Using cognitive interviews to develop surveys in diverse populations
Conceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods to explore the conceptual equivalence of survey items. Systematic approaches for using these methods are emerging. We describe an interaction...
Gespeichert in:
| Veröffentlicht in: | Medical care Jg. 44; H. 11 Suppl 3; S. S21 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.11.2006
|
| Schlagworte: | |
| ISSN: | 0025-7079 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Conceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods to explore the conceptual equivalence of survey items. Systematic approaches for using these methods are emerging.
We describe an interaction analysis (IA) approach using qualitative data analysis software to analyze transcripts of cognitive interviews in a study to develop a survey instrument of the quality of interpersonal processes of care of diverse patients. Cognitive interviews included standard administration of the survey followed by retrospective probes for selected items.
Interviews were completed with 48 Latino, black, and non-Latino white respondents 18 years of age or older with at least one doctor's visit in the past 12 months. Participants averaged 45.8 years in age (standard deviation [SD] = 18.4), 58% were women, and mean education was 14.7 years (SD = 4.0).
Problems were identified in 126 of 159 items (79%). Behavior coding identified 32 problematic items (20%). IA of the transcript of the survey and retrospective probes identified 94 additional problematic items (59%). IA often revealed the nature of the problems, enabling decisions to modify or drop items based on respondents' comments. Behavior coding and IA identified ethnic and language similarities and differences in the use of response sets and the interpretation of items.
IA and behavior coding of cognitive interview transcripts can identify efficiently problems with items and their source to increase the likelihood of the revised items being conceptually equivalent across ethnic groups. |
|---|---|
| AbstractList | Conceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods to explore the conceptual equivalence of survey items. Systematic approaches for using these methods are emerging.BACKGROUNDConceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods to explore the conceptual equivalence of survey items. Systematic approaches for using these methods are emerging.We describe an interaction analysis (IA) approach using qualitative data analysis software to analyze transcripts of cognitive interviews in a study to develop a survey instrument of the quality of interpersonal processes of care of diverse patients. Cognitive interviews included standard administration of the survey followed by retrospective probes for selected items.OBJECTIVEWe describe an interaction analysis (IA) approach using qualitative data analysis software to analyze transcripts of cognitive interviews in a study to develop a survey instrument of the quality of interpersonal processes of care of diverse patients. Cognitive interviews included standard administration of the survey followed by retrospective probes for selected items.Interviews were completed with 48 Latino, black, and non-Latino white respondents 18 years of age or older with at least one doctor's visit in the past 12 months. Participants averaged 45.8 years in age (standard deviation [SD] = 18.4), 58% were women, and mean education was 14.7 years (SD = 4.0).SUBJECTSInterviews were completed with 48 Latino, black, and non-Latino white respondents 18 years of age or older with at least one doctor's visit in the past 12 months. Participants averaged 45.8 years in age (standard deviation [SD] = 18.4), 58% were women, and mean education was 14.7 years (SD = 4.0).Problems were identified in 126 of 159 items (79%). Behavior coding identified 32 problematic items (20%). IA of the transcript of the survey and retrospective probes identified 94 additional problematic items (59%). IA often revealed the nature of the problems, enabling decisions to modify or drop items based on respondents' comments. Behavior coding and IA identified ethnic and language similarities and differences