb7gKFDiCYoo8NVOJk4KPcOsVjo3xL4rqUWZacnKijPXjV58Js-SGGDTeyjHa-JgMvVs7vWLn96l-gt5LqAoynVERmBOP5-_R4-TsvUoq45_Ym1piOWYgieYaXz_mjMXXtz3Ngcxeytj4nvfZ_rb0OVzusyWbbwXED9orqJlzZYSC8BV-oaJFp2LuyKn90KZlsXhqK2Vqzs9IwnFkoZYs21Rht2rLZzpE329RsVpXretPUq9KyT8SHUJfDF27Dcfr648Fh0JVcCCyVQQ9EiMsfmRubG-NyW0TKcW8Q1YlE2Dws8I6QoXdcSutildjQ8kjmofIFFy4R0R0YVXVV3AUWvrSIFbif5g4V4bxJEoPLJ8MtQQaRT-B53_HadnzkVBbju-7XJdhluu2yCTwZRFdbEo4_CT1rtTdImOYbRa3JWH_OFvpwIaMszj7oZAL7vXp1Z7BrjUAHfQaOW3z8eHiMpkbnJ6Yq6lOSiYiwDP-KbW-V_ffW6INF2l7c-3fRR3DpaJ7q5Zvs7X24jMhMbCMN92G0aU6LB3DRnm3KdfOwG-e_AGHW_54
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Minimization+Diagrams+via+Subdivision+with+Applications+to+Anisotropic+Voronoi+Diagrams&rft.jtitle=Computer+graphics+forum&rft.au=Bennett%2C+H&rft.au=Papadopoulou%2C+E&rft.au=Yap%2C+C&rft.date=2016-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=5&rft.spage=229&rft.epage=247&rft_id=info:doi/10.1111%2Fcgf.12979&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon