CodeMapper: semiautomatic coding of case definitions. A contribution from the ADVANCE project

Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pharmacoepidemiology and drug safety Ročník 26; číslo 8; s. 998 - 1005
Hlavní autori: Becker, Benedikt F.H., Avillach, Paul, Romio, Silvana, Mulligen, Erik M., Weibel, Daniel, Sturkenboom, Miriam C.J.M., Kors, Jan A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Wiley Subscription Services, Inc 01.08.2017
John Wiley and Sons Inc
Predmet:
ISSN:1053-8569, 1099-1557, 1099-1557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process. Methods CodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free‐text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study. Results Automated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616. Conclusions Automatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.
AbstractList Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process.BACKGROUNDAssessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process.CodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free-text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study.METHODSCodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free-text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study.Automated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616.RESULTSAutomated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616.Automatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.CONCLUSIONSAutomatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.
Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process. CodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free-text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study. Automated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616. Automatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.
Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process. Methods CodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free-text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study. Results Automated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616. Conclusions Automatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.
Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the harmonization of codes as different vocabularies are being used across countries. In this paper, we present a web application called CodeMapper, which assists in the mapping of case definitions to codes from different vocabularies, while keeping a transparent record of the complete mapping process. Methods CodeMapper builds upon coding vocabularies contained in the Metathesaurus of the Unified Medical Language System. The mapping approach consists of three phases. First, medical concepts are automatically identified in a free‐text case definition. Second, the user revises the set of medical concepts by adding or removing concepts, or expanding them to related concepts that are more general or more specific. Finally, the selected concepts are projected to codes from the targeted coding vocabularies. We evaluated the application by comparing codes that were automatically generated from case definitions by applying CodeMapper's concept identification and successive concept expansion, with reference codes that were manually created in a previous epidemiological study. Results Automated concept identification alone had a sensitivity of 0.246 and positive predictive value (PPV) of 0.420 for reproducing the reference codes. Three successive steps of concept expansion increased sensitivity to 0.953 and PPV to 0.616. Conclusions Automatic concept identification in the case definition alone was insufficient to reproduce the reference codes, but CodeMapper's operations for concept expansion provide an effective, efficient, and transparent way for reproducing the reference codes.
Author Weibel, Daniel
Mulligen, Erik M.
Sturkenboom, Miriam C.J.M.
Becker, Benedikt F.H.
Romio, Silvana
Kors, Jan A.
Avillach, Paul
AuthorAffiliation 1 Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands
4 Department of Epidemiology Erasmus University Medical Center Rotterdam The Netherlands
2 Department of Biomedical Informatics Harvard Medical School Boston MA USA
3 Department of Statistics and Quantitative Methods University of Milano–Bicocca Milan Italy
AuthorAffiliation_xml – name: 2 Department of Biomedical Informatics Harvard Medical School Boston MA USA
– name: 1 Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands
– name: 4 Department of Epidemiology Erasmus University Medical Center Rotterdam The Netherlands
– name: 3 Department of Statistics and Quantitative Methods University of Milano–Bicocca Milan Italy
Author_xml – sequence: 1
  givenname: Benedikt F.H.
  orcidid: 0000-0002-0819-8344
  surname: Becker
  fullname: Becker, Benedikt F.H.
  email: b.becker@erasmusmc.nl
  organization: Erasmus University Medical Center
– sequence: 2
  givenname: Paul
  surname: Avillach
  fullname: Avillach, Paul
  organization: Harvard Medical School
– sequence: 3
  givenname: Silvana
  surname: Romio
  fullname: Romio, Silvana
  organization: University of Milano–Bicocca
– sequence: 4
  givenname: Erik M.
  surname: Mulligen
  fullname: Mulligen, Erik M.
  organization: Erasmus University Medical Center
– sequence: 5
  givenname: Daniel
  surname: Weibel
  fullname: Weibel, Daniel
  organization: Erasmus University Medical Center
– sequence: 6
  givenname: Miriam C.J.M.
  surname: Sturkenboom
  fullname: Sturkenboom, Miriam C.J.M.
  organization: Erasmus University Medical Center
– sequence: 7
  givenname: Jan A.
  surname: Kors
  fullname: Kors, Jan A.