in the use of response sets and the interpretation of items.RESULTSProblems were identified in 126 of 159 items (79%). Behavior coding identified 32 problematic items (20%). IA of the transcript of the survey and retrospective probes identified 94 additional problematic items (59%). IA often revealed the nature of the problems, enabling decisions to modify or drop items based on respondents' comments. Behavior coding and IA identified ethnic and language similarities and differences in the use of response sets and the interpretation of items.IA and behavior coding of cognitive interview transcripts can identify efficiently problems with items and their source to increase the likelihood of the revised items being conceptually equivalent across ethnic groups.CONCLUSIONSIA and behavior coding of cognitive interview transcripts can identify efficiently problems with items and their source to increase the likelihood of the revised items being conceptually equivalent across ethnic groups. Conceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods to explore the conceptual equivalence of survey items. Systematic approaches for using these methods are emerging. We describe an interaction analysis (IA) approach using qualitative data analysis software to analyze transcripts of cognitive interviews in a study to develop a survey instrument of the quality of interpersonal processes of care of diverse patients. Cognitive interviews included standard administration of the survey followed by retrospective probes for selected items. Interviews were completed with 48 Latino, black, and non-Latino white respondents 18 years of age or older with at least one doctor's visit in the past 12 months. Participants averaged 45.8 years in age (standard deviation [SD] = 18.4), 58% were women, and mean education was 14.7 years (SD = 4.0). Problems were identified in 126 of 159 items (79%). Behavior coding identified 32 problematic items (20%). IA of the transcript of the survey and retrospective probes identified 94 additional problematic items (59%). IA often revealed the nature of the problems, enabling decisions to modify or drop items based on respondents' comments. Behavior coding and IA identified ethnic and language similarities and differences in the use of response sets and the interpretation of items. IA and behavior coding of cognitive interview transcripts can identify efficiently problems with items and their source to increase the likelihood of the revised items being conceptually equivalent across ethnic groups. |
| Author | Santoyo-Olsson, Jasmine O'Brien, Helen Nápoles-Springer, Anna M Stewart, Anita L |
| Author_xml | – sequence: 1 givenname: Anna M surname: Nápoles-Springer fullname: Nápoles-Springer, Anna M email: anna.napoles-springer@ucsf.edu organization: Medical Effectiveness Research Center for Diverse Populations and the Center on Aging in Diverse Communities, University of California at San Francisco, San Francisco, California 94118-1944, USA. anna.napoles-springer@ucsf.edu – sequence: 2 givenname: Jasmine surname: Santoyo-Olsson fullname: Santoyo-Olsson, Jasmine – sequence: 3 givenname: Helen surname: O'Brien fullname: O'Brien, Helen – sequence: 4 givenname: Anita L surname: Stewart fullname: Stewart, Anita L |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17060830$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j01LxDAYhHNYcdfVvyDFg7fWJE2a5CjrJyx4cc8lTd4ukTapSVvZf2_BdS4DMw8Dc4VWPnhA6I7ggmAlHjAp-i4WeBFlnFFeVFxhXhC7Qpsl47nAQq3RVUpfGBNRcnqJ1kTgCssSb9DTITl_zEw4eje6GTLnR4izg5-UjSGzMEMXhixNcYZTWtrMLlRMkA1hmDo9uuDTNbpodZfg5uxbdHh5_ty95fuP1_fd4z43rJQiB6ZNS1UpWVk1zOqmMYwSxYgFabmVoqqwoVYLblvDDV5yIS0FJsG0bSvpFt3_7Q4xfE-Qxrp3yUDXaQ9hSnUllSIKkwW8PYNT04Oth-h6HU_1_2_6C31iXlg |
