Compressed Manifold Modes for Mesh Processing
This paper introduces compressed eigenfunctions of the Laplace‐Beltrami operator on 3D manifold surfaces. They constitute a novel functional basis, called the compressed manifold basis, where each function has local support. We derive an algorithm, based on the alternating direction method of multip...
Uloženo v:
| Vydáno v: | Computer graphics forum Ročník 33; číslo 5; s. 35 - 44 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.08.2014
|
| Témata: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper introduces compressed eigenfunctions of the Laplace‐Beltrami operator on 3D manifold surfaces. They constitute a novel functional basis, called the compressed manifold basis, where each function has local support. We derive an algorithm, based on the alternating direction method of multipliers (ADMM), to compute this basis on a given triangulated mesh. We show that compressed manifold modes identify key shape features, yielding an intuitive understanding of the basis for a human observer, where a shape can be processed as a collection of parts. We evaluate compressed manifold modes for potential applications in shape matching and mesh ion. Our results show that this basis has distinct advantages over existing alternatives, indicating high potential for a wide range of use‐cases in mesh processing. |
|---|---|
| Bibliografie: | Supporting InformationSupporting Information ark:/67375/WNG-Z2D226GQ-H ArticleID:CGF12429 istex:56BE41703751AF77CCB943ADEA995658B64ED0CA SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0167-7055 1467-8659 |
| DOI: | 10.1111/cgf.12429 |