  organization: Erasmus University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28657162$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi1URC8g8QTIEhs2OdiO7SQskI5OW0BqAYnLDlmOPWl9lNjBTlr17evQUkoFK4883_zzz8w-2vHBA0LPKVlRQtjr0aYVZ1w8QnuUNE1Bhah2lliURS1ks4v2U9oSknMNf4J2WS1FRSXbQz82wcKpHkeIb3CCwel5CoOenMEmWOfPcOiw0Qmwhc55N7ng0wqvc9ZP0bXz8oG7GAY8nQNeH35ff9wc4TGGLZjpKXrc6T7Bs9v3AH07Pvq6eV-cfHr3YbM-KQwva1FUxJRtK4W1FKS0NRW21ZwAbQ2TptOksdkvY5RXOSbMNrQ0dc1N1bXEGFseoLc3uuPcDmANZG-6V2N0g45XKmin_s54d67OwoXKexKCySzw6lYghp8zpEkNLhnoe-0hzEnRhnJRUy7rjL58gG7DHH0eL1OsIiVvyjJTL-47urPye_N_OpoYUorQ3SGUqOWoKh9VLUfN6OoBatykl8XnWVz_r4LipuDS9XD1X2H1-fDLL_4aDFqyPw
CitedBy_id crossref_primary_10_1136_bmjgh_2020_003540
crossref_primary_10_1007_s40264_018_0727_2
crossref_primary_10_1002_cpt_2476
crossref_primary_10_1016_j_vaccine_2019_06_040
crossref_primary_10_1002_cpt_1833
crossref_primary_10_1080_03007995_2023_2243216
crossref_primary_10_1097_INF_0000000000003261
crossref_primary_10_1093_aje_kwae423
crossref_primary_10_1007_s40264_020_01031_1
crossref_primary_10_1016_j_vaccine_2020_01_100
crossref_primary_10_1016_j_vaccine_2019_07_045
crossref_primary_10_1002_pds_5631
crossref_primary_10_1016_j_vaccine_2022_11_031
crossref_primary_10_1016_j_vaccine_2019_08_078
crossref_primary_10_1093_eurpub_ckaf135
Cites_doi 10.1016/j.jbi.2012.05.002
10.1055/s-0038-1634585
10.1016/j.jbi.2003.11.001
10.1111/joim.12159
10.1136/amiajnl-2011-000376
10.1002/pds.3439
10.1002/pds.2053
10.1055/s-0038-1634945
10.1136/jamia.1998.0050076
10.1002/pds.2336
10.1016/j.vaccine.2013.04.088
10.2165/00002018-199920020-00002
10.14236/jhi.v13i1.580
10.1542/peds.99.6.765
10.1016/j.jbi.2009.05.002
10.1136/amiajnl-2012-000933
ContentType Journal Article
Copyright 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
CorporateAuthor for the ADVANCE consortium
ADVANCE consortium
CorporateAuthor_xml – name: for the ADVANCE consortium
– name: ADVANCE consortium
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1002/pds.4245
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Becker et al
EISSN 1099-1557
EndPage 1005
ExternalDocumentID PMC5575526
28657162
10_1002_pds_4245
PDS4245
Genre article
Journal Article
GrantInformation_xml – fundername: Innovative Medicines Initiative
  funderid: 115557 (ADVANCE)
– fundername: Seventh Framework Programme
– fundername: Innovative Medicines Initiative
  grantid: 115557 (ADVANCE)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c4385-70c3bb65dd1e66d815dba40e1bc26cfa09d65722147a0902d913c884c7fb0ccd3
IEDL.DBID 24P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409386300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8569
1099-1557
IngestDate Tue Nov 04 01:59:46 EST 2025
Fri Sep 05 07:52:16 EDT 2025
Sat Nov 29 14:45:55 EST 2025
Wed Feb 19 02:30:25 EST 2025
Sat Nov 29 06:35:11 EST 2025
Tue Nov 18 22:25:47 EST 2025
Wed Jan 22 17:06:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords UMLS
semantic operations
database extraction
multiple medical vocabularies
concept identification
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4385-70c3bb65dd1e66d815dba40e1bc26cfa09d65722147a0902d913c884c7fb0ccd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Prior posting and presentation: Parts of this article have been presented on a poster at ICPE 2016.