| CitedBy_id | crossref_primary_10_1016_j_nedt_2021_105093 crossref_primary_10_1093_pm_pnz173 crossref_primary_10_1177_1525822X11416092 crossref_primary_10_1371_journal_pone_0265784 crossref_primary_10_1007_s11136_008_9402_x crossref_primary_10_1016_j_annepidem_2019_01_008 crossref_primary_10_1111_medu_14951 crossref_primary_10_1080_14767058_2016_1242125 crossref_primary_10_1007_s10461_010_9836_3 crossref_primary_10_1097_01_mlr_0000245429_98384_23 crossref_primary_10_1352_2326_6988_2_3_195 crossref_primary_10_1177_0898264312436877 crossref_primary_10_1080_1533256X_2017_1412978 crossref_primary_10_1080_1533256X_2017_1412977 crossref_primary_10_2105_AJPH_2009_170134 crossref_primary_10_1093_fampra_cmab070 crossref_primary_10_1007_s11136_007_9184_6 crossref_primary_10_1007_s43076_023_00274_y crossref_primary_10_1177_0898264312440321 crossref_primary_10_1177_0898264312440322 crossref_primary_10_3389_fpsyg_2022_1016229 crossref_primary_10_1097_ACM_0000000000004178 crossref_primary_10_3109_0142159X_2014_889814 crossref_primary_10_1017_S1041610213000264 crossref_primary_10_2217_fca_2023_0040 crossref_primary_10_1187_cbe_23_01_0022 crossref_primary_10_1177_0049124120914929 crossref_primary_10_1038_s41598_025_86270_x crossref_primary_10_3233_JAD_191138 crossref_primary_10_1093_poq_nfu092 crossref_primary_10_1080_13670050_2020_1840507 crossref_primary_10_1097_FCH_0000000000000279 crossref_primary_10_1111_hsc_12202 crossref_primary_10_1186_s43058_022_00338_7 crossref_primary_10_1111_jvh_13278 crossref_primary_10_1186_s12875_020_01224_8 crossref_primary_10_1186_s41687_017_0007_4 crossref_primary_10_1186_s12910_015_0041_9 crossref_primary_10_1016_j_jht_2011_09_007 crossref_primary_10_1177_1049732316636362 crossref_primary_10_1186_s12874_020_01024_9 crossref_primary_10_1177_1043659610395771 crossref_primary_10_1080_00223891_2012_735300 crossref_primary_10_1007_s10567_024_00479_2 crossref_primary_10_1177_1178632917701123 crossref_primary_10_1111_acer_12063 crossref_primary_10_1016_j_sleh_2018_10_003 crossref_primary_10_1111_jjns_12301 crossref_primary_10_1111_j_1525_1446_2010_00938_x crossref_primary_10_1590_S0102_311X2011001200007 crossref_primary_10_1097_01_mlr_0000245181_96133_db crossref_primary_10_1186_s12978_017_0381_7 crossref_primary_10_1186_s12912_020_00419_9 crossref_primary_10_5811_westjem_2018_11_39822 crossref_primary_10_1016_j_gaceta_2017_12_004 crossref_primary_10_1080_13229400_2020_1864452 crossref_primary_10_1177_2374373520910027 crossref_primary_10_1186_1471_2288_12_187 crossref_primary_10_1080_13645579_2024_2312621 crossref_primary_10_1186_s12905_021_01200_z crossref_primary_10_1007_s40617_024_00945_x crossref_primary_10_1111_j_1369_7625_2010_00654_x crossref_primary_10_3390_healthcare11091309 crossref_primary_10_1136_bmjopen_2020_042361 crossref_primary_10_1177_26320843241265957 crossref_primary_10_2196_resprot_5092 crossref_primary_10_1080_07347332_2017_1370763 crossref_primary_10_1080_13557858_2014_925095 crossref_primary_10_1017_S1368980014000160 crossref_primary_10_1097_WAD_0000000000000450 crossref_primary_10_1177_0272989X18785159 crossref_primary_10_1016_j_ajog_2021_04_216 crossref_primary_10_1187_cbe_19_11_0235 crossref_primary_10_1111_j_1475_6773_2009_00965_x crossref_primary_10_1186_1471_2458_10_481 crossref_primary_10_1097_01_mlr_0000245437_46695_4a crossref_primary_10_1186_ar3219 crossref_primary_10_1016_j_whi_2022_01_006 crossref_primary_10_1136_tobaccocontrol_2016_052958 crossref_primary_10_1007_s12671_012_0160_z crossref_primary_10_1093_aje_kwr287 crossref_primary_10_1186_s12978_018_0591_7 crossref_primary_10_1002_nur_20364 crossref_primary_10_1016_j_ejon_2015_01_006 crossref_primary_10_1017_S0266462324000515 crossref_primary_10_1186_s13104_023_06294_2 crossref_primary_10_1177_1049732318801364 crossref_primary_10_3389_fnut_2022_1000258 crossref_primary_10_1080_08946566_2018_1531099 crossref_primary_10_1080_15348458_2023_2225218 crossref_primary_10_5093_tr2013a2 crossref_primary_10_1016_j_ijintrel_2013_12_008 crossref_primary_10_1111_jgs_18105 crossref_primary_10_1002_ajim_20733 crossref_primary_10_1007_s10899_010_9209_x crossref_primary_10_1097_01_mlr_0000245451_67862_57 crossref_primary_10_1177_2374373520912083 crossref_primary_10_1097_01_mlr_0000245252_14302_f4 crossref_primary_10_1007_BF03396983 crossref_primary_10_1186_1471_2318_13_123 crossref_primary_10_1080_02702711_2020_1813226 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/01.mlr.0000245425.65905.1d |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| ExternalDocumentID | 17060830 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: AHRQ HHS grantid: R01 HS10599 – fundername: NIA NIH HHS grantid: P30-AG15272 |