ORCID 0000-0002-0819-8344
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4245
PMID 28657162
PQID 1927034933
PQPubID 105383
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575526
proquest_miscellaneous_1914581468
proquest_journals_1927034933
pubmed_primary_28657162
crossref_primary_10_1002_pds_4245
crossref_citationtrail_10_1002_pds_4245
wiley_primary_10_1002_pds_4245_PDS4245
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bethesda
– name: Hoboken
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2009; 42
2013; 22
2009; 160
1995; 34
2013; 20
1998
2003; 36
2007
1995
2012; 19
1999; 20
2010; 160
2014; 275
2001; 84
2016; 4
2001
1997; 99
1963; 51
1993; 32
2013; 31
2011; 20
2006; 121
1980
2015; 216
2013
1998; 5
2012; 45
2012; 21
2005; 13
1992; 41
Pavillon G (e_1_2_8_6_1) 1992; 41
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
US Department of Health and Human Services and others (e_1_2_8_5_1) 1980
Gini R (e_1_2_8_10_1) 2016; 4
Hripcsak G (e_1_2_8_21_1) 2015; 216
e_1_2_8_2_1
Rogers F (e_1_2_8_23_1) 1963; 51
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Donnelly K (e_1_2_8_25_1) 2006; 121
Lusignan S (e_1_2_8_3_1) 2001; 84
Bean A (e_1_2_8_27_1) 2013
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
McCray AT (e_1_2_8_22_1) 2001; 84
Avillach P (e_1_2_8_11_1) 2009; 160
Erdogan H (e_1_2_8_31_1) 2010; 160
e_1_2_8_32_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 21
  start-page: 23
  year: 2012
  end-page: 31
  article-title: Design considerations, architecture, and use of the mini‐Sentinel distributed data system
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 121
  start-page: 279
  year: 2006
  article-title: SNOMED‐CT: the advanced terminology and coding system for eHealth
  publication-title: Stud Health Technol Inform
– start-page: 17
  year: 2001
– volume: 45
  start-page: 689
  year: 2012
  end-page: 696
  article-title: Evaluation of alternative standardized terminologies for medical conditions within a network of observational healthcare databases
  publication-title: J Biomed Inform
– volume: 20
  start-page: 1
  year: 2011
  end-page: 11
  article-title: Combining electronic healthcare databases in Europe to allow for large‐scale drug safety monitoring: the EU‐ADR Project
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 275
  start-page: 551
  year: 2014
  end-page: 561
  article-title: Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how?
  publication-title: J Intern Med
– volume: 20
  start-page: 184
  year: 2013
  end-page: 192
  article-title: Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU‐ADR project
  publication-title: J Am Med Inform Assoc
– volume: 99
  start-page: 765
  year: 1997
  end-page: 773
  article-title: Vaccine Safety Datalink project: a new tool for improving vaccine safety monitoring in the United States
  publication-title: Pediatrics
– volume: 160
  start-page: 1085
  year: 2009
  end-page: 1089
  article-title: Design and evaluation of a semantic approach for the homogeneous identification of events in eight patient databases: a contribution to the European EU‐ADR project
  publication-title: Stud Health Technol Inform
– start-page: 131
  year: 2007
  end-page: 133
– volume: 160
  start-page: 749
  year: 2010
  article-title: Exploiting UMLS semantics for checking semantic consistency among UMLS concepts
  publication-title: Stud Health Technol Inform
– year: 1998
– volume: 4
  year: 2016
  article-title: Data extraction and management in networks of observational health care databases for scientific research: a comparison among EU‐ADR, OMOP, Mini‐Sentinel and MATRICE strategies
  publication-title: EGEMs Gener Evid Methods Improve Patient Outcomes
– volume: 51
  start-page: 114
  year: 1963
  article-title: Medical subject headings
  publication-title: Bull Med Libr Assoc
– volume: 32
  start-page: 281
  year: 1993
  end-page: 291
  article-title: The unified medical language system
  publication-title: Methods Inf Med
– volume: 84
  start-page: 86
  year: 2001
  end-page: 89
  article-title: A survey to identify the clinical coding and classification systems currently in use across Europe
  publication-title: Stud Health Technol Inform
– volume: 31
  start-page: K98
  year: 2013
  end-page: K112
  article-title: Post‐licensure rapid immunization safety monitoring program (PRISM) data characterization
  publication-title: Vaccine
– year: 1980
– volume: 41
  start-page: 253
  year: 1992
  end-page: 255
  article-title: The 10th revision of the International Classification of Diseases
  publication-title: Rev Epidemiol Sante Publique
– volume: 22
  start-page: 700
  year: 2013
  end-page: 704
  article-title: The Asian Pharmacoepidemiology Network (AsPEN): promoting multi‐national collaboration for pharmacoepidemiologic research in Asia
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 84
  start-page: 216
  year: 2001
  article-title: Aggregating UMLS semantic types for reducing conceptual complexity
  publication-title: Stud Health Technol Inform
– volume: 13
  start-page: 65
  year: 2005
  end-page: 69
  article-title: Codes, classifications, terminologies and nomenclatures: definition, development and application in practice
  publication-title: J Innov Health Inform
– volume: 20
  start-page: 109
  year: 1999
  end-page: 117
  article-title: The medical dictionary for regulatory activities (MedDRA)
  publication-title: Drug Saf
– year: 1995
– volume: 5
  start-page: 76
  year: 1998
  end-page: 87
  article-title: Evaluation of the Unified Medical Language System as a medical knowledge source
  publication-title: J Am Med Inform Assoc
– volume: 34
  start-page: 187
  year: 1995
  end-page: 192
  article-title: Read codes version 3: a user led terminology
  publication-title: Methods Inf Med
– volume: 19
  start-page: 54
  year: 2012
  end-page: 60
  article-title: Validation of a common data model for active safety surveillance research
  publication-title: J Am Med Inform Assoc
– volume: 216
  start-page: 574
  year: 2015
  end-page: 578
  article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
  publication-title: Stud Health Technol Inform
– volume: 36
  start-page: 450
  year: 2003
  end-page: 461
  article-title: Consistency across the hierarchies of the UMLS Semantic Network and Metathesaurus
  publication-title: J Biomed Inform
– year: 2013
– volume: 42
  start-page: 839
  year: 2009
  end-page: 851
  article-title: ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
  publication-title: J Biomed Inform
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jbi.2012.05.002
– volume: 4
  year: 2016
  ident: e_1_2_8_10_1
  article-title: Data extraction and management in networks of observational health care databases for scientific research: a comparison among EU‐ADR, OMOP, Mini‐Sentinel and MATRICE strategies
  publication-title: EGEMs Gener Evid Methods Improve Patient Outcomes
– ident: e_1_2_8_9_1