| GroupedDBID | --- -~X .-D ..I .3C .GJ .Z2 01R 0R~ 1J1 3R3 40H 4Q1 4Q2 4Q3 53G 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AAGIX AAHPQ AAIQE AAKYL AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AAWTL AAWTO AAXQO AAYEP ABASU ABBHK ABBUW ABDIG ABIVO ABJNI ABPPZ ABQDR ABVCZ ABXSQ ABXVJ ABZAD ACCJW ACDDN ACDIW ACEWG ACGFO ACGFS ACHQT ACIJW ACILI ACLDA ACLED ACNWC ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB ADULT AE3 AE6 AEETU AELLO AENEX AEUPB AFDTB AFRAH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJRGT AJZMW AKBRZ AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BHOJU BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GIFXF GNXGY GQDEL H0~ HGD HLJTE HVGLF HZ~ H~9 IH2 IKREB IKYAY IN~ IPNFZ IPSME JAA JAAYA JBMMH JBZCM JENOY JF9 JG8 JHFFW JK3 JK8 JKQEH JLEZI JLXEF JPL JSODD JST K8S KD2 KMI L-C L7B N4W N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA ODZKP OJAPA OL1 OLG OLH OLL OLU OLV OLW OLY OLZ OPUJH OPX ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P-O P2P PKN PQQKQ QZG R58 RIG RLZ S4R S4S SA0 T8P TEORI TN5 TSPGW V2I VQP VVN W3M WH7 WOQ WOW X3V X3W XFW XXN XYM YCJ YFH YHZ YOC ZFV ZGI ZXP ZY1 ZZMQN 7X8 ABAWQ ABPXF ACBKD ACHJO ACZKN ADKSD |
| ID | FETCH-LOGICAL-c4387-e4acf2938436b4dabbc421941de8d5d87660c2da75dfc5c01de78d2e48ecfff82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 114 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00005650-200611001-00007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-7079 |
| IngestDate | Sun Nov 09 14:03:33 EST 2025 Wed Feb 19 01:44:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 Suppl 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4387-e4acf2938436b4dabbc421941de8d5d87660c2da75dfc5c01de78d2e48ecfff82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 17060830 |
| PQID | 68991901 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68991901 pubmed_primary_17060830 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-Nov 20061101 |
| PublicationDateYYYYMMDD | 2006-11-01 |
| PublicationDate_xml | – month: 11 year: 2006 text: 2006-Nov |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical care |
| PublicationTitleAlternate | Med Care |
| PublicationYear | 2006 |
| SSID | ssj0017352 |
| Score | 2.228134 |
| Snippet | Conceptual equivalence of measures is essential in research that compares health across diverse racial/ethnic groups. Cognitive interviews are pretest methods... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | S21 |
| SubjectTerms | Adult Aged Aged, 80 and over Communication Cultural Diversity Ethnic Groups - psychology Female Health Care Surveys Humans Interviews as Topic - methods Male Middle Aged Psychometrics - methods Surveys and Questionnaires United States |
| Title | Using cognitive interviews to develop surveys in diverse populations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17060830 https://www.proquest.com/docview/68991901 |
| Volume | 44 |
| WOSCitedRecordID | wos00005650-200611001-00007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFRHE96M-9-A1dbOP7AYEEbV4sKUHhd5KsruBgia1afv73d0k9SQevOSQEAgzszOTmW--AbgxkdGMkCSQjJqAhZgGKU5lwLXgRtMoVcpr-lUMBnI0ioctuGtmYRyssvGJ3lHrQrka-W1kfwxc8LqffgVuZ5TrrdYLNNagTW0i4wBdYvTTQxCUk9XCVizihnLUUTaG3c-PmecuJIxbs-1GPMa8G-rfE00fcHq7__vUPdipE030UFnGPrRMfgCb_bqVfgDbVcEOVXNIh_DkwQNoBSdCE4-GdFSlaF6gergKlYvZ0irfPkXaQzoMmq52gJVH8N57fnt8CeoVC4FijlXXsERlNuJbTUUp00maKmZ9GAu1kZpr6yojrIhOBNeZ4grb-0JqYpg0KssySY5hPS9ycwrINXRt6AspM4SllEuhlcBcapbqmGeyA9eNtMbWhF1fIslNsSjHjbw6cFIJfDytmDbGnttHUnz257vnsOWLI35K8ALamT285hI21HI-KWdX3jLsdTDsfwMMucKR |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+cognitive+interviews+to+develop+surveys+in+diverse+populations&rft.jtitle=Medical+care&rft.au=N%C3%A1poles-Springer%2C+Anna+M&rft.au=Santoyo-Olsson%2C+Jasmine&rft.au=O%27Brien%2C+Helen&rft.au=Stewart%2C+Anita+L&rft.date=2006-11-01&rft.issn=0025-7079&rft.volume=44&rft.issue=11+Suppl+3&rft.spage=S21&rft_id=info:doi/10.1097%2F01.mlr.0000245425.65905.1d&rft_id=info%3Apmid%2F17060830&rft_id=info%3Apmid%2F17060830&rft.externalDocID=17060830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-7079&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-7079&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-7079&client=summon |