  doi: 10.1055/s-0038-1634585
– ident: e_1_2_8_14_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jbi.2003.11.001
– volume: 84
  start-page: 86
  year: 2001
  ident: e_1_2_8_3_1
  article-title: A survey to identify the clinical coding and classification systems currently in use across Europe
  publication-title: Stud Health Technol Inform
– volume-title: ICD 9 CM. The International Classification of Diseases. 9. Rev: Clinical Modification.; Vol. 1: Diseases: Tabular List.; Vol. 2: Diseases: Alphabetic Index.; Vol. 3: Procedures: Tabular List and Alphabetic Index
  year: 1980
  ident: e_1_2_8_5_1
– ident: e_1_2_8_2_1
  doi: 10.1111/joim.12159
– volume: 160
  start-page: 1085
  year: 2009
  ident: e_1_2_8_11_1
  article-title: Design and evaluation of a semantic approach for the homogeneous identification of events in eight patient databases: a contribution to the European EU‐ADR project
  publication-title: Stud Health Technol Inform
– ident: e_1_2_8_20_1
  doi: 10.1136/amiajnl-2011-000376
– volume: 121
  start-page: 279
  year: 2006
  ident: e_1_2_8_25_1
  article-title: SNOMED‐CT: the advanced terminology and coding system for eHealth
  publication-title: Stud Health Technol Inform
– ident: e_1_2_8_28_1
– volume: 51
  start-page: 114
  year: 1963
  ident: e_1_2_8_23_1
  article-title: Medical subject headings
  publication-title: Bull Med Libr Assoc
– ident: e_1_2_8_19_1
  doi: 10.1002/pds.3439
– ident: e_1_2_8_7_1
– ident: e_1_2_8_13_1
  doi: 10.1002/pds.2053
– ident: e_1_2_8_15_1
  doi: 10.1055/s-0038-1634945
– ident: e_1_2_8_29_1
  doi: 10.1136/jamia.1998.0050076
– volume: 160
  start-page: 749
  year: 2010
  ident: e_1_2_8_31_1
  article-title: Exploiting UMLS semantics for checking semantic consistency among UMLS concepts
  publication-title: Stud Health Technol Inform
– ident: e_1_2_8_8_1
– ident: e_1_2_8_16_1
  doi: 10.1002/pds.2336
– ident: e_1_2_8_17_1
  doi: 10.1016/j.vaccine.2013.04.088
– volume: 216
  start-page: 574
  year: 2015
  ident: e_1_2_8_21_1
  article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
  publication-title: Stud Health Technol Inform
– ident: e_1_2_8_24_1
  doi: 10.2165/00002018-199920020-00002
– volume: 41
  start-page: 253
  year: 1992
  ident: e_1_2_8_6_1
  article-title: The 10th revision of the International Classification of Diseases
  publication-title: Rev Epidemiol Sante Publique
– volume-title: Relationships in the Organization of Knowledge
  year: 2013
  ident: e_1_2_8_27_1
– ident: e_1_2_8_4_1
  doi: 10.14236/jhi.v13i1.580
– ident: e_1_2_8_18_1
  doi: 10.1542/peds.99.6.765
– volume: 84
  start-page: 216
  year: 2001
  ident: e_1_2_8_22_1
  article-title: Aggregating UMLS semantic types for reducing conceptual complexity
  publication-title: Stud Health Technol Inform
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jbi.2009.05.002
– ident: e_1_2_8_12_1
  doi: 10.1136/amiajnl-2012-000933
– ident: e_1_2_8_26_1
SSID ssj0009994
Score 2.2708564
Snippet Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts...
Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts in the...
Background Assessment of drug and vaccine effects by combining information from different healthcare databases in the European Union requires extensive efforts...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 998
SubjectTerms concept identification
database extraction
Databases, Factual - statistics & numerical data
Europe - epidemiology
Humans
International Classification of Diseases - statistics & numerical data
Mapping
Medical Records Systems, Computerized - statistics & numerical data
multiple medical vocabularies
Original Report
Original Reports
Pharmacology
semantic operations
UMLS
Unified Medical Language System - statistics & numerical data
Vocabularies & taxonomies
Title CodeMapper: semiautomatic coding of case definitions. A contribution from the ADVANCE project
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4245
https://www.ncbi.nlm.nih.gov/pubmed/28657162
https://www.proquest.com/docview/1927034933
https://www.proquest.com/docview/1914581468
https://pubmed.ncbi.nlm.nih.gov/PMC5575526
Volume 26
WOSCitedRecordID wos000409386300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  issn: 1053-8569
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF-09cGXWj8bbcsKcr40bT72I-tbaT18qCVoK_ciYTO7wQNNjsud0P_enU0u16MVBF8SyE6SZTOT-TE78xtC3kkdVc6PyNAKjFaVzIRKiygEqCqpqgoS387n24W8vMwmE5X3WZVYC9PxQwwBN7QM_79GA9dle7ImDZ2Z9hi37R6S7ThOJWp0wvI14a7yTRAdfEjDjAu1Ip6NkpPVnZuu6A6-vJsmeRu-ev8zfvI_M98lOz3qpKedmjwlD2z9jIzyjrb65oherauw2iM6ovma0PrmOfl-1hj7Wc9mdv6BtvbXVC8Xjad6pdCg76NNRcG5Q2psNa27JLBjekp9HnzfUItiIQt1cJM6T4gdcWgfBHpBrscfr84-hX1bhhBYmvFQRpCWpeDGxFYIk8XclJpFNi4hEVDpSBnBZYINkDRmfRoVp5BlDGRVRgAmfUm26qa2e4QqKBnw0jJpgXErlbuQsdiCVNoIYwLyfvWFCug5y7F1xs-iY1tOCreWBa5lQN4OkrOOp-Memf3VRy56S20Lh3AlcvSkqXvEMOxsDDdOdG2bJcrEjGOsNAvIq04nhpdgZS-ycAVEbmjLIID83Zsj9fSH5_HmDirzRARk5LXlr_Mu8vOveH79r4JvyOME0YfPU9wnW4v50h6QR_B7MW3nh95O3FFOskOyff5lfH3xB3NuG2s
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_qVdAvvh_RqivI-aVp89hHVj-V1qPi9Tj0Kv1SQrK7wQNNjsud0P_enc3jPKog-CmQnSTL7kzmx-zMbwDeiCworB8RvuEYrcqp9mXGA1-pohCyKFTk2vl8HYvJJLm4kNMdeN_VwjT8EH3ADS3D_a_RwDEgfbhhDV3o-gDP7W7ALrVaxAawe_J5dD7ecO5K1wfRIojYTxiXHfdsEB12z257o2sQ83qm5O8I1rmg0d3_mvw9uNMiT3LUqMp92DHlAxhOG-rqq30y21Ri1ftkSKYbUuurh3B5XGlzli0WZvmO1ObHPFuvKkf3SlSF_o9UBVHWJRJtinnZJIIdkCPicuHbploEi1mIhZzEekPsikPaQNAjOB99mB2f-m1rBl9Ru9S-CFSc55xpHRrOdRIynWc0MGGuIq6KLJCaMxFhE6QMMz-1DGOVJFSJIg-U0vFjGJRVaZ4CkSqniuWGCqMoM0LaGwkNjRIy01xrD952W5Sqlrcc22d8TxvG5Si1a5niWnrwupdcNFwdf5DZ63Y5ba21Ti3KFcjTE8f2Ff2wtTM8PMlKU61RJqQM46WJB08apeg_gtW9yMTlgdhSl14AOby3R8r5N8flzSxcZhH3YOjU5a_zTqcnX_D67F8FX8Gt09nZOB1_nHx6DrcjRCMub3EPBqvl2ryAm-rnal4vX7Zm8wu84x5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zi9RAEC7WVcQX7yO6agsyvmx2c_SR1qdl10FxHQKusi8Skj5wQJNhMiPsv7erc4zDKgg-BZJK0nRXdX1UV30F8FKUkXV-RISGY7SqojqUJY9CpawV0lqV-HY-X07FbJadn8t8B94MtTAdP8QYcEPL8Ps1GrhZaHu4YQ1d6PYAz-2uwFXK3BaLtM403zDuSt8F0eGHNMwYlwPzbJQcDm9u-6JLAPNynuTv-NU7oOmt_xr6bbjZ405y1CnKHdgx9V2Y5B1x9cU-OdvUYbX7ZELyDaX1xT34etxo87FcLMzyNWnNj3m5XjWe7JWoBr0faSxRziESbey87tLADsgR8ZnwfUstgqUsxAFO4nwh9sQhfRjoPnyevj07fhf2jRlCRdOMhSJSaVVxpnVsONdZzHRV0sjElUq4smUkNWciwRZIJeZ9ahmnKsuoEraKlNLpA9itm9o8AiJVRRWrDBVGUWaEdDcyGhslZKm51gG8GpaoUD1rOTbP-F50fMtJ4eaywLkM4MUoueiYOv4gszesctHbals4jCuQpSdN3SfGx87K8OikrE2zRpmYMoyWZgE87JRi_AnW9iIPVwBiS11GAWTw3n5Sz795Jm_mwDJLeAATry5_HXeRn3zC6-N_FXwO1_OTaXH6fvbhCdxIEIr4pMU92F0t1-YpXFM_V_N2-czbzC8YBRxJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CodeMapper%3A+semiautomatic+coding+of+case+definitions.+A+contribution+from+the+ADVANCE+project&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Becker%2C+Benedikt+FH&rft.au=Avillach%2C+Paul&rft.au=Romio%2C+Silvana&rft.au=Mulligen%2C+Erik+M&rft.date=2017-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=26&rft.issue=8&rft.spage=998&rft_id=info:doi/10.1002%2Fpds.4245&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon